Experimental data analysis Lecture 3: Confidence intervals Dodo Das

Review of lecture 2

Nonlinear regression - Iterative likelihood maximization

Levenberg-Marquardt algorithm (Hybrid of steepest descent and Gauss-Newton)

Stochastic optimization - MCMC, Simulated annealing.

Objective: Using a Hill function to model dose-response data.

Time (s)

e 0.2

T₈₀IA

0

00 800⁵⁵

10 100 ligand concentration ([nM])

1000

No

pMHC (ug/mL)

enno 3: Nonlineår regression in

$$y = f(x; y_{\max}, EC_{50}, n) = \frac{y_{\max}}{1 + (EC_{50}/x)^n}$$

Need the statistics toolbox which contains the function nlinfit

i) Write a MATLAB function to compute the Hill function for a given set of parameter values.

<u>F</u> il	e <u>E</u>	<u>E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp ™ ₹	×
•) 🖸	🚔 🔙 🔏 ங 🛍 🤊 (° 🍓 🖅 - 👭 🖛 🗰 🍂 🖻 - 🛃 📲 🛍 🕼 🗐 🌆 🏭 🦵 fx 🗖	-
+ 	≣ ⊊	$ - 1.0 + \div 1.1 \times \% \% \% $	
1	Ę	<pre>[] function response = Hill(par, dose)</pre>	
2		%% Return the predicted response for a Hill function	
3 -	-	ymax = par(1);	
4 -	-	$EC50 = 10^{par(2)};$	
5 -	-	n = par(3);	
6			
7 -	-	response = ymax./(1 + (EC50./dose).^n);	
8 -	.	end	

ii) Choose some model parameters to simulate data [or collect data from experiments]

<u>F</u> ile	<u>E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	'N	7	×
: 🎦) 😂 📓 👗 🖷 🖺 🥙 🧶 🍯 - 🦓 🖛 🗭 🎋 🖓 - 🕒 🎽 👘 🗊 🗐 🖓 🔚	fx		•
: - +≡ - ⊡	$ \zeta_{=}^{=} - 1.0 + \div 1.1 \times \% \% \% 0$			
1	%% Nonlinear regression. Generate data for a dose response curve by ad	ding		
2	%% some normally distributed noise to a Hill function. Use nlinfit to			
3	%% perform nonlinear regression			
4			_	4
5	%% Specify model parameters. The Hill function is given by		_	_
6	$\% y(x) = ymax/(1 + (EC50/dose)^n)$			
7 -	- ymax = 1;			
8 -	- Lec50 = 0;			
9 -	- n = 2;			
10 -	- modelpar = [ymax Lec50 n];			
11				
12	%% Generate some data			
13 -	- dose = (logspace(-1, 1, 15))';			
14 -	<pre>- yTrue = Hill(modelpar, dose);</pre>			
15				
16	%% Add normal error to simulate experimental noise			-
17 -	- NoiseStd = 0.1: % The standard deviation of the noise			
18 -	<pre>err = NoiseStd*randn(length(vTrue), 1);</pre>			
19 -	<pre>vExpt = vTrue + err:</pre>			
20	yexpe yrrae r erry			

iii) Pick an initial guess and call nlinfit

```
%% Call nlinfit to perform nonlinear regression. Add an option to see the
21
22
       %% SSR value after each iteration
       options = statset('Display', 'iter');
23 -
24 -
       betaGuess 💂 [1, 1, 1] % Initial guess for parameter values
       betaHat 💂 nlinfit(dose, yE×pt, @Hill, betaGuess, options)
25 -
26
       %% Not all initial guesses work. This one fails to find the minimum.
27
28 -
       betaGuess = [0.1, 1, 4]
       nlinfit(dose, yExpt, @Hill, betaGuess, options)
29 -
30
       %% Plot data and fit
31
       semilogx(dose, yExpt, 'ro', 'MarkerSize', 8)
32 -
33 -
       hold on
       doseFit = (logspace(-1, 1, 201))';
34 -
       yFit = Hill(betaHat, doseFit);
35 -
       plot(doseFit, yFit, 'b-', 'LineWidth', 2)
36 -
       plot(doseFit, Hill(modelpar, doseFit), 'b--', 'LineWidth', 1)
37 -
38 -
       ×lim([0.09, 11])
39 -
       ylim([-0.05, 1.15])
40 -
       xlabel('dose')
       ylabel('response')
41 -
       grid on
42 -
       legend('Data', 'Nonlinear fit', 'True model', 'Location', 'NW')
43 -
```

Command Window

	betaGuess =						
	1 1	1 1					
	Iteration	r	SSE	Norm of Gradient	Norm of Step		
)	3.36869				
	1	L	2.41072	1.09421	1.13207		
	4	2	1.29038	2.7598	0.717239		
	-	4	0.315402	1.19888	1.09758		
	e e e e e e e e e e e e e e e e e e e	5	0.151169	0.253951	0.412226		
	-	7	0.108014	0.0424598	0.247683		
	8	3	0.107063	0.00288839	0.0328246		
	10)	0.106991	1.90122e-05	0.00157004		
	11	L	0.10699	5.20445e-06	0.00286241		
	13	2	0.10699	1.79044e-07 4.70273e-08	0.000198578		
	. 14	4 .	0.10699	2.26291e-09	3.04801e-05		
	Iterations 1	terminat	ed: relative	change in SSE	less than OPTIONS.Tolli	In	
	betaHat =						
	1.0164	-0.069	7 1.8357				
6							
Jx	>>						

Convergence can be sensitive to the initial guess.

27 %% Not all_initial guesses work. This one fails to find the minimum.

```
28 - betaGuess 💂 [0.1, 1, 4]
```

29 - nlinfit(dose, yExpt, @Hill, betaGuess, options)

Convergence can be sensitive to the initial guess.

C	ommand Window				
¢	New to MATLAB? V	Vatch this <u>Video</u> , see <u>Dem</u>	<u>os</u> , or read <u>Gettin</u>	g Started.	
	betaGuess =				
	0.1000	1.0000 4.0000			
			Norm of	None of	
	Iteration	SSE	Gradient	Norm of Step	
	0	6.52615	1 74121	20,0028	
	2	4.77415	4.89515	20.0928	
	3	3.82728	2.56718	251.139	
	Warning: Rank	deficient, rank = 3	1, tol =	1.5114e-14.	
	> In <u>nlinfit>l</u>	Mfit at 294			
	In <u>nlinfit</u>	at 166	0, 2006.41	0 115246	
	Warning: Rank	0.02000 deficient_rank = 1	0.299641	0.115246 1.4483e-14	
	> In nlinfit>l	Mfit at 294	1, 101 -	1.11000-11.	
	In nlinfit a	at 166			
		3.61836	0.00296674	0.0114105	
	Warning: Rank	deficient, rank = 1	1, tol =	1.4418e-14.	
	In plinfit a	<u>10111 at 294</u> at 166			
	6	3.61836	2.96377e-06	0.000113991	
	Warning: Rank	deficient, rank = 1	1, tol =	1.4411e-14.	
	> In <u>nlinfit>l</u>	<u>Mfit at 294</u>			
	In <u>nlinfit</u>	at 166 2 61926	2 967/96 10	1 13980 07	
	/ 5.01030 2.90349e-10 1.1398e-0/				
	Warning: The Jacobian at the solution is ill-conditioned. and some				
	model parameters may not be estimated well (they are not identifiable).				
	Use caution in	n making prediction	s.		
	> In <u>nlinfit</u> a	<u>at 223</u>			
	ans =				
	0.4849	0.7968 -293.7222			
fx	>>				

Compute and plot residuals

Parameter confidence intervals

Question: What does a 95% confidence interval mean?

eg: Say, a best fit parameter estimate is â = 1, and we have estimated the 95% CI to be [0.5, 1.5]. How can we interpret this result?

Parameter confidence intervals

Question: What does a 95% confidence interval mean?

eg: Say, a best fit parameter estimate is â = 1, and we have estimated the 95% CI to be [0.5, 1.5]. How can we interpret this result?

If we repeat our experiment and the fitting procedure many times, 95% of the times the true (but unknown) parameter value will lie within this CI.

Computing parameter confidence intervals

- Asymptotic confidence intervals: Based on an analytical approximation.
- 2. **Bootstrap confidence intervals**: Computational technique based on resampling the errors.

Asymptotic confidence intervals

- Use a local approximation of the SSR landscape to estimate the curvature (covariance matrix).
- Assuming that the errors are normally distributed, this covariance matrix can be used to compute a confidence interval around each parameter.

Demo 4: Computing asymptotic Cls in MATLAB

Use the nlparci command in the Statistics toolbox

<u>F</u> ile	Edit Text Go Cell Tools Debug Desktop Window Help 🏻 🛪 🗙				
: 🎦	$\stackrel{\scriptsize{}}{\bigsqcup} = \left \begin{array}{c} \begin{array}{c} \\ \end{array} \right \left \left \begin{array}{c} \\ \end{array} \right \left \begin{array}{c} \\ \end{array} \right \left \left \begin{array}{c} \\ \end{array} \right \left \left \begin{array}{c} \\ \end{array} \right \left \left \left \begin{array}{c} \\ \end{array} \right \left \left $				
+=	$ \begin{bmatrix} \blacksquare \\ \blacksquare \end{bmatrix} = \begin{bmatrix} 1.0 \\ + \end{bmatrix} \div \begin{bmatrix} 1.1 \\ \times \end{bmatrix} \times \times$				
1	%% Estimate asymptotic confidence intervals for a nonlinear regression				
2	%% fit using nlparci (Statistics toolbox)				
3					
4	%% Fit simulated dose-response data to a Hill function, given by				
5	%% y(x) = ymax/(1 + (EC50/dose)^n)				
6					
7	%% Load data				
8 -	DoseResponse = load('DoseResponseData.dat', '-ascii');				
9 -	dose = DoseResponse(:,1);				
10 -	<pre>yExpt = DoseResponse(:,2);</pre>				
11					
12	%% Call nlinfit to perform nonlinear regression.				
13 -	<pre>betaGuess = [1, 1, 1]; % Initial guess for parameter values</pre>				
14 -	[betaHat, res, Jac, Cov, mse] = nlinfit(dose, yExpt, @Hill, betaGuess);				
15					
16	%% Supply output to nlparci to estimate asymptotic 95% CIs.				
1/ -	asympCI = n1parci(betaHat, res, 'covar', Cov);				
18	WW Design and a second				
19	%% Print parameter estimates and asymptotic UIS				
20 -	[petahat asympti]				
21					

Demo 4: Computing asymptotic Cls in MATLAB

Use the nlparci command in the Statistics toolbox

<u>F</u> ile <u>E</u> d	lit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow	<u>H</u> elp				
፡ 🛅 🗃	📓 👗 🐚 📬 🤊 (९) 🍓 🖅 - 🛤 🖛 🗰 🍢 💌 -	· 🛃 🖈 🖷 🛍 💷 🗐 🖅 🗖 💌				
: +≣ ⊊≣	$ - 1.0 + \dot{+} 1.1 \times \%^{*}_{+} \%^{*}_{-}]$					
1	%% Estimate asymptotic confidence intervals	for a nonlinear regression 📃				
2	%% fit using nlparci (Statistics toolbox)					
4	%% Fit simulated dose-response data to a Hill	l function, given by				
5	%% y(x) = ymax/(1 + (EC50/dose)^n)					
7	%% Load data					
8 - 9 -	<pre>DoseResponse = Toad('DoseResponseData.dat', dose = DoseResponse(:.1);</pre>	'-aschi');				
10 -	yExpt = DoseResponse(:,2);					
12	%% Call nlinfit to perform nonlinear regress	ion.				
13 -	<pre>betaGuess = [1, 1, 1]; % Initial guess for pa [betaHat res_lac_Cov_meal = plipfit(decount)</pre>	arameter values				
15	[becanac, res, Jac, cov, mse] = hinnic(dose, ycxpt, whili, becaudess);					
16	<pre>%% Supply output to nlparci to estimate asymp asymp(I = nlparci(betaHat res 'covar' Cov)</pre>	ptotic 95% CIs.				
18	adymper inparol(bocanac, roo, cota, , cot					
19 20 -	%% Print parameter estimates and asymptotic ([betaHat' asympCI]	ls				
21		Command Window				
		(1) New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .				
		200 -				
		ans =				
		1.0268 0.9040 1.1497				
		0.0058 -0.0930 0.1045				
		2.02.00 1.20.00 4.0000				
		$f_{\star} >>$				

Bootstrapping: The principle

- A computational approach that addresses the following question:
- Given a limited number of observations, how can we estimate some quantity, eg: mean, median etc. for the population from which the observations are drawn?
- If we 'resample' from the observations, we can, in some sense, simulate the population distribution.

Bootstrapping in practice for nonlinear regression.

- 1. Use the nonlinear least squares regression to determine the best-fit estimates of the model parameters, and the predicted model response $(y_i)_{\text{predicted}}$ at each value of the independent variable x_i .
- 2. Calculate the residuals $\epsilon_i = (y_i)_{\text{observed}} (y_i)_{\text{predicted}}$ at each of the N data points.
- 3. Resample the residuals with replacement to generate a new set of residuals {ε_i^{*}}. What this means is that we generate a new set of N residuals where each of N values is one of the original residuals chosen with equal probability. Typically, some of the original residuals will be chosen more than once, while some will not be chosen at all. For example, say we have three data points and we calculate the residuals to be 0.1, -0.2 and 0.3. Then some possible sets of resampled residuals are: {-0.2, 0.1, -0.2}, {0.1, 0.3, -0.2}, {0.3, -0.2, -0.2}, and so on.
- 4. Add the resampled residuals to the predicted response to generate a **bootstrap data set**, $\{x_i, y_i^*\} = \{x_i, (y_i)_{\text{predicted}} + \epsilon_i^*\}$
- 5. Treat the bootstrap dataset as an independent replicate experiment, and fit it to the model to calculate new estimates of model parameters.
- 6. Repeat steps 3-5 many times typically 500 to 1000 times each time generating a new bootstrap data set, and fitting it to the model. Store the resulting best-fit parameter estimates. These independent estimates constitute a sample from the bootstrap distribution of the model parameters.
- 7. For each parameter, calculate the standard deviation of the bootstrap sample. This standard deviation is the estimated bootstrap standard error for that parameter.
- To calculate the 95% bootstrap CIs, compute the 97.5th and the 2.5th percentile values of each parameter from the bootstrap distributions. (There are other prescriptions for calculating bootstrap CIs, but this one is the simplest.)

<u>F</u> ile	<u>E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp 🏻	* ×				
: 🎦	🚰 🛃 👗 🐂 🛍 🤊 (° 🍓 🖅 - 🛤 🆛 🗰 🎘 🖻 - 🗟 🗶 🖷 🖷 🗊 🕮 🌆 🕞 fiz] -				
+=	$ \begin{bmatrix} -1.0 + + + 1.1 \\ -1.0 \end{bmatrix} \times \ \ \ \ \ \ \ \ \ \ \ \ \$					
1	%% Construct bootstrap samples for a nonlinear regression and estimate	•				
2	%% bootstrap confidence intervals.					
4	%% Fit simulated dose-response data to a Hill function, given by					
5	%% y(x) = ymax/(1 + (EC50/dose)^n)					
6	%% Load data					
8-	DoseResponse = load('DoseResponseData.dat', '-ascii');					
9 -	<pre>dose = DoseResponse(:,1);</pre>					
10 -	yExpt = DoseResponse(:,2);					
12	%% Call nlinfit to perform nonlinear regression.					
13 -	betaGuess = [1, 1, 1]; % Initial guess for parameter values					
14 -	[betaHat, residuals, Jac, Cov, mse] = nlinfit(dose, yExpt, @Hill, betaGuess					
15	%% Resample the residuals using the bootstrn function					
17 -	nboot = 200; % Number of bootstrap replicates					
18 -	[~, bootIndices] = bootstrp(nboot, [], residuals);					
19 -	bootIndices(:,1:3) % Print the first 3 columns of bootIndices					
20 -	bootResiduals = residuals(bootIndices); bootResiduals(. 1.3) % Print the first 3 columns of bootPosiduals					
22	Dootkesiduals, 1:5) % Frint the first 5 columns of Dootkesiduals					
23	%% Generate bootstrap datasets by adding the resampled residuals					
24	%%to the best fit curve					
25 -	yMod = Hill(betaHat, dose); yBoot = repmat(yMod 1 phoot) + bootResiduals:					
20 -	yboot = repmat(yhod, I, hboot) + bootkesiddais,	88) 199				
28	%% Fit each of the bootstrap datasets to the Hill function to					
29	%% build up the bootstrap distributions of parameter estimates					
30 -	betaBoot = zeros(nboot, 3);					
31 -	<pre>betaBoot(i :) = nlinfit(dose vBoot(: i) @Hill betaCuess):</pre>					
33 -	end					
34						
35	% Estimate 95% CIs					
36 -	bootCI = prctile(betaBoot, [2.5 97.5]);					
57						

12	9	10
6	4	15
6	14	6
15	13	2
13	9	14
2	1	12
10	8	13
12	12	13
12	14	15
8	2	5
12	8	4
9	1	3
12	3	1
10	6	4

ans =

-0.0097	-0.0097	0.0089
-0.1002	0.0342	0.1473
0.0486	0.0772	0.1527
0.0486	-0.1453	0.0486
0.1527	-0.0097	-0.0670
-0.0097	0.0342	-0.1453
-0.0670	0.0276	-0.1002
0.1473	-0.1874	-0.0097
-0.1002	-0.1002	-0.0097
-0.1002	-0.1453	0.1527
-0.1874	-0.0670	-0.0260
-0.1002	-0.1874	0.0772
0.0342	0.0276	0.0171
-0.1002	0.0171	0.0276
0.1473	0.0486	0.0772

fx >>

<u>F</u> ile	<u>E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp 🏻	* ×				
: 🎦	🚰 🛃 👗 🐂 🛍 🤊 (° 🍓 🖅 - 🛤 🆛 🗰 🎘 🖻 - 🗟 🗶 🖷 🖷 🗊 🕮 🌆 🕞 fiz] -				
+=	$ \begin{bmatrix} -1.0 + + + 1.1 \\ -1.0 \end{bmatrix} \times \ \ \ \ \ \ \ \ \ \ \ \ \$					
1	%% Construct bootstrap samples for a nonlinear regression and estimate	•				
2	%% bootstrap confidence intervals.					
4	%% Fit simulated dose-response data to a Hill function, given by					
5	%% y(x) = ymax/(1 + (EC50/dose)^n)					
6	%% Load data					
8-	DoseResponse = load('DoseResponseData.dat', '-ascii');					
9 -	<pre>dose = DoseResponse(:,1);</pre>					
10 -	yExpt = DoseResponse(:,2);					
12	%% Call nlinfit to perform nonlinear regression.					
13 -	betaGuess = [1, 1, 1]; % Initial guess for parameter values					
14 -	[betaHat, residuals, Jac, Cov, mse] = nlinfit(dose, yExpt, @Hill, betaGuess					
15	%% Resample the residuals using the bootstrn function					
17 -	nboot = 200; % Number of bootstrap replicates					
18 -	[~, bootIndices] = bootstrp(nboot, [], residuals);					
19 -	bootIndices(:,1:3) % Print the first 3 columns of bootIndices					
20 -	bootResiduals = residuals(bootIndices); bootResiduals(. 1.3) % Print the first 3 columns of bootPosiduals					
22	Dootkesiduals, 1:5) % Frint the first 5 columns of Dootkesiduals					
23	%% Generate bootstrap datasets by adding the resampled residuals					
24	%%to the best fit curve					
25 -	yMod = Hill(betaHat, dose); yBoot = repmat(yMod 1 phoot) + bootResiduals:					
20 -	yboot = repmat(yhod, I, hboot) + bootkesiddais,	88) 199				
28	%% Fit each of the bootstrap datasets to the Hill function to					
29	%% build up the bootstrap distributions of parameter estimates					
30 -	betaBoot = zeros(nboot, 3);					
31 -	<pre>betaBoot(i :) = nlinfit(dose vBoot(: i) @Hill betaCuess):</pre>					
33 -	end					
34						
35	% Estimate 95% CIs					
36 -	bootCI = prctile(betaBoot, [2.5 97.5]);					
57						

Command Window

(i) New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>.

Comparing fits from two different experiments

Α

Which paramters are different between the two datasets?

Bootstrap-based hypothesis testing

Emax is not (the 95% CI of the difference distribution crosses 0), but EC₅₀ and n are different.

Friday

- How to pick the best model from a set of proposed models?
- Bias-variance tradeoff

F-test

Akaike's information criterion (AIC)