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Probability Appendix

Discrete Random Variables

1.1 Random Variables

In many areas of science we are interested in quantifying the probability that a certain
outcome of an experiment occurs. We can use a random variable to identify numerical
events that are of interest in an experiment. In this way, a random variable is a theoretical
representation of the physical or experimental process we wish to study. More precisely, a
random variable is a quantity without a fixed value, but which can assume different values
depending on how likely these values are Lo be observed; these likelihoods are probabilities.

To quantify the probability that a particular value, or set of values (called an event), occurs,
we use a number between 0 and 1. A probability of 0 implies that the event cannot occur,
whereas a probability of 1 implies that the event must occur. Any value in the interval (0, 1
means that the event will only occur some of the time. Equivalently, if an event occurs with
probability p, then this means there is a p(100)% chance of observing this event.

Conventionally, we denote random variables by capital letters, and particular values that
they can assume by lowercase letters. So we can say that X is a random variable that can
assume certain particular values x with certain probabilities.

We use the notation Pr(X = x) to denote the probability that the random variable X assumes
the particular value x. The range of values x for which this expression makes sense is of
course dependent on the possible values of the random variable X. We distinguish between
two key cases.

If X can assume only finitely many or countably many values, then we say that X is a
discrete random variable. Saying that X can assume only finitely many or coun tably many
values means that we should be able to list the possible values for the random variable X, If
this list is finite, we can say that X may take any value from the list Xpo Xopporns X, for some
positive integer n. if the list is (countably) infinite, we can list the possible values for X as
Xy, Xy, This is then a list without end (for example, the list of all positive integers).

We summarize the basic notions of a discrete random variable:

I. A discrete random variable X is a quantity that can assume any value x from a discrete
list of values with a certain probability.

2. The probability that the discrete random variable X assumes the particular value x is
denoted by Pr(X = x). This collection of probabilities, along with all possible values x, is
the probability distribution of the random variable X.

3. A discrete list of values is any collection of values that is finite or countably infinite (i.e.
can be written in a list).

This terminology is in contrast to a continuous random variable, where the values the
random variable can assume are given by a continuum of values. For example, we could
define a random variable that can take_ any value in the interval [1,2]. The values X can
assume are then any real number in [1,2]. We will discuss continuous random variables in
detail in the second chapter. For now, we deal strictly with discrete random variables.
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We state a few facts that should be Intuitively obvious for probabilities in general. Namely,
the chance of some particular event accurring should always be nonnegative and no grealer
than 100%. Also, the chance that something happens should be certain. From these facts,
we can conclude thai the chance of witnessing a particular event should be 100% less the
chance of seeing anything but that particular event.

Discrete Probability Rules . -

1. Probabilities are numbers betweén 0 and 1 inclusive: 0 < Pr(X = xk) = 1 forall k

2. The sum of all probabilities for a given experiment (random variable) is equai to one:
DTUPH(X = ) = 1
ke
3. The probability of an event is 1 minus the probabitity that any other event cccurs:

PriX=xz)=1- ZPr(X = 1)
ktin

Example: Tossing a Fair Coin Once

If we toss a coin into the air, there are only two possible outcomes: it will land as either
"heads" (H) or "tails" (T). If the tossed coin is a "fair" coln, it is equally likely that the coin
will land as tails or as heads. In other words, there is a 50% chance (1/2 probability) that
the coin will land heads, and a 50% chance (1/2 probability) that the coin will land tails.
Notice that the sum of these probabilities is 1 and that each probability is a number in the
interval {0,1].

We can define the random variable X to represent this coin tossing experiment. That is, we
define X to be the discrete random variable that takes the value O with probability 1/2 and
takes the value 1 with probability 1/2. Notice that with this notation, the experimental event
that “we toss a fair coin and observe heads” is the same as the theoretical event that “the
random variable X is observed to take the value 0% i.e. we identify the number 0 with the
outcome of "heads", and identify the number 1 with the outcome of "tails®. We say that X is
a Bernoulli random variable with parameter 1/2 and can write X ~ Ber(1/2).

Example: Tossing a Fair Coin Twice

Similarly, if we toss a fair coin two times, there are four possible outcomes. Each outcome
is a sequence of heads (H) or tails (T):

» HH

« HT

« TH

= TT

Because the coin is fair, each outcome is equally likely to occur. There are 4 possible
outcomes, so we assign each outcome a probability of 1/4.

Equivalently, we notice that for any of the four possible events to occur, we must observe
two distinct events from two separate flips of a fair coin. So for example, to observe the
sequence HH, we must flip a fair coin once and observe H, then flip a fair coin again and
observe H once again. (We say that these two events are independent since the outcome
of one event has no effect on the outcome of the other.) Since the probability of observing H
after a flip of a fair coin is 1/2, we see that the probability of observing the sequence HH
should be (1/2)x(1/2) = 1/4.
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Observe that again, all of our probabilities sum to 1, and each probability is a number on
the interval [0, 11. Just as before, we can identify each outcome of our experiment with a
numerical value. Let us make the following assignments:

¢ HH -> (

o HT -»> 1

o TH -> 2

« TT-=3

This assignment defines a numerical discrete random variable Y that represents our coin
tossing experiment. We see that Y takes the value 0 with probability 1/4, 1 with probability
1/4, 2 with probability 1/4, and 3 with probability 1/4. Using our general notation to
describe this probability distribution, we can summarize by writing

Pr(Y =k)=1/4, fork=0,1,2,3.

Notice that with this notation, the experimental event that "we toss two fair coins and
ohserve first tails, then heads" is the same as the theoretical event that "the random
variable Y is observed to take the value 2". We say that Y is a uniform discrete random
variable with parameter 4 since Y takes each of its four possible values with equal, or
uniform, probability. To denote this distributional relationship, we can write Y ~
Uniformi4}.

1.2 Probability Basics

Random Variables and their Observed Values

We commonly use uppercase letters to denote random variables, and lowercase letters to
denote particular values that our random variables can assume.

For example, consider a six-sided die, pictured below.

We could let X be the random value that gives the value observed on the upper face of the
six-sided die after a single roll. Then if x denotes a particular value of the upper face, the
expression X = x becomes well-defined. Specifically, the notation X = x signifies the event
that the random variable X assumes the particular value x. For the six-sided die example, x
can be any integer from 1 to 6. So the expression X = 4 would express the event that a
random roli of the die would result in observing the value 4 on the upper face of the die.
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We have already defined the notation Pr{X = x) to denote the probability that a random
variable X is equal to a particular value x. Similarly, Pr(X = x) would denote the probability
that the random variable X is less than or equal to the value x.

Nolatmn

P1 (a = X = b) d{,notes Lhe proh'ablhty Lhal Lhe Iandom vanab!e X lies b(,tween va]ues a and I, inclusively.

With this notation, it now makes sense to write, for example, Pr(X > q}, the probability that
a random variable assumes a particular value strictly greater than a. Similarly, we can
malke sense of the expressions Pr(X < b}, Pr(X = x), Pr(X = X, orX = ) among others.
Notice that this notation allows us to do a kind of algebra w11,h probabilities. For example,
we notice the equivalence of the following two expressions: PriX =z gand X < b) = Pria = X
< b). An important consequence of this symbolism is the following:

Probabilities of Complimentary. Events

PriX =x) = 1-Pr(X = x)

PriX = x) = 1-Pr(X = x)

PriX = x) =1 -PriX <x)

Notice that the first identity is simply a restatement of Discrete Probability Rule #3 from
the previous section.

These three identities are simple conseguences of our notation and of the fact that the sum
of all probabilities must always equal 1 for any random variable. The events X = x and X = x
are called complimentary because exactly one of the events must take place; i.e. both
events cannot occur simultaneously, but one of the two must occur. The other expressions
above also define complimeniary events.

For discrete random variables, we also have the identity:

Algehxa of Disjoint-Events

fa=b thenPriX =aorX=0)=Pr(X =a) + PriX = b)

Six-Sided Die Example

Using our six-sided die example above, we have the random variable X which represents
the value we ohserve on the upper face of the six-sided die after a single roll. Then the
probability that X is equal to 5 can be written as:

Pr(X =05)= -
Using our identities for complimentary events and for disjeint events, we find that the
probability that X is equal to 1, 2, 3 or 4 can he computed as:
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Prl X <) =Pr{X =1, or X =2, or X =8, or X = 4)
=1 —-Pr{(X =35, or X = 6)
=1 = [Pr{X = 5) + Pr(X = 6)]

|
= ] e (2 D
(5 ! 6)
2
3

Notice that X ~ Uniform(6); i.e. X has a uniform distribution on the integers from 1 to 8.
Indeed, the probability of observing any one of these integer values (the value on the upper
face of the rolled die) is the same for any value. Thus, X must be a uniform random variabie.

1.3 The Probability Mass Function

Usually we are interested in experiments where there is more than one outcome, each
having a possibly different probability. The probability mass function of a discrete
random variable is simply the collection of all these probabilities.

- “ . . ProbabilityMass Fanction. . .

“The probability mass function (PMF) of a discrete random variable X provides the probabilities Pr{X = x} for ali
possible values of x. This function can he represented in a table, graph or formuia. J

Example: Different Colored Balls

Although it is usually necessary to define random variables that assume numerical vaiues,
this need not always be the case. Suppose that a box contains 10 balls:

* 5 of the balls are red

* 2 of the balls are green

= 2 of the balls are blue

* 1 ball is yellow

Suppose we take one ball out of the box. Let X be the random variable that represents the
color of the ball. As 5 of the balls are red, and there are 10 balls in total, the probability
that a red ball is drawn from the box is Pr(X = Red) = 5/10 = 1/2. [Note: this random
variable does not have numerical outcomes, but we could easily fix this by assigning
different numbers to the different colors we could chserve.]

Similarly, there are 2 green balls, so the probability that X is green is 2/10. Similar

calculations for the other colors yield the probability mass function of X given by the
following table.

red 5/10
—gz‘een 210
blue 2/10
yellow 1/10
-

£y
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Example: A Six-Sided Die
Consider again the experiment of rolling a six-sided die. A six-sided die can land on any of
its six faces, so that a single experiment has six possible outcomes.
For a "fair die", we anticipate getting each of the results with an equal probability, i.e. if we
were to repeat the same experiment many times, we would expect that, on average, the six
possible events would occur with similar frequencies (we say that such events are uniformly
distributed).
There are six possible outcomes: 1, 2, 3, 4, 5, or 6. The probability mass function could be
given by the following table.

Biltc_ome‘: Probability
1 1/6

2 6

3 1/6

a4 1/6

5 1/6

6 /6

The PMF could also be given by the equation Pr(D = k) = 1/6, for k = 1,2,3,...,6, where D
denotes the random variable associated to rolling a fair die once. Thus we see that discrete
uniform random variables have PMFs which are particularly easy to represent.

Example: Test Scores

Suppose that in a class of 10 people the grades on a test are given by 30, 30, 30, 60, 60, 80,
80, 80, 90, 100. Suppose a test is drawn from the pile at random and the score X is
observed. We would like to calculate the probability mass function for the randomly drawn
test score.

Looking at the test scores, we see that out of 10 grades:

+ the grade 30 occurred 3 times

* the grade 60 occurred 2 times

* the grade 80 occurred 3 times

* the grade 90 occurred 1 time

= the grade 100 occurred 1 time

This tells us the probability mass function of the randomly chosen test score X which we
present formally in the following table.

‘Gl‘ade, X, ‘-I_?rchabiiifgy, Pr(X = ;;R__)

30 3/10
60 2/10
80 3/10
90’ 1/10

1o 110
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We have described the PMF in a table, but an equivalent representation could be given in a
graph that plots the possible outcomes of X on the horizontal axis, and the probabilities
associated to these outcomes on the vertical axis. Below is the graph of the probability
mass function for the random variable X.

Probability Distribution for X
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1.4 The Cumulative Distribution
Function

Generally speaking, for any random variable X, we define the cumulative distribution
function (CDF) of X as follows:

[ : Wéumu_lal;ive ﬁistribution5Funct_i0n-_. - : l
i

]

i

I Flz) = Pr(X < 2).

in other words, the cumulative distribution function for a random variable at x gives the
probability that the random variable X is less than or equal to that number x.

Given a discrete random variable and its assoclated probability mass function, the definition
of the cumulative distribution function can he rewritten using our identity for the
probability of disjoint events (see Section 1.02).

Cumulative Distribution Function of a Discrete Random. Variable

If X is a discrete random variable, the comulative distribution function (CDF) of X can be written as

n
Fz)= 3" Pr(X = z)
bl
where x,is the largest possible value of X that is less than or equal to x.

Note that in this formula for CDFs of discrete random variables, we always have n < N,
where N is the number of possible outcomes of X,
Notice also that the CDF of a discrete random vgriable will remain constant on any interval
of the form [, Zp11). That is, F(2) = F(z,) = > Pr(X = ) for any T € [T, ),

Kl
The following properties are immediate consequences of our definition of a random variable
and the probability it associates to an event,
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CO0< T <l foralls
o im Flz) =0
J."_"'"'(XJ
® ril'I-POO F(SL') =1
° ]F‘(x} is & nondecreasing function of x

Recall that a function fx) is said to be nondecreasing iff(xj) = f(x2) whenever Xy <X,

Example: Rolling a Single Die

If X is the random variable we associated previously with rolling a fair six-sided die, then
we can easily write down the CDF of X,

We already computed that the PMF of X is given by Pr(X = k) = 1/6 for k = 1,2,...,6. The
CDF can be computed by summing these prohabilities sequentially; we summarize as
foliows:

e PriX=1)=1/6

o Pr{X = 2)=2/6

° PriX = 3) = 3/6

e Pr{iX =4)=4/6

o PriX = 5)=5/6

* PriX =6)=6/6=1

Notice that Pr(X = x) = 0 for any x < 1 since X cannot take values less than 1. Also, notice
that Pr(X < x) = 1 for any x > 6. Finally, note that the probabilities Pr(X = x) are constant
on any interval of the form [k,k + 1) as required.

Example: Rolling Two Dice

Suppose that we have two fair six-sided dice, one yellow and one red as in the image below.

We roll both dice a the sae time and add the two numbers that are shown on the upward
faces.

Let Y be the discrete random variable associated to this sum.

1. How many possible outcomes are there? That is, how many different values can ¥

assume?
2. How is Y distributed? That is, what is the PMT of ¥?
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3. What is the probability that ¥ is less than or equal to 67
4. What is the CDF of ¥?

S(ﬂutian

Part 1)

There are 6 possible values we can observe of each die. The two dice are rolied
independently (i.e. the value on one of the dice does not affect the value on the other die),
50 we see that there are 6 E 6 = 36 different outcomes for a single roll of the two dice.
Notice that all 36 outcomes are distinguishable since the two dice are different colors. So
we can distinguish between a roll that produces a 4 on the yellow die and a 5 on the red die
with a roll that produces a 5 on the yellow die and a 4 on the red die.

However, we are interested in determining the number of possible outcomes for the sum of
the values on the two dice, i.e. the number of different values for the random variable Y.
The smallest this sum can be is 1 + 1 = 2, and the largest is 6 + 6 = 12. Clearly, Y can also
assume any value in between these two extremes; thus we conclude that the possible values
for Yare 2,3,...,12,

Part 2)

To determine the probability distribution for Y, first consider the probability that the sum of
the dice equals 2. There is only one way that this can happen: both dice must roll to 1.
There are 36 distinguishable rolls of the dice, so the probability that the sum is equal to 2 is
1/36.

The other possible values of the random variable Y and their corresponding probabilities
can be calculated in a similar fashion. Some of these are listed in the table below.

“Outcome (Yellow, Red) . | Sum = Yellow + Red| Probability.
a5 ‘ 7 RV
v e e
(1,3, 22, 3.1 ia 3736
(1,4), (2,3), (3.2), 4,1) |5 4136
(1,5), (2.4), (3,3), (4,2), (5,1} |6 5/36
(6.6) 12 1/36

The probability mass function of Y is displayed in the following graph.
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Probability Distribution for X
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Alternatively, if we let P = Pr(Y = k), the probability that the random sum Y is equal to k,
then the PMF can be given by a single formula:

ﬁwlk—~7]
g = e if k=253 1
Ph 3G i k=23, ,12

Part 3)
The probability that the sum is less than or equal to 6 can be written as Pr{ ¥ < 6), which is
equal to F(6), the value of the cumulative distribution function F(y) of Yat y = 6. Using our
identity for probabilities of disjoint events, we calculate

2 3 4 5 15 )

G .
1
Pr(Y €6) = F(6) = Z])k w2 ) - 36 + 6 4 I A 36 - TR
hiw]

Part 4)

To find the CDF of Y in general, we need to give a table, graph or formula for F (k) = Pr(Y =
k) for any given k. Using our table for the PMFE of Y, we can easily construct the
corresponding CDF tahle:

This table defines a step-function starting at 0 for y < 2 and increasing in steps to 1 for y =
12. Notice that the CDF is constant over any half-closed integer interval from 2 to 12. For
example, F(y) = 3/36 for all y in the interval [3,4).
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Example: Test Scores
Consider the example of selecting a test score from a given collection that we explored in
the previous section: in a class of 10 people, grades on a test were 30, 30, 30, 60, 60, 80,
80, 80, 90, 100. Let X be the score of a randomly drawn test from this coilection.

1. Calculate the probabilily that a test drawn al random has a score less than or equal to
80.

2. Calculate the probability that a test drawn at random has a score less than or equal to
X where X = G, 10, 20, 30, ..., 100.

Solution

Part 1)

Recall the probability mass function, calculated earlier

Probability Distribution for X
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Let P, be the probability that the score of a randomly drawn test is x, = 10k. So, for
example:

* P, is the probability that a randomly drawn test score is 0

° p, is the probability that a randomly drawn test score is 10

° P, is the probability that a randomly drawn test score is 20

* P, is the probability that a randomly drawn test score is 30

and so on, Values for each of these probabilities are given in the above bar graph. Notice
that many of these probabilities are zero.

The probability that a test drawn at random has a score of no greater than 80 is exactly the
value of the CDF of X at x = 80; i.e.,

Pr(X < 80) = F(80)

8
= Zm
Kez=()

=po+ P+ Pt pg -+ pa P - pe - pr - ps

3 2 3
=04 0404 E-FOJ-U*&* '1‘“64*0"?*‘:[‘6
_8

10
_4
5
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The color blue was used in the above calculation to highlight nonzero probabilities,
Because of the sample space of our experiment, if the randomly selected grade is to be less
than or equal to 80, then this grade can only be 30, 60, or 80. Intuitively, the probability
that a randomly selected test has a grade of 30, 60, or 80 is the sum of the probabilities
that the score is one of these possibilities, which we note is in agreement with our identity
concerning probabilities of disjoint events from Section 1 .02,

Part 2)

Now we want to calculate the probability that a test drawn at random has a score less than
or equal to X, = 10k for k = 0,1,...,10. Again, we identify this as simply finding the value of
the CDF of X at each of these X, values,

0
Pr{X <0)=F(Q)= ZP& = pg =0

hess{)
Similarly, £(0) = F(10) = F(20) = 0. F(30) is non-zero:
a

Pr(X <30) = F(30) =Y py = 040404 =

Ke=(} 10
Notice that F(40) is equal to F(30), since p, =0.
Other values of F are calculated in the same way using the definition of the cumulative
distribution function. The following table contains the values of the CDF of X for X, =0, 10,
20, 30, ... 100.

k x| Fx,)
o lo fo
1110 |0
2 |20 |o
3730 o3
4 ja0 oz
5 150 |03
6 160 05
7 70 Tos ™
8 80 {0.8
oo
101100]1.0

Collectively, our calculations give the CDF of the random variable X. This cumulative
distribution function is graphed in the figure below.
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Cumulative Distribution for X
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1.5 Some Common Discrete
Distributions

A random variable is a theoretical representation of a physical or experimental PTrOCESss we
wish to study. Formally, it is a function defined over a sample space of possible outcomes.
For our simple- coin tossing experiment, where we flip a fair coin once and observe the
outcome, our sample space consists of the two outcomes, H or T. When tossing two fair
coins sequentially, our sample space consists of the four outcomes HH, HT, TH or TT.

Let us fix a sample space of n tosses of a fair coin. Experimentally, we may be interested in
studying the number of "heads” observed after tossing the coin n times. Or we could be
interested in studying the number of tosses needed to first observe "heads”. Or we could be
interested in studying how likely a certain sequence of "heads” and "tails” is to be observed.
Each of these experiments are defined on the same sample space (the events generated by
n tosses of a fair coin), yet ecach strive to quantify different things. Consequently, each
experiment should be associated with a different random variable.

The Binomial Distribution

Let X denote the random variable that counts the number of times we observe "heads”
when flipping a fair coin n times. Clearly, X can take on any integer value from 0 to n,
corresponding to the experimental outcome of observing 0 to n "heads". How likely is any
particular outcome of this random variable? Notice that we do not care about the order of
the ohservations here, so that if n = 3, the outcome THH is equivalent to the outcomes HTH
and HHT. Each of these outcomes contains two "heads”.

The likelihood of any particular outcome is what is represented by the probability mass
function (PMF) of the random variable. Suppose n = 2. Then we see thatl the PMF of Xz is
given by:

* PrX,=0)=1/4
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¢ PrX, =1)=1/2 ,
© Pr(X, =2)=1/4
We say that X , Is a binomial random variable with parameters 2 (the number of times we
flip the fair coin) and 1/2 (the probability that we observe heads after g single flip of the
coin). We can write X, ~ Bin(2, 1/2).
Just as we did with Bernoulli random variables, we can think of our coin tossing experiment
a bit more abstractly. Specifically, we can think of observing *heads" as a success and
observing “tails" as a failure. This abstraction will help us generalize our coin tossing
procedure to more general experiments.

If X is a binomial random variable associated to n independent trials, each with a SUCCess
probability p, then the probability mass function of X is:

P X = kY s nl Lk 1w ==k
HX = k)= Hin =1 P (L=p)"",

where k is any integer from 0 to n. Recall that the factorial notation n! denotes the product
of the first n positive integers: n! = 1-2:3-+(n-1)'n, and that we observe the convention Q! =
1.
For our coin tossing experiment, the probability of success - that is, the probability of
observing "heads" - was the same as the probability of failure, observing "tails”, In general,
we may be interested in processes that have different probabilities of success and failure.
For example, suppose that we know that 5% of all light bulbs produced by a particular
manufacturer are defective. If we buy a package of 6 light bulbs and want to calculate the
probability that at least one is defective, we can do so by identifying this experiment with a
binomial random variable. Here, we can think of observing a defective bulb as a “success”
and observing a functional bulb as a “failure”, Then our experiment is given by the random
variable X ¢~ BIn(6, 1/20), since we will observe 6 bulbs in total and cach has a probahility
of 5/100 = 1/20 of being defective.
In general, we can think of observing n independent experimental trials and counting the
number of "successes" that we witness. The probability distribution we associate with this
setup is the binomial random variable with parameters n and p, where p is the probability
of "success." We can denote this distributional relationship to a random variable X by X ~
Bin(n, p).

The Geometric Distribution

Now consider a slightly different experiment where we wish to flip our fair coin repeatedly
until we first observe "heads". Since we can first observe heads on the first flip, the second
flip, the third flip, or on any subsequent flip, we see that the possible values our random
variable can lake are 1, 2, 3,....

Of course, we can consider a more abstract experiment where we ohserve a sequence of
trials until we first observe a success, where the probability of success is p. If we let X
denote such a random variable, then we say that X is a geometric random variable with
parameter p. We can denote this particular random variable by X ~ Geo(p).

Letting S denote the outcome of "success” and F denote the outcome of "failure”, we can
summarize the possible outcomes of a geometric experiment and their likelihoods {the
probability mass function) in the following table. Here, we write p for the probability of
success and g for the probability of failure.
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When flipping a fair coin, we see that X ~ Geo(1/2), so that our PDF takes the particularly
simple form Pr(X = k) = (1/2)" for any positive integer k.

The Discrete Uniform Distribution

Now consider a coin tossing experiment of flipping a fair coin n times and observing the
sequence of “heads" and "tails”. Because each outcome of a single flip of the coin is equally
likely, and because the outcome of a single flip does not affect the outcome of another flip,
we see that the likelihood of observing any particular segquence of "heads”" and "tails” will
always be the same. Notice that for n = 2 or 6, we have already encountered this random
variable (see Section 1.01 and Sections 1.02 - 1.04 respectively).

We say that a random variable X has a discrete uniform distribution on n points if X can
assume any one of n values, each with equal probability. Evidently then, if X takes integer
values from 1 to n, we find that the PMF of X must be Pr(X = k) = 1/n, for any integer k
between 1 and n,
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Expected Value

For an experiment or general random process, the outcomes are never fixed. We may
replicate the experiment and generally expect to observe many different outcomes. Of
course, in most reasonable circumstances we will expect these observed differences in the
outcomes to collect with some level of concentration about some central value. One central
value of fundamental importance is the expected value.

The expected value or expectation (also called the mean) of a random variable X is the
welghted average of the possible values of X, weighted by their corresponding probabilities,
Informally, the expectation of a random variable X is the average value that we would
expect to see after repeated observation of the random process. Put another way, the
expectation is the long-term average of the realized values of a random variable after
repeated observation of the random variable.

The expected value, B{X), of a discrete random variahle X is the weighted average of the possible values of X
where each possible vaiue of X is weighted by its corresponding probability:
N

F(X) == Z wePr(a = ay)
ks

where N is the total number of possible values of X.

* Do not confuse the expected value with the average value of a set of observations: they
are two different but related quantities. The average value of a random variable X would
be just the ordinary average of the possible values of X; that is, no possible vﬂefllue of X
receives any special weight. Naturally, this ordinary average is given by }% Z 2. The

few=1
expected value of X is a weighted average, where cerlain values get more or less weight
depending on how likely or not they are to be observed. A true average value is
calculated only when all weights (so all probabilities) are the same.

* The definition of expected value requires numerical values for the X So if the outcome
for an experiment is something qualitative, such as “heads" or “tails”, we could calcuiate
the expected value if we assign heads and tails numerical values (0 and 1, for example).

Example: Test Scores

Recall the test score example from Sections 1.03 and 1.04. We suppoesed that in a class of
10 people the grades on a test are given by 30, 30, 30, 60, 60, 80, 80, 80, 90, 100. A test is
drawn from the collection at random and the score X is observed. What is the expected
value of the random variable X7

The expected value of the random variable is given by the weighted average of its values:

N
B(X) = > ayPr(X = z;)
k=1

wd 23 1
s 3016 - 60“1“6 + 8015 +- 9016 4 IUGE
== Q- 1224 4- 9 4 10

= (4
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Notice that 64 is not actually a possible value for the random variable X. Nevertheless, this
expectation makes sense if we remember (hat what we have really calculated is the
long-term average of repeatedly drawing a test score from this coilection. If we drew a test
score at random from this collection 100 times (remembering to replace the selected test
each time so that we never aiter our collection of tests) and then averaged all the observed
outcomes, this average value would he very near the expected value of 64.

Expectation as a Measure of the Center of a Distribution
Another informal way to think of the expectation of a random variable is to notice that it
gives a measure of the center of the associated distribution. For our test score example, the
PMF of the randomly selected test score X is shown helow.

Probability Distribution for X
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Notice that the expected value of our randomly selected test score, E(X) = 04, lies near
the "center" of the PMF. There are many different ways to quantify the “center of a
distribution" - for example, computing the 50th percentile of the possible outcomes - hut for
Our purposes we will concentrate our attention on the expected vajue,
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§‘l1e variance, Var(X), of a discrete random variable X ig

i 2
Var(X) = 37 (o —B(0)) Pr(X = )
k=1

where N is the total number of possille values of X.

| The standard deviation, ¢, is the positive square root of the variance:

0 = VVarlX)

Observe that the variance of a random variable is always nonnegative {since probabilities
are nonnegative, and the square of a number is also nonnegative),

Observe also that much like the expectation of a random variable X, the variance (or
standard deviation) is a weighted average of an expression of observable and calculable
values. More precisely, notice that

Var(X) = E ([X — E(X)P).

Example: Test Scores

Solution
The variance of the random variable X is given by
N
Var(X) = ¥ (ay, — B(X))?Pr(X = a, )
k=1
w2 3 2 3 1 1
= (30 — f4Y20 — B2 — B2 L G2 a2t
= (30 - 64) 104 (60 — 54) 104 (80 64) 10 - {90 64) 0 (100 64} 0
= 624

The standard deviation of X is then

o(X) = V624 ~ 24.970902
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Interpretation of the Standard Deviation
For most "nice” random variables, i.e. ones that are not too wildly distributed, the standard
deviation has a convenient informal interpretation. Consider the intervals

Sy == [E{X) = me(X), B(X) + mo({X)],

for some positive integer m. As we increase the value of m, these intervals will contain
more of the possible values of the random variable X,
A good rule of thumb is that for "nicely distributed"” random variables, all of the most likely
possible values of the random variable will be contained in the interval S . Another way to
say this is that, for discrete random variables, most of the PMF will live on the interval S,
We will see in the next chapter thai a similar interpretation holds for continuous 1*andom
variables.

1.8 Chapter 1 Summary

Our treatment of discrete random variables has been brief, but the concepls we have
introduced are fundamental to any random process. These fundamentals will be explored
again in the next chapter when we apply them to continuous random variables. We will see
that many similarities exist between the discrete and continuous cases, hut we will also
notice many important differences hetween the two as well.

We summarize some of the important concepts that were introduced in Chapler 1.

The PMF and the CDF

The probability mass function (PMF) of a random variable X is the function that assigns
probabilities to the possible outcomes of X. We write

Pr (X “)j

to denote this function of the possible values X, of X.

The cumulaiive distribution function (CDF) of a random variable X is the function that
accumulates the probabilities from a specified value. We define the CDF to be F(x) = Pr(X =
x} and note that the CDF is intimately related to the PMF via our identity for the probability
of disjoint events; i.e., the CDF is given by a sum over values of the PMF.

Flz,) = i Pr{X = zy)
fret

Expected Value, Variance and Standard Deviation

The concepts of expectation, variance and standard deviation are crucial and will be
revisited again when we explore continuous random variables. Students should know that

E(X) =Y aPr(X =)

k=1
N
Var{X) = Z(m ~B{X))? Pr(X = my)
o X} = wVar(X)
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The expectation represents the "center® of a random variable, an expected value of an
experiment, or the average of outcomes of an experiment repeated many times. The
variance and standard deviation of a random variable are numerical measures of the
spread, or dispersion, of the distribution of the random variable.

A5
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Continuous Random Variables

2.1 The Cumulative Distribution
Function (Continuous Case)

In the previous chapter, we defined random variables in general, hut focused only on
discrete random variables. In this chapter, we properly treat comiinuous random
variables.

Il for example X is the height of a randomly selected person in British Columbia, or X is
tomorrow's low temperature at Vancouver International Airport, then X is a continuously
varying quantity.

We previously defined a continuous random variable to be one where the values the
random variable can assume are given by a continuum of values. For example, we can
define a continuous random variable that can take on any value in the interval [1,2].

To make this definition more precise, we recall the definition from Section 1.4 of a
cumulative distribution function (CDF) that was given for any random variable.

= The -Vgu_ﬁiulative. Distribution Function: -

The cumulative distribution function for any random variable X, denot{zdbyF(x) is the probability that X

assumes a value less than or equal to x:
Fx) = Pr{X < a)

The cumulative distribution function has the following properties:
o (3 = F(x) = 1 for all values of x
. Jm Flz)=0

=00

lim F (z)=1

J

«  F{x)is a nondecreasing function of x

‘This definition is independent of the type of random variable to which we are referring.
From this, we can define a continucus random variable to be any random variable X
whose CDY is a continuous function. Notice that this is in contrast to the case of discrete
random variables where the corresponding CDF is always a discontinuous step-function.

Continuous Random Variable

A continunous random variable is one that has a continuous cumaulative distribution function.
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Comparison to the Discrete Case

Recall the cumulative distribution function we had for the test scores example in the
previous chapter. The graph of the cumulative distribution function is given below.

Cumulative Distribution for X
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Observe that the graph of this function "increases in steps” at 30, 60, 80, 90, and 100. CDFs
for discrete random variables are always step functions. A discrete random variable cannot
assume a continuum of values; thus, its CDF can only increase at a finite or countably
infinite set of points.

For another example, consider the function whose graph is given below.
g a

;
i

| F(x)
1

0 X

This function cannot represent a CDF for a continuous random variable because the
function F is not continuous for all values of x. However, F could represent a cumulative
distribution function for a discrete random variable since it increases from 0to1in a finite
number of steps.
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Example: Maximum Outdoor Air Temperature
The maximum outdoor air temperature in downtown Vancouver on any given day in January
can be expressed as a continuous random variable X. A reasonable CDF for this random
variable is given by the function

1 ,
Fzx) = I for some & > 0

Lk

For a particular k, we have graphed this cumulative distribution function in the plot below.

F(x) ,

0.5

A5 0 5 0 5 10 15

X

In the above plot, note that the horizontal x-axis gives possible values of the maximum
outdoor air temperature in downtown Vancouver on any day in January, and that the
vertical probability-axis gives values beiween 0 and 1. The value of the cumulative
distribution function F(x) gives the probability that the maximum outdoor air Llemperature is
ito greater than x.

We can easily see that this function satisfies the basic properties of a CDF. Clearly, F(x) = 0
for all possible temperatures x. Also, F(x) < 1 for all x since the denominator in the
definition of F{x) is always larger than the numerator. Since k > 0, we calculate

T_l_l}l’_r_lw b (:C) = ;,_»EIIIOO 1 -4 f_,“-k:.w = (.
Likewise,

1
lil};l F{z)= lim

e a—too |- gka -
To check that F is nondecreasing, we note that since I is everywhere differentiable, it
suffices to show that the derivative of F is nonnegative. A quick calculation yields

a ke k®
L) e
dx (=) (1 e=h)2

which is certainly never negative. Thus we see explicitly that this function F(x) satisfies all
the basic properties that a CDF should.

v
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2.2 The Probab ility Density Function

An Important Distinction Between Continuous and Discrete
Random Variables

What is Pr(X = x)? The answer clearly depends on the distribution of the random variable X,
For discrete random variables, we have already seen that if x is a possible value that X can
assume, then Pr(X = x) is some positive number. But is this still true if X is a continuous
random variable?

In the context of our maximum outdoor air temperature example from the previous section,
we may ask what is the probability that the maximum outdoor air temperature in downtown
Vancouver on any given day in January is exactly 0°C? Since our measurements of the air
temperature are never exact, this probability should be zero. If we had instead asked for
the probability that the maximum outdoor air temperature was within 0.005° of 0°C, then
we would have arrived at a nonzero probability. All practical measurements of continuous
data are always approximate. They may be very precise, but they can never be truly exact,
Hence, we cannotl expect to measure the likelihood of an exact outcome, only an
approximate one.

In general, for any continuous random variable X, we will always have Pr(X = x) = 0. We
can prove this fact directly by appealing to our basic results about combining probabilities
of disjoint events.

Suppose we choose any interval | x , x -+ [1x]. The probability that the continuous random
variable X lies inside of this interval is

Priz < X <z Az).
Using our identity for probabilitics of disjoint events, we can write this as the difference

Pr(X <z +Az) - Pr(X < x).
If we take the limit as {]x goes to zero, we obtain

A Pr(e <X <24 A2) = lim [Pr(X <2+ Az) - Pr(X < x)J

Ax-{

=Pr(X <z) - Pr(X <g)

== {)
Notice that the crucial step in this argument is the evaluation of the }mit in the second to
last line. Since X is a continuous random variable, its CDF F(x) is a continuous function;
thus, we are allowed to pass the Hmit through to the argument of the function Fx) = Pr(X =
x}. Notice that if X were a discrete random variable, this evaluation would not be possible in
general since its CDF would not be continuous.
This gives a direct proof of the fact that Pr(X = x) = 0 for any continuous random variable
X. We will see that an even simpler proof’ will come for free for most continuous random
variables via the Fundamental Theorem of Calculus. In order to do this however, we need to
relate these probabilities to an integration of some appropriate function. It turns out that
this function plays a vital role in describing the distribution of a continuous random variable
and will be extremely useful for performing calculations.
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The Probability Density Function
The "appropriate function" referred to above is called the prebability density function
(PDF). It can be defined for most continuous random variables, and is extremely useful for
calculating probabilities of events associated to a continucus random variable.

Tlﬂi‘é—-i’robahilil;y Density Function

I
] function (PDF) of X is given by

| s =

dx

i
i
|

i wherever the derivative exists.

In short, the PDF of a continuous random variable is the derivative of its CDF. Using the
Fundamental Theorem of Calculus, we see that the CDF F(x) of a continuous random
variable X may be expressed in terms of its PDE-

Pa)= [ fa,

where f denotes the PDF of X.

Properties of the PDF

This formulation of the PDF via the Fundamental Theorem of Calculus allows us to derive
the following properties.

[ ~ Properties of the Probability Density Function

f fix) is a probability density function for a continuous random variable X, then

2. f(x) > 0 for any value of 2

o[ e

The first property, as we have already seen, is just an application of the Fundamental
Theorem of Calculus and relates the CDF of a continuous random variable to its PDF,

The second property states that for a function to be a PDF, it must be nonnegative. This

makes intuitive sense since probabilities are always nonnegative numbers. More precisely,

we already know that the CDF F(x) is a nondecreasing function of x. Thus, its derivative fx)

is nonnegative.

The third property states that the area between the function and the x-axis must be 1, or

that  all probabilities must integrate  to 1. This must be true since
lim F(z)=0and Ti'ﬂnm F2) =1, s Property 3 follows from the Fundamental

E )
Theorem of Calculus.

The PDF gives us a helpful geometrical interpretation of the probability of an event: the
probability that a continuous random variable X is less than some value Xy is equal to the
area under the PDF f(x) on the interval (-oo,xO 1, as demonstrated in the following graph.

! Let I(A) be the cumulative distribution function for a continuous random variable X. The prohabilﬁy density o
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XO X

b
Similarly, we have Pr(a <z < b) = / flzx)dzx.

Now that we can interpret probabilities as integrals, it is clear that for a continuous random
variable X, we will always have Pr(X = x) = 0. This is simply because the area under a
single point of a curve is always zero. In other words, i’ X is a continuous random variable,
the probability that X is equal to a particular value will always be zero. We again note that
this is an important difference between continuous and discrete random variables.

The PDF of a continuous random variable plays a similar role as the PMF does for discrete
random variahles. In particular, they are both used to compute probabilities of events
associated to a random variable. However, as the previous paragraph shows, PDFs and
PMFs are different objects, just as continuous and discrete random variables are different
concepls.

Example
Let f(x) = k(3x” + 1) for 0 = x = 2, and fix) = 0 elsewhere.

1. Find the value of k that makes the given function a PDI.

7. Let X be a continuous random variable whose PDF is f{x). Compute the probability that X
is between 1 and 2.

3. Find the cumulative distribution function of X,

4. Find the probability that X is exactly equal to 1.

Solution

Part 1)

{ == [:f(:v)dm
= / 2 k(32% 4+ 1)dw

0

]
= k(l())
Therefore, k = 1/10.

Notice that fix) = 0 for all x. Also notice that we can rewrite this PDF as a piecewise

dx

function:
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0 otherwise
Part 2}
Using our value of k from Part 1:
2 3.2 . 3
dz® -1 T 2
Pril1< X €2)= T = —] =1 2/10=4/5
1(—~)/1md‘I 10 h /10 = 4/5

Therefore, Pr(l = X < 2)is 4/5.

Part 3)
Using the Fundamental Theorem of Calculus, the CDF of X at x in [0,2] is
Pr(X <a) = F(z) = / F{tydit
-k
f L - 1)elt
o :10( o
. NE
S rGE]
10( )0

1 .
e m(::;*‘ +a), for 0 <a <2

A similar calculation easily verifies that F(x) = 0 for all x < 0 and that F{x) = 1 for all x = 2.

Part 4)

Since X is a continuous random variable, we immediately know that the probability that it
equals any one particular value must be zero. More directly, we compute

Pr{X =1) = / 1 F(t)dt = 0

An Important Subtlety

There is an important subtlety in the definition of the PDF of a continuous random variable,
Notice that the PDF of a continuous random variable X can only be defined when the
cumulative distribution function of X is differentiable.

As a first example, consider the experiment of randomly choosing a real number from the
interval [0,1]. Let X denote the outcome of this experiment. Since the likelihood of picking a
number in a given subinterval of [0,1] is proportional to the length of that subinterval, we
see that the CDF F(x) is given by

0 ifz<O
PiX <z)=Fz)=<a f0<z<1
1 fa>1

This function is differentiable everywhere except at the points x = 0 and x = 1. So the PDF
of X is defined at all points except for these two:

dF(m)zf(x)m{l if0<z<1

dz 0 fx<Qorx>1
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Nevertheless, it can still make sense to define the PDF at the points where the CDF fails to
be differentiable. We know that the integral over a single point is always zero, so we can
always change the value of our PDF at any particular point (or at any finite set of points)
without changing the probabilities of events associated to our random variable. Thus, we
could define

difz) . 1 #0<z<1
de fa) = {G otherwise
or

dz 0 otherwise
Both of these functions are also PDFs of the continuous random variable X. These two
formulations have the advantage of being defined for all real numbers.

dF(z) _ 1) — {1 fo0<z <1

Not All Continuous Random Variables Have PDFs

We can sometimes encounter continuous random variables that simply do not have a

meaningful PDF at all. The simplest such example is given by a distribution function called

the Cantor staircase.

The Cantor set is defined recursively as follows:

¢ Start with the interval [0,1).

* Delete the middle third of this interval. You are now teft with two subintervals {0,1/3) and
[2/3,1).

= Delete the middle third of each of these remaining subintervals. Now we have four new
subintervals: [0,1/9), [2/9,3/9), [6/9,7/9), and 18/9,1).

* Repeat this middle third deletion for the new subintervals. Continue indefinitely.

If we take this process to the limit, the set that remains is called the Canfor set. 1t is

extremely sparse in [0,1), yet still contains about as many points as the entire interval itself.

In particular, notice that every point of the form x = 1 - 3%1s in the Cantor set for every k >

0.

We can define a Cantor random variable to have the cumulative distribution function that

increases on the Cantor set and remains constant off of this set. We define this function as

follows:

¢ Let F(x) be the CDF of our Cantor random variable X. Define F(x) = 0 for x < 0 and F(x)
=1forx=>1.

* Define F(x) = 1/2 on [1/3,2/3), i.e. on the first middle third deleted in the construction of
the Cantor set.

> Define F(x} = 1/4 on [1/9,2/9) and F(x} = 3/4 on [7/9,8/9).

* Define F(x) = 1/8, 3/8, 5/8, and 7/8 on the deleted middle thirds from the third step in our
Cantor set construction.

¢ Continue indefinitely.

After a limiting argument and some technicalities with deflining I(x) on the Cantor set itself,

this procedure defines a continuous function that begins al 0 and increases to 1. However,

since this function is constant except on the Cantor set, we see that its derivative off of the

Cantor set must be identically zero. On the Cantor set the function is not differentiable and

so has no natural PDF.
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What we see is that, for a Cantor random variable, we cannot make any sensible definition
for the PDF. It is either identically zero or not defined.
This is an interesting example of how identifying a random variable with its PD¥ can lead us
astray. Thankfully, for our purposes, we will never need to consider continuous random
variables that do not have PDFs defined everywhere (except possibly at finitely many
points).

2.3 Some Cog
istributions

on Continuous

Let us consider some common continuous random variables that often arise in practice. We
should stress that this is indeed a very small sample of common continuous distributions.

The Beta Distribution

Suppose the proportion p of restaurants that make a profit in their first year of operation is
given by a certain beta random variable X, with probability density function:

2p(1~p)* f0<p<i,
J(p) = {0 elsewhere.
What is the probability that more than half of the restaurants will make a profit during their
first year of operation? To answer this question, we calculate the probability as an area
under the PDF curve as follows:
1
Pri0b <X <1)= | f(p)dp

0.5

i
= / 12p(L -~ p)*dp
0.

]
= f (12p — 24p* 4 12p") dp
0.5
3 1
= 6p” — 8p° + 3p4f
(L5

= (6~ 8+ 3) — (1.5~ 1 0.1875)

== ().3125
Therefore, Pr{0.5 =P < 1) = 0.3125.

The example above is a particular case of a beta random variable. In general, a beta
random variable has the generic PDF:

k(1 -z)t o< <,
f(z) = {{J elsewhere

where the constants a and b are greater than zero, and the constant k is chosen so that the
density fintegrates to 1.
We see that our previous example was a beta random variable given by the above density

with @ = 2 and b = 3. Let us find the associated cumulative distribution function F(p) for
this random variable. We compute:
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;7 '
F(p) — f F)dt
-0
yi]
= f 1281 - t)%dt

0

i .
=12 | (t— 28 4 M)t
G

(=23

= p*(6 — 8p -+ 3p%),
valid for0=p = 1.

The Exponential Distribution

The lifespan of a lightbulb can be modeled by a continuous random variable since lifespan -
i.e. fime - is a continuous quantity. A reasonable distribution for this random variable is
what is known as an exponential distribution.

A random variable Y has an exponential distribution with parameter > 0 if its PDF is
given by

1) = %e“'-"‘f’ﬁ o<y < oo

Y 0 alsewhere

Suppose that the lifespan (in months) of lightbulbs manufactured at a certain facility can be
modeled by an exponential random variable Y with parameter § = 4. What is the probability
that a particular lightbulb lasts at least a year? Again, we can calculate this probability by
evaluating an integral. Since there are 12 months in one year, we calculate

Pr(Y > 12)= | [fy)dy

12

[
== —e " dy
9 4

12
G
=2 0.04979
Thus we can see that it is highly likely we would need to replace a lightbulb produced from

this facility within one year of manufacture.

The Continuous Uniform Distribution

Our third example of a common continuous random variable is one that we have already
encountered. Consider the experiment of randomly choosing a real number from the
interval {a,b]. Letting X denote this random outcome, we say that X has a continuous
uniform distribution on [a,b] if the probability that we choose a value in some subintervai of
[a,b] is given by the relative size of that subinterval in {a,b]l. More explicitly, we have the
following:

A random variable X has an continueus uniform distribution on [a,b] if its PDF is constant
on [a,b]; L.e. its PDF is given by
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A ifa<la<b
fla) = {0  elsewhere

The continuous uniform distribution has a particularly simple representation, just as its
discrete counterpart does. Nevertheless, this random variable has great practical and
theoretical utility. We will explore this distribution in more detail in the following example
and in the exercises.

A Geometric Problem

Consider the square in the xy-plane bounded by the lines x = 0, x = 1, y = 0 and y=1. Now
consider a vertical line with equation x = b, where 0 <= b < 1 is fixed. Note that this line will
intersect the unit square just defined.

Suppose we select a point inside this square, uniformly at random. If we let X be the
x-coordinate of this random point, what is the probability that X is in the interval [0 , b]?

An illustration of our problem is given in the figure below. Graphically, we are trying to find
the probability that a randomly selected point inside the square lies to the left of the red
line.

y x=5h

Y

0

The region to the left of the red line is a rectangle with area equal to b. The probability that
our random point lies inside this rectangle is proportional to the area of that rectangle,
since the larger the area of the rectangle, the larger the probability is that the point is
inside of it.

e If the probability that the point is between 0 and b were equal to 0.5, then the red line
would have to divide the square into two equal halves: so b = 0.5.

¢ If the probability that the point is between 0 and b were equal to 0.25, then the red line
would have to divide the square at 1/4: so b = 0.25.
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¢ If the probability that the point is between 0 and b were equal to 1, then the red line
would have to lie on the rightmost edge of the square itself: so b = 1 '
In general, we see that we should have Pr(0 = X = b) = b.
Notice that this result matches with the definition of our random variable X. Since we want
to select a random point uniformly at random from the unit square, the random variable X
giving the x-coordinate of this random point should be a continuous uniform random
variable on the interval [0,1]. Thus, the PDF of X is simply f{%) = 1, where 0 <z < 1
b

Therefore, Pr{l < X < §) = /0 dz = b, which agrees with the answer we derived using

purely geometric considerations.

2.4 The Normal Distribution

The most important probability distribution in all of science and mathematics is the normal
distribution.

The Normal Distribution: .

The random variabie X has a normal distribution with mean parameter [] and variance parameter ¢* > 0 if
and only if its PDF is given by
1 RO 2

To express this distributional relationship on X, we commonty write X ~ Normal([],¢2).

- <& < 0O,

This PDF is the classic “bell curve" shape associated with so many experiments and natural
phenomena. The parameter [] gives the mean of the distribution (the center of the bell
curve) while the o* parameter gives the variance (the horizontal spread of the hell curve).
The first of these facts is a simple exercise in integration (see the exercises), while the
second requires a bit more ingenuity.

Recall that the standard deviation of a random variable is defined to be the positive square
root of its variance. Thus, a normal random variable has standard deviation «.

This random variable enjoys many analytical properties that make it a desirable object to
work with theoretically. For example, the normal density is symmetric about its mean il.
This means that, among other things, exactly half of the area under the PDF lies to the right
of the mean, and the other half of the area lies to the left of the mean. More generally, we
have the following important fact.

- Symmetry of Probabilities for aNormalxstnbutmn

If X has a normal distribution with mean [l and variance ¢°, and if x is any real number, then

Pr(X <p—z)=Pr(X > 4 2).

However, the PDF of a normal distribution is not convenient for calculating probabilities
directly. In fact, it can be shown that no closed form exists for the cumulative distribution
function of a normal random variable. Thus, we must rely on tables of values to calculate
probabilities for events associated to a normal random variable. (The values in these tables
are calculated using numerical techniques of integration.}
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A particularly useful version of the normal distribution is the standard normal distribution,
where the mean parameter is 0 and the variance parameteris 1.

" The Standard Normal Distribution -

The randem variable Z has a standard normal distribution if its distribution is normal with mean 0 and variance

1. The PDF of Z is given by

1 2
J(2) = =€ T, 00 < 2 < 00,
2

For a particular value x of a normal random variable X, the distance from x to the mean [ of
X expressed in units of standard deviation o is
T
z = / .
o
Since we have subtracted off the mean (the center of the distribution) and factored out the

standard deviation (the horizontal spread), this new value z is not only a rescaled version of
x, but is also a realization of a standard normal random variable.

In this way, we can standardize any value from a generic normal distribution, transforming
it into one from a standard normal distribution. Thus we reduce the problem of calculating
probabilities for an event from a normal random variable to calculating probabilities for an
event from a standard normal random variable,

- Standardizing-a Normal Randem Variable . -

Let X have a normal distribution with mean [J and variance o, Then the new random variahle
A
o

7

has a standard normal distribution.

Calculating Probabilities of Events Using a Standard
Normal Distribution

Suppose that the test scores for first-year integral calculus final exams are normally
distributed with mean 70 and standard deviation 14. Given that Pr(Z = 0.36) = 0.64 and
Pr(Z = 1.43) = 0.92 for a standard normal random variable Z, what percentage of final
exam scores lie between 75 and 907

It we let X denote the score of a randomly selected final exam, then we know that X has a
normal distribution with parameters [] = 70 and ¢ = 14. To find the percentage of final
exam scores that lie hetween 75 and 90, we need to use the information about the
probabilities of a standard normal random variable, Thus we must standardize X using the
technigue above.

For our particular problem, we wish to compute

Pr(75 < X <90).

We proceed by standardizing the random variable X as well as the particular x values of
interest. Thus, since X has mean 70 and standard deviation 14, we write

75 ~ 70 5X-~’f’0< 90~—7’U)_

14 14 — 14
Now we have standardized our normal random variable so that

Pr{76 < X <90) = Pr (




X 70
14 =%

where Z ~ Normal(0,1).
Simplifying the numerical expressions from above, we deduce that we must calculate
Pr{0.36 < Z < 1.43).
Now we can use the information we were given, namely that Pr(Z = 0.36) = 0.64 and Pr(Z
= 1.43) = 0.92. Using these values, we find
Pr{75 < X < 90) = Pr{036 < 7 < 1.43)

= Pr{Z <143) - Pr(Z < 0.36)

= (.92 — 0.64

= ().28.
Therefore the percentage of first-year integral calculus final exam scores hetween 75 and

90 is 28%.
Now suppose we wish to find the percentage of final exam scores larger than 90, as well as
the percentage of final exam scores less than 65. To find the percentage of final exam
scores larger than 90, we use our knowledge about probabilities of disjoint events:
Pr{X > 90) = 1 - Pr(X < 90)

=1~ Pr(Z < 1.43)

== 1 — (.02

= (),08.

Thus, we find that 8% of exam scores are larger than 90.

To find the percentage of final exam scores less than 65, we must exploit the symmetry of
the normal distribution. Recall that our normal random variable X has mean 70, We are
given information about the probability of a standard normal random variable assuming a
value less than 0.36, which we have already seen corresponds io the probability of our
normal random variable X assuming a value less than 75. Now notice that the x value 65 is
the reflection of 75 through the mean of X. That is, hoth scores 65 and 75 are exactly 5
units from the mean of our random variable X, Thus we can take advantage of the symmetry
property of the normal distribution.

Using the symmetry identity from earlier in this section, we find that
Pr{X < 65)= Pr(X < 70 — 5)
= Pr(X > 70 + 5)

= 1 —Pr(X <75)
1~ Pr(Z < 0.36)
= | —().64

= {}.36,

Thus, we find that 36% of exam scores are smaller than 65.
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2.5 Expected Value, Varia
Standard Deviation

nce, and

Analogous to the discrete case, we can define the expected value, variance, and standard
deviation of a continuous random variable. These quantities have the same interpretation as

in the discrete setting. The expectation of a random variable

1s a measure of the center of

the distribution, its mean value. The variance and standard deviation are measures of the

horizontal spread or dispersion of the random variable,

Expe@ed_ﬁ/,e_i__h:c-nf»‘a _Ct_)ll’tih_izbu's_'l{_ax__idom Variable...:

with probability density function f1x), is the number given by

5 = [ ef

s+

The expected value (also called {he expectation or mean) of a continuous random variable X,

R jV&lriance.;.-au_di,s}t;gndéf

Var(X)} = [ h (z - B(X)) f2)da

o(X) = \/Var(X). _

The variance of a continuous random variable X, with probability densit;function ﬂX)i:;

As in the discrete case, the standard deviation, o, is the positive square root of the variance:

Simple Example

A random variable X is given by the following PDF. Check
calculate the standard deviation of X,

200 —2) HO0<2 <],

0 otherwise

fz) =

Solution

Part 1

To verify that fix) is a valid PDF, we must checl that it is eve
it integrates to 1,

We see that 2(1x) = 2 - 2x = 0 precisely when x = 1; thus f{x)

To check that fix) has unit area under its graph, we calculate

/”:f(j")dx=2ﬁi(1—$)dng($__x2

1 1
2 ) Jo -
S0 fix) is indeed a valid PDF.

that this is a valid PDF and

rywhere nonnegative and that

is everywhere nonnegative.
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Paxt 2 _
To calculate the standard deviation of X, we must first find its variance. Calculating the
variance of X requires its expected value:

E(X) = [ " (@)

tece)

= /ﬂlx[Q(l m:z,)]d&
:2/01 (:nwa:?)d:c-

W2 Wy 11
xZ x
o5 -)
2 3/t
= 1/3
Using this value, we compute the variance of X as follows

D

Var(X) :/ (2 miE(X))?f(x)dx

)

1 5 . 7 1 .53
=2~ Sat L2t e =2t
( 4 9 18 ! q )0
i 35 7 1
wm P e S D g 2
RS TR
_ 1
18
Therefore, the standard deviation of X is ~
]
o = /Var(X)

1
RN
An Alternative Formula for Variance

There is an alternative formula for the variance of a random wvariable that is less tedious
than the above definition.

Alternate-Formula fortheVandnce of a Continuous Random Variable F

The variance of a continuous random variable X with PDF f{x) is the number given hy

Var(X) = E(X?) ~ E(X)P

The derivation of this formula is a simple manipulation and has been relegated to the
exercises. We should note that a completely analogous formula holds for the variance of a
discrete random variable, with the integral signs replaced by sums.
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Simple Example Revisiied

We can use this alternate formula for variance to find the standard deviation of the random
variable X defined above.

Remembering that the expectation of X was found to be 1/3, we compute the variance of X
as follows:

Var(X) = E(X?) - [E(X)]

= /OC 2 fa)dz (}m)?
o 3

! 1
w?/ (z* — 2%Yda ~ -
4] ' 9
2 T TR |
s 2(5323 - :i.’])i 10 Ej
NS |
—2G-3 g
..... 1
18

In the exercises, you will compuie the expectalions, variances and standard deviations of
many of the random variables we have introduced in this chapter, as well as those of many
new ones.,

2.6 A Sample Problem

The length of time X, needed by students in a particular course to complete a 1 hour exam
is a random variable with PDF given by

klz?+2) H0<2 <],
f(:c)z{( )

0 elsewhere
For the random variable X,
1. Find the value k that makes f{x) a probability density function (PDF)
2. Find the cumulative distribution function (CDF)
3. Graph the PDF and the CDF

4. Find the probability that that a randomly selected student will finish the exam in less
than half an hour

7]

. Find the mean time needed to complete a 1 hour exam
. Find the variance and standard deviation of X

e}
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Solution

Part 1

The given PDI" must integrate to 1. Thus, we calculate

0o

1= flx)dx

Therefore, k = 6/5. Notice also that the PDF is nonnegative everywhere.

Part 2
The CDF, F(x), is the area function of the PDF, obtained by integrating the PDF from
negative infinity to an arbitrary value x.

If x is in the interval (-=, 0}, then

F(x) = [j | f{t)dt

:/" 0di

If x is in the interval {0, 1], then

Fz) = /j f(t)dt
0

| pwars [ pwa
0O

-0
3 2

035 +3)
. y

453

If x is in the interval (1, «) then

Py = [ s
0

1 X
= | e+ | of(tydr / F()dt
{} i

6 2% 2i\L
05 )
_65

5 6
=1
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0 if v <0,
Fa) = S—({ - ~,~,~) if 0 <2 <1,
1 ifx>1.

Part 3
The PDF and CDF of X are shown below.

fx) o -~/ PDF

—=®

05 0O 0.5 1.5

Fx) ., - CDF

|

05 0 0.5 1 15

X

Part 4
The probability that a student will complete the exam in less than half an hour is Pr(X <
0.5). Note that since Pr(X = 0.5) = 0 (since X is a continuous random variable) it is
equivalent to calculate Pr(x = 0.5). This is precisely F(0.5):

i} 6,05 05% 6,1 1 6 1 1
F(05)= (= + %) =( )=

24 8

5 6 5

Part b

,The mean time to complete a 1 hour exam is the expected value of the random variable X,
Conseguently, we calculate

B R RS R O TR D L TR R



B(X) =

G Aoy

Sl

f_:xf(a;)da:

.’E4 5{33 1
(z “'" 3) L

4 3

/—-\\
| =
=
| —

S

Part 6

To find the variance of X, we use our alternate formula to calculate

Var{ X)

Finally,

o(X) =

= B(X?) ~ [E(X))?

T i
E flz)da (Tﬁ)

I ‘49
2 .
(" -+ x)dx 100

) . 49
2 2t - —

100

-

. P

iy

f

;E

ke

o
]

i

o T wile: »mlo it

e

=+

I

=

49

100~ 100

1

20

we see that the standard deviation of X is
1 1

20 25

i
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2.7 Chapter 2 Sum

Chapter 2 defined continuous random variables and investigated some of their properties.
We saw several examples of commonly used continuous distributions, including the famous
normal distribution.

Relationship Between CDF and PDF

One of the key features of a random variable is its associated probability distribution, which
gives the probabilities that we can observe a certain event, or set of values, under the given
random variable. This distribution can take the form of either a cumulative distribution
function (CDF) or a probability density function (PDF) for continuous random variables.
These two functions are related by the Fundamental Theorem of Calculus:

we - [ st

The integrand is the PDF of our continuous random variable, and the corresponding
integral is the CDE.

Calculating Probabilities

These two functions give the probabilities associated with observing certain events under a
random variable X in question. The CDF has a direct probabilistic interpretation, given by

F(x) = Pr(X < z)

Using the relationship between the CDF and the PDF, probabilities for events associated to
continuous random variables can be computed in two equivalent ways., Suppose we wish to
calculate the probability that a continuous random variable X is between two values a and
b. We could use the PDF and integrate to find this probability.

Prla< X <) = fb flz)ds

Alternatively, if we wish to use the CDF, F(x), we can evaluate the difference F(b) - F(a) to
finnd this probabhility.

'Pr(a < X < b) = F(b) — F(a)

Of course we know that both approaches yield the same resuli. This fact is precisely the
statement of the Fundamental Theorem of Calculus.

\Expected Value, Variance, and Standard Deviation

Just as with discrete random variables, the expectation represents the "center" of a random
variable, an expected value of an experiment, or the average value of the outcomes of an
experiment repeated many times. The variance and standard deviation of a random variable
is a numerical measure of the spread, or dispersion, of the PDF of X. Given the PDF f(x) of a
continuous random variable X, we can calculate these quantities.




‘ Probabifity Appendix
We collect the formulas for the expected value, variance, and standard deviation of a
continuous random variable X with PDF f{x) in the following table.

E(X) = f PTRS

Var{X) = f_m (2~ E(X))Y f(z)dz
o(X) = /Var(X)
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