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Recall from last time:
Discrete Diffusion Equation
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Discrete Diffusion Equation
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Discrete Diffusion Equation




Polymer size distribution




Si1ze classes




Discrete size classes




Balance equation

dp;
d_pt =ckfpi—1 — (Ckf +k;)pi + krpiy1




Intuition for limiting cases
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Intuition for limiting cases (1)

Polymers just keep growing as long as monomer
1S available




Intuition for limiting cases (2)

Polymers just keep shrinking




What happens afterwards?

* Consider case of monomer depletion




For 1= smallest+1.. biggest

dp;
d—lj = ckypi—1 — (cky+k;)pi +krpit1




Need some rule for smallest size




Need some rule for smallest size
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Need some rule for smallest size




All pieces grow and use up the
monomer pool

*

NOTE: this equation holds after some time..




Actual monomer equation

Obtained by enforcing mass balance

(calculation given separately)

d
d—i = [mkinitcm — (m - kr)pm] — (Ckf — kr)l\r(t)

Formation and breakup of smallest size

growth of all other polymers

NOTE: THIS SLIDE WAS ADDED AS A CORRECTION AFTER THE LECTURE




Monomer depletion

As t — o Monomer level approaches

C = Cerit = kr/kf




Rewrite the polymer equation




Rewrite the polymer equation




Rewrite the polymer equation

= kf (—C(Pi _pi—l) +Ccrit(Pi+l —Pi)-)




Early time behaviour:

Initially, a lot of monomer so ¢ >> ¢

crit

“Transport to higher sizes at rate k;”




[ater time

Monomer level approaches ¢ = c¢

Ccrit

dpi
d—pt - kf(—c(p,'—p,'_l) +Ccrit(pi+l —pi)')

rit (—(Pi — Pi-1) + (Pi+1—pi).)

This 1s a discrete diffusion equation




Simulations

a' = adepl*(-kf*a*(sm2-x100+x2)+kr*(sm2+x2))

# initialization from dimers

x1'= kinit*a*a+kr*x2-kf*a*x1

x[2..99]'= kf*a*(x[j-1]-x[j])+kr*(x[j+1]-x[j])
x100' = -kr*x100+kf*a*x99

#Computing the total number of fibers
Nf=sm2+x2+x1
aux Ntotal=Nf



Early “drift” then *“*ditffusion™

:
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CULVES | CUrves

Polymer size (number of monomers)




First Phase: growth to larger sizes
* A vs T




Second Phase: apparent “diffusion” in
S1Z€ space
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Array plot

N x1..100

0 < t < 393,35




Other applications of same idea
*

0 Apoptotic
Q cells
Macrophage \\_'

|

mmmm Engulfment rate k,
<(@m Digestion rate k,




Generic polymerization behaviour




fecall: model = polymeriz vs t

Fws T

Curves for
different initial
monomer levels




Features of polymerization curves

.

Curves for
different initial
monomer levels




Reverse direction: Data 2 model

Curves for
different initial
monomer levels

Figure credit: James Bailey, MSc UBC




Primary nucleation
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Possible steps

Initiation from
multiple
monomers, and
addition/loss of
many monomers or
total disassembly
at each early step..
until first stable

nucleus.
Figure credit: James Bailey, MSc UBC




Experimental curves for various

I monomer levels
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Scale the data:

Scale time: f / tSO

Scale
fluorescence: A(t )/ Aoo




Scaling collapses the data

Figure credit: James Bailey, MSc UBC




Find a scaling law

y=-0.14 - 2.06 x

=2

Figure credit: James Bailey, MSc UBC




Nucleation
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Figure credit: James Bailey, MSc UBC




Simulations of
Microtubule (MT) dynamics

using XPP




Growing and shrinking MT

Some Movies.....

http://www.youtube.com/watch?v=PCI_GUHJJaY




Growing and shrinking tips




Balance equations

9‘_’
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Catastrophe and rescue

Shrinking
MT tip
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Growing
MT tip




Balance equations

fgsug T fsgusa

° T fgsug T fsgusa

Spatial Exchange kinetics
terms




Steady state equations:




Growth regime

*

0 <t <9,99







