Mathematical Cell Biology Graduate Summer Course University of British Columbia, May 1-31, 2012 Leah Edelstein-Keshet

Diffusion, Reaction, and Biological pattern formation, cont'd

www.math.ubc.ca/~keshet/MCB2012/

morim

Motivation for "Local pulse analysis": Why do we need another <u>method?</u>

Signaling to actin (KEGG):

www.genome.ad.jp/kegg highlights credit: A T Dawes

These things all diffuse and interact

If we knew all details, this system would be represented by a system of MANY reaction-diffusion equations..

What do we want to know about this system?

Ans: how does it all work in space & time to produce cell polarization (and motility)

Chemical "pattern" in the (polarizing) cell

Back: Rho PTEN

Front: Rac PI3K, PIP₂, PIP₃

One growing mode leads to polarization

Formation of polarized pattern requires growth of mode:

$$\cos qx e^{\sigma t}$$

For $q = n \pi / L$ Where n=1

(And modes with larger n that have more peaks are inappropriate)

Reduce to one "layer" to simplify

Small GTPAses

Chemical interactions in that layer

Why? Because Rho GTPases are implicated in setting up that polarization.

Differences in diffusion are inherent to the system

Mathematical model (6 PDEs) "Thin strip" 1Dhomogenized membrane cytosol \bigcirc

membrane

active

Can we analyse this mathematically?

As is, a system of 6 PDEs is challenging to understand analytically. This is one motivation for easier method (LPA)

Models develop in response to experiments. We want a handy way to understand them

Bill Holmes, Ben Lin, Andre Levchenko, LEK

Typical sets of equations

 $h = \left(\frac{I_c}{1 + \left(\frac{\rho}{a_1}\right)^n} + f_2 \frac{P3}{P3b}\right) \frac{C_i}{C_t} - \delta_C C$ $f = \left((I_R + \alpha C) + f_1 \frac{P3}{P3b} + S(x, t)\right) \frac{R_i}{R_t} - \delta_R R$ $g = \frac{I_\rho}{1 + \left(\frac{R}{a_2}\right)^n} \frac{\rho_i}{\rho_t} - \delta_\rho \rho$... Plus equations for P₁, P₂, P₃

LPA helps to understand how these models behave

Simplified view:

100-1000 fold difference in rates of diffusion

Caricature model

Only two variables

Slow diffusing

fast diffusing

RD model

Active

Inactive

 $egin{aligned} &rac{\partial u}{\partial t} = D_u rac{\partial^2 u}{\partial x^2} + f(u,v), \ &rac{\partial v}{\partial t} = D_v rac{\partial^2 v}{\partial x^2} - f(u,v), \end{aligned}$

 $f(u,v) = \eta \left(\delta + \frac{\gamma u^2}{m^2 + u^2}\right)v - \eta u$

f(u,v)

U

A Jilkine

A stable, robust way to chemically distinguish front from back.

Methods of analysis, RD systems

$$egin{aligned} &rac{\partial u}{\partial t}(x,t) = f(u,v) + D_u riangle u, \ &rac{\partial v}{\partial t}(x,t) = g(u,v) + D_v riangle v, \end{aligned}$$

Linearization, Linear stability analysis of full PDE, look for +ve eigenvalues

 $D_u \ll D_v$ Local pulse analysis

(Traditional) Linear Stability analysis

Linearized PDEs:

Perturbations:

Growing Modes:

Methods of analysis, RD systems

$$egin{aligned} &rac{\partial u}{\partial t}(x,t) = f(u,v) + D_u riangle u, \ &rac{\partial v}{\partial t}(x,t) = g(u,v) + D_v riangle v, \end{aligned}$$

Local pulse analysis

D_u <<

 D_v

Due to: Stan Maree, Veronica Grieneisen, Bill Holmes

Local pulse analysis

Local Pulse Analysis

Approximate PDEs by ODEs for local and global variables:

$$egin{aligned} &rac{\partial u}{\partial t}(x,t)=f(u,v)+D_u riangle u, \ &rac{\partial v}{\partial t}(x,t)=g(u,v)+D_v riangle v \end{aligned}$$

 $D_u \ll D_v$

$$\begin{aligned} &\frac{du^g}{dt}(x,t) = f(u^g,v^g),\\ &\frac{dv^g}{dt}(x,t) = g(u^g,v^g),\\ &\frac{du^l}{dt}(x,t) = f(u^l,v^g) \end{aligned}$$

 $D_u \rightarrow 0 \quad D_v \rightarrow \infty$

Bifurcation structure (LPA)

$$u_t(x,t) = v(k_0 + \frac{\gamma u^n}{K^n + u^n}) - \delta u + D_u \Delta u$$
$$v_t(x,t) = -f(u,v) + D_v \Delta v$$

$$\begin{aligned} &\frac{du^g}{dt}(x,t) = f(u^g,v^g),\\ &\frac{dv^g}{dt}(x,t) = g(u^g,v^g),\\ &\frac{du^l}{dt}(x,t) = f(u^l,v^g) \end{aligned}$$

Bifurcation structure (LPA)

Bifurcation structure of well mixed system

Other sys.

Schnakenberg

$$u_t(x,t) = a - u + u^2 v + D_u \Delta u$$

 $v_t(x,t) = b - u^2 v + D_v \Delta v,$

Gierer-Meinhardt

$$u_t(x,t) = a - bu + rac{u^2}{v(1+Ku^2)} + \Delta u$$

 $v_t(x,t) = u^2 - v + D \Delta v.$

Revised biochemistry

 $h = \left(\frac{I_c}{1 + \left(\frac{\rho}{a_1}\right)^n} + f_2 \frac{P3}{P3b}\right) \frac{C_i}{C_t} - \delta_C C$ $f = \left((I_R + \alpha C) + f_1 \frac{P3}{P3b} + S(x, t)\right) \frac{R_i}{R_t} - \delta_R R$ $g = \frac{I_\rho}{1 + \left(\frac{R}{a_2}\right)^n} \frac{\rho_i}{\rho_t} - \delta_\rho \rho$... Plus equations for P₁, P₂, P₃

Revised biochemistry

