• Summation formulas identities:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \ \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4} = \left(\frac{n(n+1)}{2}\right)^2.$$

$$1 - \sin^2 x = \cos^2 x$$
, $1 + \tan^2 x = \sec^2 x$, $\sec^2 x - 1 = \tan^2 x$

• Trigonometric Half-angle formulas:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}, \quad \sin^2 x = \frac{1 - \cos(2x)}{2}, \quad \sin(2x) = 2\sin x \cos x$$

• Indefinite integrals:

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C, \int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

• Approximation's Rules and their error bound: Let y = f(x) be a continuous function defined on the interval [a, b] such that its derivatives f'' and $f^{(4)}$ are continuous. The midpoint rule approximation M(n), the Trapeziod Rule approximation T(n) and the Simpson's Rule approximation S(n) to $\int_a^b f(x) dx$ using n equally spaced subintervals on [a, b] are given by the following formulas:

$$M(n) = \sum_{k=1}^{n} f\left(a + \left(k - \frac{1}{2}\Delta x\right)\Delta x,\right)$$

$$T(n) = \left(\frac{1}{2}f(x_0) + \sum_{k=1}^{n-1} f(a + k\Delta x) + \frac{1}{2}f(x_n)\right)\Delta x,$$

$$S(n) = \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n)\right)\frac{\Delta x}{3}$$

where $\Delta x = \frac{b-a}{n}$. The absolute errors in approximating the integral $\int_a^b f(x)dx$ by the Midpoint rule, Trapezoid Rule satisfy the inequalities

$$E_M \le \frac{k(b-a)}{24} (\Delta x)^2 \text{ and } E_T \le \frac{k(b-a)}{12} (\Delta x)^2,$$

where k is a real number such that $|f''(x)| \leq k$ for all x in [a, b].

The absolute errors in approximating the integral $\int_a^b f(x)dx$ by the Simpson's Rule satisfies the inequalities

$$E_S \le \frac{K(b-a)}{180} (\Delta x)^4$$

where K is a real number such that $|f^{(4)}(x)| \leq K$ for all x in [a, b].

Equivalently, the error bounds can also be written as:

$$E_{M} \leq \frac{k(b-a)^{3}}{24n^{2}},$$

 $E_{T} \leq \frac{k(b-a)^{3}}{12n^{2}},$
 $E_{S} \leq \frac{K(b-a)^{5}}{180n^{4}}.$

(You can use any of these two versions for error bounds, as they give the same result.)