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89. Logs with different bases Show that f(x) = log, x and ¢. Use amalytical methods to determine iim f {x)and dim_ f(x).
- . s v ] sy B - - . . L AR Ao 00
g(x) = logy x, where @ > I and b > I, grow atl a comparable d. Estimate the location of the inflection point (in terms of @, b,
rate as x ~ 00, and ¢).

£90. Factorial growth rate The factorial function is usualty defined for . R . ay® .
onale y\ 93. Exponential limit Prove that iim [ 1 + — | = ¢* fora # (.
positive integers as a! = n(n — 1){n — 2}---3+2+ 1. For exam- A X

pie, 5! = 5+4+3:2+1 = 120, A valuable result that gives good 04. T tiat tials St i . i
approximations to ! for large values of 1 is Stirling’s formula, Xponentiais vs. super exponentials Snow that ¥ grows faster

......... v - i o X a6 x —» 60 [or )
nl 7 V2w n"e™ (see Guided Projects for more on Stirling’s for- than b" as x forb =1

mula). Use this formula and a calculator to determine where the 95. Exponential growth rates

Tactoriz] function appears in the ranking of growth rates. - . . ‘
) ‘ appes anking ot g ¢ a. For what values of & = ¢ does b grow {aster than e as

01, A geometric limit Let {8} be the area of the triangle ABP (sce x> 007
figure) and let g(6) be the ares of the region between the chord b. Compare the growtls rates of ¢* and ¢™ ag x — o0 fora > (),

PBand theare PB. Evaluate (}L%g(a)/f({)). 96. A max/min detector Consider the function f(f) = (ax' + by},

where @, b, x, and y are positive real numbers with e + & = 1.

a. Show that ling) 1) = x™
{—

b. Show that ,lniigof(") = max{x,y} and

area = g{0) ;E]}}co F{) = min{x, y}.

0 A / I8
arca = f{f)

1. gandh 2. gandh 3. 0r00;(x — 7/2)/cotx 4. The
#92. A fascinating functien Consider the function form 0% (for example, rl_i}}[}%x '/+y is not indeterminate, because
N = X - oy x . . are Stive Tes . L. .
J(x) = {ab" + {1 — a)e*)""", where a, b, and ¢ are positive real as the base goes (o zero, raising it 1o larger and larger powers
s, 0 < < L : ' fea ; :
numbers, 0 < ¢ < 1 drives the entire function to zero. 6. x* grows faster than x* as
a. Graph f for several sets of (a4, b, ¢). Verify thatin all cases that f/  x — 0o, whereas x and 10x? have comparable growth rates as
is an increasing function for all x with a single inflection point. X > 00,
b, Use analytical methods to determine limo F(x)in terms of @, b,
X
and ¢.

4.8 Antiderivatives

The goal of differentiation is to find the derivative f of a given function f. The reverse
process, called antidifferentiation, is equally important: Given a function f, we look for
an antiderivative function F whose derivative is [ that is, a function F such that F’ = f.

DEFINITION  Antiderivative
i A function F is.an antiderivative of £ on an interval J provided F'(x) = f{x) for
all xin 1.

In this section, we revisit derivative formulas developed in previous chapters to dis-
cover corresponding antiderivative formulas.

Thinking Backward

. . A d
Consider the function f(x) = I and the derivative formula -l(,\) = 1. We see that an
“dx

antiderivative of £ is F(x) = x because F'(x) = 1 = f(x). Using the same logic, we can
wiite




[ QUICK CHECK 1} Verify by differenti-
ation that x is an antiderivative of
3x* and —cos x is an antiderivative
of sin x.

FIGURE 4.78
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i

d
1(12} = 0x = anantiderivative of f(x) = 2xis F{x) = x?
dx

d . e . .
dx (sinx) = cosx => anantiderivativeol f{x} = cos xis F(x) = sin x.
dx

Each of these proposed antiderivative formulas is easily checked by showing that I’ = f,

An immediate question arises: Does a function have more than one antiderivative? To
answer this question, let’s focus on f{x} = t and the antiderivative F(x} = x. Because
the derivative of a constant C is zero, we see that F(x) = x + C is also an antiderivative
of f(x) = 1, which is easy to check:

Fi(x) = (x4 €) = | = f(x)
dx
Therefore, f(x) = 1 actually has an infinite number of antiderivatives. For the same rea-
son, any function of the form #(x) = x? + C is an antiderivative of S(x) = 2x, and any
function of the form F{x) = sin x + C is an antiderivative of f{x) = cos x, where C is
an arbilrary constant,
We might ask whether there are siill more antiderivatives of a given function. The
following theorem provides the answer.

THECREM 4.6  The Family of Antiderivatives
Let FF be any antiderivative of f. Then «/l the antiderivatives of f have the form
F o+ C, where C is an arbitrary constant.

Proof Suppose that F and G are antiderivatives of f on an interval 7. Then F' = S and
G" = f, which implies that ' = G’ on . From Theorem 4.11, which staies that functions
with equal derivatives differ by a constan, it follows that G = F + C. Therefore, all anti-
derivatives of f have the form I + C, where C is an arbitrary constant. <

Theorem 4.16 says that while there are infinitely many antiderivatives of a function,
they are all of one family, namely, those functions of the form ¥ + €. Because the anti-
derivatives of a particular function differ by a constant, the antiderivatives are vertical
translations of one another (Figure 4.78).

)’
Glx) + €
Gix) + C, \/
/—‘\\
GGy + \/
/—\\
G + G, v
/—\‘\
Gy \
\ =
G+ €, \_/ X
-F(J‘) ] \//_\\
~ FOx) - 3
: Several ﬂ”“dm"‘“l"eﬁ of ; i M GOx) is any antiderivative of g(x), :
f‘(x} = 1 from the family | ! the antiderivatives G{x) + C i
A CEat O i are vertical translations of one

i another—they differ by a constant i
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EXAMPLE 1 Finding antiderivatives Use what you know about derivatives to find
all antiderivaiives of the following functions.

a. f{x) = 3x° b. f{x) = -y ¢. f(x) = sinx
SOLUTION

d . . - S
a. Noie that . (x%) = 3x%. Reversing this derivative formula says that an antiderivative
dx

of f{x) = 3x*is x*. By Thecrem 4.16, the complete family of antiderivatives is
F(x) = x° + C, where C is an arbitrary constant.
d 4 ] g -
b. Because -‘}----(Lan x) = -1"“?*5, all antiderivatives of f are of the form
dx + X
F(x) = tan™ x + C, where C is an arbitrary constant.

d . . e
¢. Recall that e (cos x) = —sin x. We seek a function whose derivative 1$ sin x, not
dx

—sin x. Observing that 7—(“005 x) = sin x, it follows that the antiderivatives are
dx
F(x) = —cosx + C, where C is an arbitrary constant. Related Exercises 11-18 <

! Find the family of antiderivatives for cach of f (x) = " g(x) = 4x%
2

and h(x) = sec? x.

Indefinite Integrals

d o
The notation e (f) means take the derivative of f. We need analogous notation for
dx

antiderivatives. For historical reasons that become apparent in the next chapter, the no-
tation that means find the antiderivatives of f is the indefinite integral f S(x)dx. Every
time an indefinite integral sign ] appears, it is followed by a function calledthe
integrand, which in turn is followed by the differentiai dx. For now dx simply means
that x is the independent variable, or the variable of integration. The notation
f f(x) dx represents all of the antiderivatives of I

Using this new notation, the three resuits of Example 1 are written as

/ 3tdx = x° + C, [ ]_2 dx = tan "l x + C, and / sin x dx = ~cosx + C,
. . +ox

where € is an arbitrary constant called a constant of integration. Virtually alt the deriva-
tive formulas presented earlier in the text may be writlen in terms of indefinite integrais.
We begin with the Power Rule.

THEOREM 4.17 Power Rule for Indefinite Integrals

xp-H
xPdx = — 4+ C,
) p 1

where p # —1 is a real number and C is an arbitrary constant.




“F

- Notice that if p = ~1 in (his

antiderivative formula, then F(x) is
undefined. The antiderivative of

J{x) = x7Vis diseussed shortly.

- Any indefinite integral calculation can be

checked by differentiation: The derivative
of the atleged indefinite integral must
equal the integrand.

e fdxmeans [1dx, which is the

mdefinite integral of the constant
fuaction f{x) = 1,50 fdx = x + C.

Zach indefinite integral produces an
arbitrary constant, it of which may
be combined in one arbitrary constant
called C.
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Proof The theorem says that the antiderivatives of f(x) = x” are of the form
ptl

Fix) = X;I + C. Differentiating F, we verify that F'(x) = f(x):
p o+
d { xrt )
Ff P I T (—— C
(x) dx (p + 1

d [ ) d
e W) e
a’.x(p 4+ 1 dx ©

(R
0
3 x(p*i*l)vd
= ({_.),f + 0 = 3P
p ol «

Theorems 3.4 and 3.5 (Section 3.2) state the Constant Multiple and Sum Rules for deriv-
atives. Here are the corresponding antiderivative rules, which are proved by differentiation.

THEOREM 4.18 Constant Multiple and Sum Rules

Constant Multiple Ruode: / ef(x)dx = ¢ / f(xydx

Sum Rule: /(/(t) + g())dx = /j‘(x} dx + /g(x)dx

EXAMPLE 2 Indefinite integrals Determine the following indefinite integrals.

a. / (3x° + 2 = 5V dx b. / (

SOLUTION -
&, /(3)".5 + 2 = 50y = /3A:5(ix + /2 dx ~ /5.)\"3/2 dx  Sum Rule

l " Consl iple
3 /,\'5 dx -+ 2/dx S/X 2 gy f%Si]: mi Multiple

1l

x(, x—l/z
=3t b 2ex = 5t n £ 0 Power Rule
() (_ul/z) OWer 1sle
.\'6 i
=k 2 1 g e Simplity.

Ayt — 5y ]
b. / (- e dao = f (a7 - S %Y gy Simplify the integrand,
. X }

4 /x” dx — S/x"w dx  Sum and Constant Muitiple Rules

B

,\—'3 xm‘g
- .Ié — S.(M()} + O Power Rule
2x® 5y \ L

- ?, + m(j 4 O Simplify.

Both of these results should be checked by differentiation. Related Exercises 19-26 <
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Indefinite Integrals of Trigonometric Functions
Any derivative fornmla can be restated in terms of an indefinite integral formula. Tor ex-
ample, by the Chain Rule we know that

d .

~—{cos 3x} = —3sin3x.

dx
Therefore, we can immediately write

/w-?) sin3xdx = cos3x + C.

Factoring —3 from the Jeft side and dividing through by —3, we have

/sin Axdx = -—-}; cos 3x + C.

This argumeni works if we replace 3 by any constant @ ¥ (0. Similar reasoning leads (o
the results in Table 4.5, where ¢ # 0 and C is an arbitrary constant.

Table 4.5 Indefinite Integrals of Trigonometric Functions

d . I
1. an {sinax) = acosax - /C()S axdx = —sinax 4+ C
X a

d . . ] .
2, ~— (cosax) = —asinax  —* sinaxdx = ——cosax + C

dx a

d 3 2 1 .
3. -~ (lanax) = asec”ax sec? axdx = ~tanax + C

dx . 17

d 2 ) 2 1 ~
4. e (cotax) = —acsc”ax esclaxdx = —-colax + C

dx a

d 1
5. T (secax) = asecax tanax [ sec ax tan ax dx = —secax + C
iq

dx
d j .
6. "fm {cse ax) = —acscaxcotax - cscarcolgxdx = ——cscax + C
dx . ¢
‘Q HECK 3 Use differentiation to verify that f sin2xdx = — 5 cos2x -+ C.

EXAMPLE 3 Indefinite integrals of trigonometric functions Determine the
following indefinite integrals.

a. / sec? Ax dx b. / cos (;) dx

SOLUTION These integrals follow directly from Table 4.5 and can be verified by
differentiation.

a. Letling @ = 3 in result (3) of Table 4.5, we have

[sc:{:?‘ 3xdx = Sy

b. Weletag = % in resuit (1) of Table 4.5, which says that

" sin (x/2
cos ({) dx = w——(—/"l 4 C = 2sin (i) + C.
) 2 :12 2

Related Exercises 27-32 <




= Tables 4.5 and 4.6 are subsets of the table
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Other Indefinite Integrals
We now complete the process of rewriting familiar derivative resulis in terms of indefinite
. . d .. . - .
integrals. For example, because -}----(e‘”) = ae™, where a # 0, we can divide both sides
ox

of this equation by ¢ and write

- | '
/ eFdx = =™+
a
"dx )

- d ] - ,
Similarly, because -}—f*(ln |,\i) = —for x # 0, it follows that / —= = |n|x| + €. Notice
dx X J o x
that this result fills the gap in the Power Rule for the case p = —1. The same reasoning
leads to the indefinite integrals in Table 4.6, where & # O and € is an arbitrary constant.
of integrals a1 the end of the book, TabIE46 OtherDefmstelntegra!s et e o

d ) |
7. — ((3{:).) e aeax — ea,\ d).' POV en.\ - C
a

dx
i 1 d
8. A (ln lx]) =~ — 2. Inlx| +C (forx # 0)
dx x Jox

EXAMPLE 4 Indefinite integrals Determine the following indefinite integrals.

a. /e"‘o"' dx b.

SOLUTION

dx
J 16+ 1

4. Selting ¢ = 10 in result (7) of Table 4.6, we find that
‘ —10x e 1 - 10x ~
e dx = @ 4 O,
10

which should be verified by differentiation.

b. Setting & = 3 in result (9) of Tabic 4.6, we have

¢. An algebra step is needed to put this integral in a form that matches Table 4.6. We first

write
/'___.@: .......... L dx 1 / dx
16x% + 1 16/ 42 4 (l) 16/ 2 4 (%)2.

Ix 1 f {x 1 I
“"“““(p,{" TS / e () 4t dx + C = —tan" 4x + C.
Jex+ 1 16/ 2y (j})z 16 4

Related Exercises 33--38 %
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1€ ¢4} Bxplain why
antiderivative of f'is f.

¢ Antiderivatives

Pofxt -
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FIGURE 4.79

= Itis advisable to cheek that the
solution satisties the original
problem: f'(x) = x* — Zxand
=) R |
Jiy=5 -1+ 1=z

111

-2 i

-

!
!
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Introduction to Differential Equations
Suppose you know that the derivative of a function f satisfies the equation
Ja) = 2x 4+ 10,

To solve this differential equation for the function f, we note that the solutions are anti-
derivatives of 2x + 10, which are x* + 10x + C, where C is an arbitrary constant. So we
have found an infinite number of solutions, afl of the form f(x) = x* + 10x + C.

Now consider a more general differential equation of the form f*(x) = G(x}, where
G is given and [ is unknown. The solution consists of antiderivatives of G, which involve
an arbitrary constant. In most practical cases, the differential equation is accompanied by
an initial condition that allows us to determine the arbitvary constanl. Therefore, we con-
sider problems of the form

F(x) = G{x), where G is given Differential equation
fla)y = b, where a, b are given  Injtial condition

A differential equation coupled with an initial condition is called an initial value
problem,

EXAMPLE 5  An initial value problem Solve the initial value problem
£1(x) = 2 = 2ewith /(1) = 5,

SOLUTION The solution is an antiderivative of x? = 2x. Therefore,

3
) =%~ 2+,
3
where C is an arbitrary constant. We have determined that the solution is a member
of a family of functions, all of which differ by a constant. This family of functions,
cailed the general solution, is shown in Figure 4.79, where we see curves for various
choices of C.
Using the initial condition f(1) = ,1%, we must find the particular function in the

general solution whose graph passes through the point (i,;) Imposing the condition

JFa) = é, we reason as follows:

3
Jx) = E x¥* 4 € General solution
i
) = 37 1+ € Substiwicx = I,
L }, —1 4+ C )y = !
303 ‘ >
C = Solve for C.

Therefore, the solution to the initial value problem is
e

fl) ="~ at )

which is just one of the curves in the family shown in Figure 4.79.
Related Exercises 39-54 <




5! Position is an
antiderivative of velocity. But there are
infinitely many antiderivatives that
differ by a constant, Explain how two
objects can have the same velocity
function but two different position
functions. -«

# The convention with motion problems is
fo assume that motion begins at ¢ = 0.
This means that inilial conditions are
specified atr = {.

Yh
Runner A overtakes
A Runner B att = 4.
201 Positien of
Runner B
+ SO =2+38
0T Position of
Runner A
T $(1) = {2
t } } } i
2 4 f
FIGURE 4.80
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Motion Problems Revisited

Antiderivatives aliow us to revisit the topic of one-dimensional motion intreduced in Sec-
tion 3.5. Suppose the position of an object that moves along a line relative to an origin is
s(t), where 1 = 0 measures clapsed time. The velocity of the object is v(¢) = s'(1),
which may now be read in terms of antiderivatives: The position function is an antideriv-
ative of the velocity. If we are given the velocity function of an object and its position at
a particular time, we can determine its position at all future times by solving an initial
value problem.

We also know that the acceleration a{t) of an object moving in one dimension is the
rate of change of the velocity, which means a(t) = '(r). In antiderivative terms, this says
that the velocity is an antiderivative of the acceleration. Thus, if we are given the accelera-
tion of an object and its velocity at a particular ime, we can determine its velocity at ali
times. These ideas lie at the heart of modeling the motion of objects.

Initial Value Problems for Velocity and Position

Suppose an object moves aloag a line with a (known) velocity ©(¢) for r = 0. Then
its position is found by solving the initial value problem

s'(1) = v(1), s(0) = sy, where s is the initia} position.

If the acceleration of the object a(/) is given, then its velocity is found by solving
the initial value problem

v'(1) = alt), v(0) = vy, where vy is the initial velocity.

EXAMPLE 6 A race Runner A begins at the point s(0) = 0 and runs with velocity
(1) = 2t Runner B begins with a head start at the point ${0) = 8 and runs with velocity
V(t} = 2. Find the positions of the runners for 7 = 0 and determine who is ahead at

{ = 6 lime units.

It

i

SOLUTION Let the position of Runner A be s(r), with an initial position s(0) = 0. Then,
the position function satisfies (he initial value problem

s'{e) = 2, s(0) = 0.

The sotution is an antiderivative of s'(r) = 2¢, which has the form s{t) = r* + €. Substi-
tuting s(0) = 0, we find that C == (. Therefore, the position of Runner A is given by
s(t) = fHors = 0.

Let the position of Runner B be (¢}, with an initial position ${0) = 8, This position
function satisfies the initial value problem

$'(1) = 2, S(0) = 8.

The antiderivatives of $'(¢) = 2 are §(¢) = 2 + C. Substituting $(0) = 8 implies that
C = 8. Therefore, the position of Runner B is given by $(r) = 2t + 8fort = 0.

The graphs of the position functions are shown in Figure 4.80. Runner B begins with
a head start but is overtaken when s(r} = S(¢), or when 1> = 2 + 8. The solutions of this
equation are + = 4 and ¢ = —2. Only the positive solution is relevant because the race
takes place for ¢ = 0, so Runner A overtakes Runner B at ¢ = 4, whens = § = 16.
When ¢t = 6, Runaer A has the lead. Related Exercises 55-62 <

EXAMPLE 7 Motion with gravity Neglecting air resistance, the motion of an object
moving vertically near Earth's surface is determined by the acceleration due (o gravity,
which is approximately 9.8 ni/s*. Suppose a stone is thrown vertically upward a1 = 0
with a velocity of 40 m/s from the edge of a cliff that is 100 m above a river.
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= The acceleration due to gravity at Earth’s
surface is approximately g = 9.8m/s%, o1
g = 321t/s% It varies even at sea level
from about 9.8640 at the poles 10 9.7982
at the equator. The equation v'(1) = —g
is an instance of Newton's Second Law of
Motion, assuming no other forees {such
as air resistance) are present.

A maximum height
of 182 m is reached
atf=~4.1s.

() = =402 4 400 -+ 100

(82 e e ! Fhis is the graph
! of the position

! fanction, not the

{ path of the stone.

B e

0 s |
Object strikes
the water at
1= 10.2 s,

FIGURE 4.83

e e s i

a. Find the velocity v(¢) of the object fort = 0.

b. Find the position s(#) of the object for¢ = 0.

c. Find the maximum height of the object above the river.

d. With what speed does the object strike the river?

SOLUTION We establish a coordinate system in which the positive s-axis points
vertically upward with s = 0 corresponding 1o the river (Figure 4.81). Let ¢(1) be the
position of the stone measured relative to the river for ¢ 2= (. The initial velocity of the
stone is »{0) = 40 m/s and the initial position of the stone is s(0) = 100 m.

a. The acceleration due to gravity points in the regarive s-direction. Therefore, the initial
value problem governing the motion of the object is

aceeleration = v'(1) = —9.8, ¥(0) = 40.
The antiderivatives of —9.8 are v(z) = —9.8¢ -+ C. The initial condition ©(() = 40
gives C = 40, Therefore, the velocity of the stone is
v{r) = —9.8r -+ 40.
As shown in Figure 4.82, the velocity decreases from its initial value ©(0) = 40 unil
it reaches zero at the high point of the trajectory. This point is reached when

(1) = 0.8 + 40 = 0

or whent = &.1s. Fori > 4.1, the velocity becomes increasingly negative as the
stone falls to Earth.

3
Object initially

OVES UpW, Maximum height, v

i Positive vclocily,};
fupward motion |
e e a?

/ (The velocity is Oat |
i = 4.1 seconds, the high |
/3 point of the trajectory.
|
1
8 i
Wiy = 9.8 + 40

—A40 -+ ; Negative velecity, !
i(lownward maotion ;

FIGURE 4.81 FIGURE 4.82

Height = J00RH i height, 0

¥

Knowing the velocity function of the stone, we can determine its position. The
position function satisfies the initial value problem

(1) = §'(1) = =98¢ + 40, s(0) = 100.
The antiderivatives of —9.81 -+ 40 are
s(1) = —4.9¢% 4+ 401 + C.
The initial condition s(0) = 100 implies ¢ = 100, so the position function of the stone is
s(f) = —4.9¢% + 401 + 100

as shown in Figure 4.83. The parabolic graph of the position function is not the actual
trajectory of the stone; the stone moves vertically along the s-axis.




¢. The position function of the stone increases for 0
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< ¢t << 4.0, At =~ 4.1, the stone

reaches a high point of s(4.1) = 182 m.

d. Fort > 4.1, the position function decreases, and the stone strikes the river when

5(¢) = 0. The roots of this equation are ¢ =
relevant because the motion takes place for ¢
ground at 7 &~ 10.2 5. Its speed at this instant is [v(10.2)] ~

SECTION 4.8 EXERCISES
Review Questions
1. Till in the blank with the words devivative or antiderivative:
If F'(x) = f(x},then fisthe ___  __ of Fand F is (the
of f.

2. Describe the set of antiderivatives of f{x) = 0.
3. Describe the set of antiderivatives of f(x) = 1.

4. Why do twe different antiderivatives of a function differ by
a constant?

5. Give the antiderivatives of x*. For what values of p does your
answer apply?

6. Give the antiderivatives of ¢ 7",

7. Give the antiderivatives of 1/x for x > (.

8. Evaluate fcos ax dx and fsin axdx.

9. IfF(x) = x* ~ 3x 4 Cand F(—1) = 4, what is the

value of C7

10. TFor a given function [, explain the steps used to solve the initial
value problem F{¢r} = f(1), F{0} = 10.

Basic Skills

11-18. Finding antiderivatives Find all the antiderivatives of

the following functions. Check your work by taking derivatives.

11. f{x) = 52 12, g{x) = [1x1®

13, f{x) = sin2x 14. g(x) = ~dcosdx
15, P{x) = 3sec x 16, Qfs) = cscts

7. f(y) = =2/’ 18. H(z) = —677

19-26. Indefinite integrals Determine the following indefinite
integrals. Check your wark by differentiation.

19. /.(3,\15 - 5:%) dx
21. f (4\/5 \i‘) dx
23. /(55 + 3)%ds

25, / (3P b 4x 4 6Y dx

20. /(3u'"2 = di* + 1) du

/s ,
22, gt At g di
t

24. /5:?1(12:‘113 = 10m) dm

26. f 6V x dx

EO 2and ¢t = —2.0. Only the first root is

2 (). Therefore, the stone strikes the
—60]| = 60 m/s.
Related Exercises 6360 <

27-32. Indefinite integrals involving trigonometric functions
Determine the following indefinite integrals. Check your work by

differentiation,
. v I
28. /[Slll 41 — sin (4)] dr

30, /2 sec? 20 dv

27. /(sin 2y + cos3y) dy
29, ](seczx = 1) dx

31 /(33020 + sec @ lan 6) d0

33-38. Other indefinite integrals Determine the following indefinite
integrals, Check your work by differentriation,

H
33. =y
f 2}?”

34, / (& + 2v1) dr

36. [ R
J 4+t

2
3. f Tost 125
39-42, Particular antiderivatives For the following functions [, find
the antiderivative F that satisfies the given condition.
39, f(x) =5 -2 1 F) =
40, f() = sec’1; Flmj4) =1
41, f{v) = secwiany; S0) = 2 -
42, fix) = (4Vx + 6/Vx)/xh F(1) = 4

43-48. Solving initial value problems Find the solution of the follow-
ing initial value problems,

43 f'(x) = 2x ~ 3 f{0) =

44, g'(x) = T = dxd 12y g(1) = 2
45, g'(x) = 7a(x® —~ 4); g(1) =2
46, (1) = 6sin 36 Kw/6) = 6

47, f'{u) = 4{cosu — sin2u); f{w/6) =
48, p'(1) = 10e7 p(0} = 100
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7% 49-54. Graphing general solutions Graph several funciions that sat-
isfy each of the following differential equations. Then, find and groph
the particular function that satisfies the given initial condition.

49. () =2x — 5 J0) =4 50 f(x)=3"~ 1, f(1) = 2
SE f{x) = 3x b sinax, J2) =3
52, f'{s) = dscestans, f(w/4) = |
53, =t fiy=4 S4. f'(x) = 2 cos2x, f(0) = I

% 55-60, Velocity to position Given the following velocity funcrions of
an object moving along a line, find the position function with the given
initial position, Then, graph both the velogity and position functions.

55, w{t) =2 + 4 s(0) =0 56. v(1) = ¢ + 4; 5(0) = 2
57. v(1) = 2Vi; $(0) = 1 58, () = 2cosi; s{0) =0
59. w(1) = 62 + 41 — 10; 5(0) = 0

60. w(r) = 2sin 2 $(0) = 0

5 61-62. Races The velocity function and initial position of Runners A
and B are given. Analvze the race that results by graphing the position
Junctions of the runners and finding the rime and positions {if any) at
which they first pass each other.
61 Aco(e) = sing, s(0) = 0;

62. A w{r) = 2¢7, s(0) = 0;

B: V(1) = cosr, S(0) =0
B: V(i) = 4™, S(0) = 10

63-66. Motion with gravity Consider the following descriprions of
the vertical motion of an abject subject only to the aceeleration due 10
gravity.

a. Find the velocity of the object for all relevant times

b. Find the position of the object for all relevant times

¢. Find the time when the object reaches its highest poini (What

is the height?)
d. Find the time when the object strikes the ground

63. A softball is popped up vertically (from the ground} withs a veloc-
ity of 30 m/s.

64. A stone is thrown vertically upward with a velocity of 30 /s
from the edge of a cliff 200 m above a river.

65. A payload is released at an elevation of 400 m from a hot-air bal-
loon that is rising at a rate of 10 m/s.

66, A paylead is dropped at an elevation of 400 m from a hot-air bal-
Joon that is descending al 2 rate of 10 m/s.

Further Explorations
67. Expiain why or why not Determine whether the following state-
ments arc true and give an explanation or counterexample.
a. F{x) = x* — 4x + 100 and G(x) = &* ~ 4x — 100 are anti-
derivatives of the same function.
b IFF'(x) = f(x), then [ is an antiderivative of F.
¢ 1FF'{x)= f{x), then ff()) dx = F{x) + C.
A f(x) = x* + 3and g{x) = x* —~ 4 are derivatives of the same
function.
e, I F{(x) = G'{x), then F{x) = G(x).

68-75. Miscellaneous indelinite integrals Determine the following
indefinite integrals. Checlk your work by differentiation.

2 e
6. f (Vo + V) ax . / ket KPR
70. /(4 cosdw — 3sindw) dw 7L /(csc:2 6+ 26% - 36)do
1+ Vi
73. f MR
x

75. /\/A (2% — 4 \3/\77) dx

72. / (csc? @+ 1) d0

76-79, Functions from higher derivatives Find the function F that
satigfies the following differential equations and initial conditions.

76, FU(x) = LF'{0} = 3,F(0) = 4

77, F"{x} = cosx, F'(0) = 3, F(w) = 4

78, FU(x) = 4z, F" (0) = 0,F7(0) = 1, F(0) = :

79, FU(x) = 6720° + 24x, F7(0) = 0, F/(0) = 2, F(0) = 1

Applications

80. Mass on a spring A mass oscillates up and down on the end of a
spring. Find its position s relative 1o the equilibrium position if its
acceleration is a(r) = sin {w¢}, and its initial velocity and position
are p(0) = 3 and s{0) = 0, respectively.

81. Flow rate A large tank is filled with water when an outflow
valve is opened at 1 = (1. Water flows oul at a rate given by
0'(1) = 0.1{100 — ¢*) gal/min for 0 = ¢ = 10 min,

a. Find the amount of water G(¢) that has flowed out of the tank
after t minutes, given the initial condizion Q(0) = 0.

b. Graph the flow function @ for 0 = 1 = 10,

¢, How much water flows out of the tank in 10 min?

82. General headstart problem Suppose that object A is located at
and starts moving along the s-axis with a

s = ¢ > Oats = 0and starts moving along the s-axis with a
constant velocity given by V() = b > 0. Show that A always
overtakes B at lime

b VA da

¢

Additional Exercises
83. Using identities Use the identities sin® x = {1 — cos 2x)/2 and

cos?x = (1 + cos2x)/2to find fs';112xdx and [cos?x dx.
84-87. Verifying indefinite ntegrals Verify the following indefinite
integrals by differentiation. These integrals ave derived in later
chapters.

84, /(&iﬁ{) dx = 2sin Vx + C

5. [t = ViTE T4 C

VT
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QUICK CHECK; ANSWERS

L d/dx(x") = 3x% and d/dx(~-cos X)=sinx 2. ¢ 4+ C,
4 Ctanx + C 3 dfdx(—cos (2x)/2 + C) = sin2x
4. One function that can be differentiated to get f* is f.
Therefore, f is an antiderivative of f'. 8. The two position
functions involve two different initial positions; they differ by a
constani. -«

1. Explain why or why not Determine whether the following state-  §16-10. Critical points Find the critical points of the following

ments are (rac and give an explanation or counlerexample,

a, It f*{c) = 0, then f has a local minimum or maximum at e.

b. If f"(c) = 0, then [ has an inflection point at (¢, f{c)).

e F(x) = x* + 10and G(x) = % — 100 are antiderivatives
of the same function.

d. Between two local minima of a continuous function on
{—00, o), there must be a Jocal maximum.

2. Locating extrema Consider the graph of a function Jonthe

interval [ -3, 3].

a. Identify the locat minima and ¥
maxima of f. -}
Identify the absolute -+
minimun: and absolute T
maximum of f (if they exist). 1

b

¢. Give the approximate co- e
ordinates of the inflcction

poini{s) of £,

Give the approximate co-

ordinates of the zerols) of f.

¢. On what intervals (approxi-

mately) is f concave up?

On what intervals {approximalely) is / concave down?

3-4. Designer functions Sketch the graph of a continuous function
that satisfies the following conditions.

3. fiscontinuous on the interval [ ~4,47, 7/(x) = O for x = =2, 0,
and 3; f has an absolute minimum at x = 3; f has a local
minimuwm at x = ~2; f has  local maximun: al x = 0; f has an
absolute maximum at x = —4.

4. [ is continuous on (—00, ©0); f(x) << Qand f"(x) < G on
(=00, 0); f'{x) > 0and f"{x} > G on (0, o)

5. Functions from derivatives Given
the graphs of £ and f”, skeich a
possible graph of [,

i

Junctions on the given intervals. Identify the absolde minimum qud
abselute maximum values (if possible). Grapl the function to confirm
your conclusions.

6. f{x) = sin2x + 3; [, 7]

7o f(x) = 2x° = 3¢ = 36x + 12; {~00, 00)
8. flx) = 4yt — [0,4]

9. flx) = 2xlnx +10; (0,4)

Y~ 1Yy [~4,4]

8(x)
Absolute values Congider the function f(x} = |x ~ 2| + fx + 3]
on [ —4,4). Graph [, identify the critical points, and give the
coordinates of the local and absolute extreme values.

12, Inflection points Docs f{x) = 2x° - [0x" 4 202 + x + |

have any inflection points? If so, identify then.

13-20. Curve sketching Use the guidelines of this chapier 1o make «
complete graph of the following functions on their domaing or on the
given interval. Use a graphing utility to check vour work,

3 -
13, f(x) = 2%/2 = 3% + dx + | 14, flx) = —?—:3
X+
. o4 ox
15, j(x) = dcos[m(x ~ ]on[0,2]  16. f{x) = R
- X
17. fix) = VW — Vi + 2
COS X
18. f(x) = “14 "2 on[—2, 2]
19, f(x) = x4 (2 + 2)'P 20, f{x) = x(x — De™
21. Optimization A right triangle has legs of length i and r and a

hypotenuse of length 4 (see figure). It is revolved about the leg
of length A to sweep out a right circular cone, What values of i
and » maximize the volume of the cone?




