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Topics of Discussion

• Relationship between LPA results and 
Turing analysis.

• How the LPA informs knowledge of long 
term evolution of spatial patterns.
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LPA Setup
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Local Perturbation 
Analysis
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• ‘g’ indicates a global variable, ‘l’ indicates 
local.
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LP - System
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LP Perturbation 
Restriction

• The applied ‘local’ perturbation can be of 
ARBITRARY HEIGHT, but it must be of 
SMALL AREA.
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Why?

• Since     is spatially homogeneous, integrate.

Consider:
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Continued

• Now assume,  

•     is small

•     

Near PerturbationAway from the 
perturbation
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Then

• So those two assumptions are enough to 
ensure the equation for      is valid.

• Together, they imply the applied 
perturbation must be of SMALL AREA.
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LPA vs Linearization 
Methods

• Well mixed and Turing analysis require a 
perturbation to be small in height, but 
spatially spread.

• LPA requires a perturbation of SMALL 
AREA, but it can be tall!
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LPA - Linear and 
Nonlinear stability

• The LPA recovers stability properties of 
the 

1. Well mixed system - previously discussed

2. Turing system - to be discussed
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Properties of a Local 
Perturbation

• Our local perturbation is akin to a delta function
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Frequency Spectrum

• The spatially local perturbation has a broad 
Fourier spectrum.

• In the infinitely localized limit, the delta function 
is the superposition of all wave numbers:

F [��](k) =
p
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�
��2k2
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Implication

• The LPA tests stability against all wave 
numbers at once.

• In this way it provides a wave number 
independent Turing analysis.
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Conclusion

• The LPA really does recapitulate

1. Well mixed analysis results

2. AND Turing analysis results
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LP Diagram 
Interpretation

• The LPA does not directly predict the long 
term evolution of patterns.

• BUT, it can help infer the structure of a 
pattern.

Friday, 11 May, 12



Schnakenberg LPA
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• Consider region II.

• Sufficiently large 
perturbations grow to 
infinity.

• Diffusion mitigates 
growth and produces 
spikes.
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Spike Height Dependence
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Turing vs Excitable 

• The pattern resulting in 
the Turing and excitable 
regimes is the same!
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Substrate Inhibition

• ‘u’ and ‘v’ are co-substrates that consume 
each other in a enzymatic reaction.

• Nonlinearity indicative of ‘u’ binding to 
enzyme and rendering it inert.

ut(x, t) = a� u� ⇢uv
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Substrate Inhibition 
LPA

HSS Branch

Local 
Branch

Friday, 11 May, 12



Substrate Inhibition 
LPA
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Substrate Inhibition 
LPA

• Region I - No patterning.

• Region II - Excitable

• Region III - Turing

• Region IV - Excitable
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Turing vs Excitable

• Again, excitable and 
Turing generated 
patterns have the 
same character.
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Types of excitable 
patterning.

• Spike Solutions
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• Interface Solutions
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LP Eigenvalue

• The LP eigenvalue that determines stability 
can be interpreted as a Turing growth rate / 
eigenvalue.
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