Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Microtubules, polymer size distribution and other balance eqn models

www.math.ubc.ca/~keshet/MCB2012/

morim

Microtubule (MT) dynamics

Actin filament:

Microtubule:

Growing and shrinking MT

Some Movies.....

http://www.youtube.com/watch?v=9iXoXzgmEXw http://www.youtube.com/watch?v=PCI_GUHJJaY

MT dynamics

Growing and shrinking tips

Balance equations

M. Dogterom and S. Leibler. Physical aspects of the growth and regulation of microtubule structures. *Phys. Rev Lett.*, 70:1347–1350, 1993.

M Dogterom, AC Maggs, and S Leibler. Diffusion and Formation of Microtubule Asters: Physical Processes Versus Biochemical Regulation. PNAS, 92(15):6683–6688, 1995.

Catastrophe and rescue

Tip fluxes:

$$J_g = u_g v_g, \quad J_s = -u_s v_s$$

Balance equations

$$\begin{split} &\frac{\partial u_g}{\partial t} = -v_g \frac{\partial u_g}{\partial x} - f_{gs} u_g + f_{sg} u_s, \\ &\frac{\partial u_s}{\partial t} = v_s \frac{\partial u_s}{\partial x} + f_{gs} u_g - f_{sg} u_s, \end{split}$$

Spatial terms

Exchange kinetics

Steady state equations:

$$\begin{split} \frac{du_g}{dx} &= \frac{1}{v_g} \left(-f_{gs} u_g + f_{sg} u_s \right), \\ \frac{du_s}{dx} &= \frac{1}{v_s} \left(-f_{gs} u_g + f_{sg} u_s \right), \end{split}$$

Behaviour

Distance from centrosome, x

Behaviour

$$\frac{f_{sg}}{v_s} > \frac{f_{gs}}{v_g}$$

Distance from centrosome, x

Experimental work (Komarova)

Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary

Yulia A. Komarova^{1,2,*}, Ivan A. Vorobjev² and Gary G. Borisy¹

Journal of Cell Science 115, 3527-3539

Now back to the begining

Polymer size distribution

Filament size distribution

It is very common in math-biology to consider size classes and formulate equations for the dynamics of size distributions (or age distributions, or distribution of some similar property).

Number of filaments of length *j* :

 $\frac{dx_{j}(t)}{dt} = k^{+}ax_{j-1} - (k^{-} + ak^{+})x_{j} + k^{-}x_{j+1}$

Growth of shorter filament Monomer loss or gain Shrinking of longer filament Steady state size distribution for constant pool of monomer

$$\frac{dx_{j}(t)}{dt} = k^{+}ax_{j-1} - (k^{-} + ak^{+})x_{j} + k^{-}x_{j+1}$$

Find the steady state size distribution (assume that a, k+, k- are constant.)

Express this in terms of r = a k + k-

To consider

- The solution will havesome arbitrary constant(s). This means we need some additional constraint(s)..
- What do we use?
- (Consider the case that polymerization has to be started by cluster of n monomers)

Broader context

"Motion between size classes"

Keeping track of how many in class i

Rate of change in = class *i*

Rate entry + from class *i-1* Rate entry from class i+1

+

Rate loss from class i to i-1 and i+1

Other balance equations

Continuous version

Flux

J(x,t) = inumber of particles crossing a unit area at x and time t in the x direction unitarca Note: J is a vector whose magnitude has units (area) (time)

Consider a small segment between x and Δx

Concentration = c(x, t),

Number = $c(x, t)A\Delta x$,

 $\frac{d(\text{Number})}{dt} = [\text{Rate in} - \text{rate out}] + \text{rate produced}$

Balance equation

$$\frac{d(\text{Number})}{dt} = [\text{Rate in} - \text{rate out}] + \text{rate produced}$$

$$\frac{d(A\Delta xc)}{dt} = A\left[J(x) - J(x + \Delta x)\right] + (A\Delta x)\sigma$$

$$\frac{dc}{dt} = \frac{1}{\Delta x} \left[J(x) - J(x + \Delta x) \right] + \sigma$$

In the limit as $\Delta x \rightarrow 0$...

 $\frac{dc}{dt} = \frac{1}{\Delta x} \left[J(x) - J(x + \Delta x) \right] + \sigma$ $\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} + \sigma$

Nonconstant "tube" diameter

$$\frac{d(A(x)\Delta xc)}{dt} = [A(x)J(x) - A(x + \Delta x)J(x + \Delta x)] + (A(x)\Delta x)\sigma$$

Transport at velocity v

Transport at velocity v

Transport at velocity v

Volume $Av \Delta t$ Concentration c so $(cAv \Delta t)$ molecules cross during time Δt Flux J = vc

Convective flux (transport)

Convective flux $= J_c = vc$.

Transport equation

Convective flux $= J_c = vc$.

$$\frac{\partial c}{\partial t} = -\frac{\partial v c}{\partial x} + \sigma$$

Diffusion: Fick's Law

Flux proportional to concentration gradient

 $J = -D\frac{\partial c}{\partial c}$

D = diffusioncoefficient

Diffusion

$$\frac{\partial c}{\partial t} = -\frac{\partial}{\partial x} \left(-D \frac{\partial c}{\partial x} \right) + \sigma$$

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + \sigma$$

Boundaries

Boundary Conditions Typical

Q: How many are needed? A: This depends on the order of the highest derivative. - Presence of differsion term = 2nd derivative 22 two BC's needed, one for each domain end.

Higher dimensions $\vec{J} = (J_x, J_y, J_z)$ J_{z} Z J_x

$$\vec{J} = (J_x, J_y, J_z)$$

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

$$rac{\partial c}{\partial t} = -
abla \cdot ec J$$

Higher dimension: Diffusion

$$\frac{\partial c}{\partial t} = -\nabla \cdot (-D\nabla c)$$

$$rac{\partial c}{\partial t} = D
abla^2 c$$

$$\frac{\partial c}{\partial t} = D\Delta c + \sigma$$

Higher dimension: transport

$$\vec{J} = \vec{v}c$$

$$\frac{\partial c}{\partial t} = -\nabla \cdot (\vec{v}c) + \sigma$$

Polymer size distribution

Size classes

$$k_f=k^+a, \quad k_r=k^-$$

Balance equation

$$\frac{dp_i}{dt} = ck_f p_{i-1} - (ck_f + k_r)p_i + k_r p_{i+1}$$

$$k_{f} \qquad k_{f} \qquad k_{f$$