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Topic of Discussion

• Pattern generation in biological 
systems.

• Exploring regimes of patterning 
behaviour in model parameter 
space.
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Examples

http://skoplab.weebly.com/research.html http://www.lbl.gov/Science-Articles/Archive/
sabl/2008/Feb/genome-mystery.html

Drosophila Gene Expression Cytokinesis Pre-Patterning
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Types of Patterns

• Temporal:  Spatially homogeneous 
oscillations.

• Spatial:  Temporally unchanging spatial 
pattern.

• Spatio-temporal: Blend of the above.

• Travelling wave for example.
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Modes of Pattern 
Generation

• Instability 

• Autonomous / spontaneous / noise 
induced.

• Requires no stimulation. 

• Excitability

• Externally / stimulus driven.
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Reaction Diffusion 
System

• A common framework for describing 
biological systems.

•    = concentration field

@~u

@t

(x, t) = F (~u) +D4~u

Reaction

Diffusion

~u
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The Well Mixed  
System

• “Reactants” (   ) are assumed spatially 
homogeneous.

• Only describes the temporal behaviour.

d~u

dt
(t) = F (~u)

~u
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Well Mixed Steady 
State

• Also called a ‘fixed point’ of F.

• Note:      is spatially homogeneous.

• QUESTION:  When does a homogeneous 
state give way to patterning?

F ( ~u0) = 0

~u0
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Well Mixed Stability

• QUESTION:  Does         grow or decay? 

• Decay = stability

• Growth = instability

~u = ~u0 + ✏~w

Homogeneous 
Steady State (HSS)

Small
Perturbation

F ( ~u0) = 0

~w(t)
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Graphically
~u = (u1, u2)

    Ball✏

u1

u2

~u0
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Linearized Equation

• Taylor expand ‘F’ assuming     is small 

•     is a n x n matrix 

d~w

dt
(t) = J0 ~w , J0 = DF~u0

Linearization

Jacobian

J0

✏
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Stability

• Change of variables

~w(t) ⇠ Const


e

�1t 0
0 e

�2t

�

J0 ⇠

�1 0
0 �2

�
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Well Mixed Stability

•                    for ‘i’ implies growth of 
perturbation / instability, in the ‘i’ direction

•                    indicates decay / stability in 
the ‘i’ direction

Re(�i) > 0

Re(�i) < 0
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Well Mixed Stability

Stable
Unstable
(Saddle) Unstable

Tuesday, 15 May, 12



Example: Predator Prey

@u

@t
= ru

⇣
1� u

k

⌘
� vh(u) +Du4u

@v

@t
= ↵vh(u)� dv +Dv4u

Logistic
Growth Predation

u

v

k

(u?, v?)
u

v
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Well Mixed Analysis

• Determine stability with respect to SMALL 
homogeneous perturbation.

• Relies on linearization.

Space

HSS

Perturbation
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Spatial Instabilities 
(Turing Analysis)

• Determines stability of HSS with respect to 
SMALL periodic perturbation.

Space

HSS

Perturbation
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Periodic Perturbation

• Consider a periodic perturbation of wave 
number ‘k’

@~u

@t

(x, t) = F (~u) +D4~u

~u(x, t) = ~u0 + ✏ e

ikx

~w(t)
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Turing Linearization

• ‘k’ is the perturbation wave number

D =


D1 0
0 D2

�
@ ~w

@t
= J0 ~w � (k⇡)2D~w ,

Jk := J0 � (k⇡)2DDefine

@ ~w

@t
= Jk ~wThen
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Turing Eigenvalues

• Eigenvalues {    } of      determine stability 
of that wave number.

• ‘-’ eigenvalues indicate stability.

• Any ‘+’ eigenvalues indicate instability

�i Jk
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Example: Schnakenberg

• Activator (u) depleted 
substrate (v) model

ut(x, t) = a� u+ u

2
v + ✏

24u,

vt(x, t) = b� u

2
v +D4v.

u0 = a+ b , v0 =
b

(a+ b)2HSS:

u

v
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Turing Analysis

Unstable
Stable

�
(k
)
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Snackenberg Simulation

• Initial condition =      + .001 * random 

 

 

1

2

3

4

5

6

7

8

9

u

~u0

✏ = .1

D = 1

a = 0

b = 1
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Recap

• Well mixed analysis 

• Stability to SMALL homogeneous perturbation

• Turing analysis

• Stability to SMALL periodic perturbations.

HSS

Perturbation

HSS

Perturbation
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Local Perturbation 
Analysis (LPA)

• Stability against ARBITRARILY TALL, 
localized perturbations
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LPA Motivation
Membrane Bound
Cytosolic

Diffusing Chemicals
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For Instance:
GTPases

Membrane

Gc

Gmi GaSlow 
Diffusing

Fast
Diffusing
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LPA Setup

Slow 
Diffusing

Fast
Diffusing

@u

@t

(x, t) = f(u, v; p) + ✏u

xx

@v

@t

(x, t) = g(u, v; p) +Dv

xx

• Assume

• ‘p’ is some generic parameter. 

f, g ⇠ O(1)
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LPA Perturbation

• Consider the              ,                limit

• In this setting, apply a highly localized, 
ARBITRARILY TALL to the HSS.

✏ ⌧ 1 D � 1
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Local Perturbation 
Analysis

ul
ug

vg

ug

• ‘g’ indicates a global variable, ‘l’ indicates 
local.
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LP - System

du

g

dt

(x, t) = f(ug
, v

g; p),

dv

g

dt

(x, t) = g(ug
, v

g; p),

du

l

dt

(x, t) = f(ul
, v

g; p)

Global:

Global:

Local:
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LP Analysis 

• A bifurcation analysis of this system of 
3 ODE’s is referred to as a ‘Local 
Perturbation Analysis’ (LPA).
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Nice Feature #1

• A system of ODE’s is much easier to 
analyze than a system of PDE’s.
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LP - Jacobian

JLP =

2

4
fu(ug, vg) fv(ug, vg) 0
gu(ug, vg) gv(ug, vg) 0

0 fv(ul, vg) fu(ul, vg)

3

5
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LP - Jacobian

JLP =

2

4
fu(ug, vg) fv(ug, vg) 0
gu(ug, vg) gv(ug, vg) 0

0 fv(ul, vg) fu(ul, vg)

3

5

du

g

dt

(x, t) = f(ug
, v

g; p),

dv

g

dt

(x, t) = g(ug
, v

g; p),

du

l

dt

(x, t) = f(ul
, v

g; p)

• The well mixed Jacobian 
is embedded in the LP 
Jacobian
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LP-Jacobian 
Structure

JLP ⇠

2

4
�1 0 0
0 �2 0
0 0 fu(ul, vg)

3

5

J0 ⇠

�1 0
0 �2

�
Well Mixed

Jacobian

LP Jacobian
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Nice Feature #2

• The LP Jacobian inherits the ‘well 
mixed’ eigenvalues.

• So a LPA recovers linear stability 
properties such as:

• Well mixed stability,

• Limit cycle (Hopf) bifurcations,

• Etc.
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Detailed Example: 
Schnakenberg

• LP System of ODEs

dug

dt
= a� ug + u2

g vg

dvg
dt

= b� u2
g vg

dul

dt
= a� ul + u2

l vg
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 Schnakenberg LPA: 
Global Forms

• Global forms only = well mixed system

dug

dt
= a� ug + u2

g vg

dvg
dt

= b� u2
g vg

dul

dt
= a� ul + u2

l vg
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 Schnakenberg LPA: 
Global Forms

• Global forms only = well mixed system

dug

dt
= a� ug + u2

g vg

dvg
dt

= b� u2
g vg

dul

dt
= a� ul + u2

l vgUnique
HSS

ug = a+ b , vg =
b

(a+ b)2
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Detailed Example: 
Schnakenberg

dug

dt
= a� ug + u2

g vg

dvg
dt

= b� u2
g vg

dul

dt
= a� ul + u2

l vg

FIX:

Consider:

ug = a+ b , vg =
b

(a+ b)2

Solving
for     : 

= 0

=HSS

u1
l = a+ b , u2

l = a+
a2

bul
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Schnakenberg: LPA

a
0 0.5 1 1.5 20

1

2

3

4

5

6

7

III

HSS Branch

Local
Branch

ul
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LPA Stability

• Thick lines indicate the well 
mixed HSS.

• Dashed (resp. full) 
indicate unstable (resp. 
stable)

• Thin lines indicate local 
states attainable ONLY BY 
THE LOCAL STATE a

0 0.5 1 1.5 20

1

2

3

4

5

6

7

III

ul

Stable HSS

Unstable
HSS

ul
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LPA Stability

• Region 1 = Turing unstable 

• Patterning driven by 
small noise.

• Region II =                         

• Patterning driven by 
sufficiently large 
perturbationa

0 0.5 1 1.5 20

1

2

3

4

5

6

7

III

Stable HSS

Unstable
HSS

ul � � unstable
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Interpretation

a
0 0.5 1 1.5 20

1

2

3

4

5

6

7

III
ul

• Arrows indicate the 
growth or decay of a 
local perturbation of 
the HSS.

• The unstable ‘local 
branch’ indicates a 
threshold.
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Tying it all together
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Schnakenberg Recap 

• A Turing instability is 
present on a subset of 
[0,1].

Unstable

Stable

u

v
• The unique HSS of this 

system is stable.
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Recap

• The LPA depicts the HSS.

• It indicates the Turing 
instability on [0,1].

• It also depicts excitable 
patterning on ‘a > 1’.

a
0 0.5 1 1.5 20

1

2

3

4

5

6

7

III

Excitable
Turing

ul
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In summary
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In summary

• The LPA recovers information from well 
mixed and Turing analyses.
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In summary

• The LPA recovers information from well 
mixed and Turing analyses.

• It detects threshold induced patterning not 
possible with other methods.
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In summary

• The LPA recovers information from well 
mixed and Turing analyses.

• It detects threshold induced patterning not 
possible with other methods.

• It does this using only ODE techniques and 
existing software.

Tuesday, 15 May, 12



What’s Missing

• The method provides no diffusion 
information.

• It does not tell you the form of the 
resulting patterning.

• In the case of a Turing instability, it does not 
tell you the dominant wave number.
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