Experimental data analysis Lecture 2: Nonlinear regression Dodo Das

Review of lecture I

- Likelihood of a model.
- Likelihood maximization + Normal errors = Least squares regression
- Linear regression. Normal equations.

Demo I: Simple linear regression in MATLAB

<u>F</u> ile <u>E</u> dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u>	oug <u>D</u> esktop <u>W</u> indow <u>H</u> elp ∞ ≉ ₹	×
i 🛅 😂 📰 👗 🖷 🗳 🗢 😫 😇	- 🛤 🖛 🛶 🈥 🕨 - 🗟 🗶 🖷 🛍 🗊 💷 🏭 🖓 🔍 🗖	-
	» [*] » [*] 0	_
1 %% Simple linear regression	on. Generate some linear data, add normally distri	
3 %% Specify model parameter	rs	-
4 - a = 1;		
5 - b = 2;		
6		_
7 %% Generate some data		
8 - $\times = (1:10)';$ 9 - yTrue = a + b*x;		
10		
11 %% Add normal error to si	mulate experimental noise	
	ndard deviation of the noise	
13 - err = NoiseStd*randn(lengt	th(×), 1);	
14 - yExpt = yTrue + err;		
15 16 %% Create design matrix		-
<pre>16 %% Create design matrix 17 - A = [ones(size(x)) x];</pre>		
18		
	using the MATLAB backslash operator	
20 - betaHat 🗮 A 🔪 yE×pt		—
21		-
22 %% Plot data and fit	kanSizal R)	
<pre>23 - plot(x, yExpt, 'ro', 'Mark 24 - hold on</pre>	Kersize, oj	
25 - ×Fit = (1:0.1:10)';		
26 - yFit = [ones(size(×Fit)) >	×Fit]*betaHat;	
27 - plot(×Fit, yFit, 'b-', 'L'	ineWidth', 2)	
28 - ×lim([0, 11])		
29 - ylim([0, 23])		
30 - ×label('×') 31 - ylabel('y')		
32 - grid on		
33 - legend('Data', 'Fit', 'Loo	cation', 'NW')	
34		
	script In D Col 1	
	script Ln 2 Col 1 O	

Demo I: Simple linear regression in MATLAB

Command Window

(i) New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>.

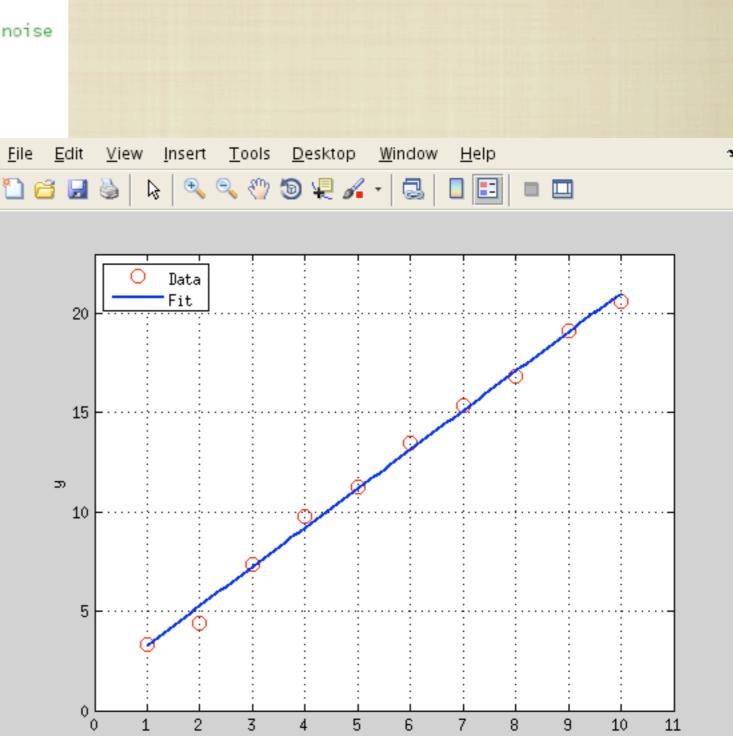
```
>> a = 1;
  b = 2;
  >> \times = (1:10)';
  yTrue = a + b^* \times;
  >> NoiseStd = 0.5; % The standard deviation of the noise
  err = NoiseStd*randn(length(x), 1);
  yExpt = yTrue + err;
  >> A = [ones(size(x)) x];
  >> betaHat = A \ vExpt
  betaHat =
      1.3280
      1.9700
  >> plot(x, yExpt, 'ro', 'MarkerSize', 8)
  hold on
  \timesFit = (1:0.1:10)';
  yFit = [ones(size(xFit)) xFit]*betaHat;
  plot(xFit, yFit, 'b-', 'LineWidth', 2)
  xlim([0, 11])
  ylim([0, 23])
  xlabel('x')
 ylabel('y')
  grid on
  legend('Data', 'Fit', 'Location', 'NW')
f_{x} >>
```

Demo I: Simple linear regression in MATLAB

Command Window

① New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>.

```
>> a = 1;
  b = 2;
  >> \times = (1:10)';
  vTrue = a + b^* \times;
  >> NoiseStd = 0.5; % The standard deviation of the noise
  err = NoiseStd*randn(length(x), 1);
  yExpt = yTrue + err;
  >> A = [ones(size(x)) x];
  >> betaHat = A \ vExpt
  betaHat =
      1.3280
      1.9700
  >> plot(x, yExpt, 'ro', 'MarkerSize', 8)
  hold on
  \timesFit = (1:0.1:10)';
  yFit = [ones(size(xFit)) xFit]*betaHat;
  plot(xFit, yFit, 'b-', 'LineWidth', 2)
  xlim([0, 11])
  ylim([0, 23])
  xlabel('x')
 ylabel('y')
  grid on
 legend('Data', 'Fit', 'Location', 'NW')
fx >>
```

х

Demo II: Polynomial regression in MATLAB

<u>F</u> ile <u>E</u>	dit <u>T</u> ext <u>G</u> o <u>C</u> ell T <u>o</u> ols De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp 🏻 🍽	×		
: 🛅 🖻) 🖩 🕹 🖻 🕫 🕫 😒 🖅 - 🛤 🖛 🐟 🎪 🕨 - 🗟 🔏 🖷 🛍 🗊 🕮 🍓 💌 🗩	•		
: += c=				
1	%% Polynomial regression. Generate a some data for a saturable curve model.			
2				
	%% Specify model parameters			
4 -	ymax = 1;			
5 -	tau = 3;			
7	%% Generate some data			
8 -				
9 -				
10				
11	%% Add normal error to simulate experimental noise			
12 - 13 -				
14 -				
15	yexpe yinder enry			
16	%% Fit with a 2nd order polynomial. Create design matrix			
17 -				
18				
19 20 -				
20 -	betaHat 💂 A 🔪 yE×pt			
22	%% Plot data and fit			
23 -				
24 -	- hold on			
25 -				
26 -				
27 - 28 -				
29 -				
30 -				
31 -				
32 -				
33 -				
34 -	34 - legend('Data', 'Polynomial fit', 'True function', 'Location', 'NW')			
55				
•				
	corint In 2 Col 1 OV			

Demo II: Polynomial regression in MATLAB

Command Window

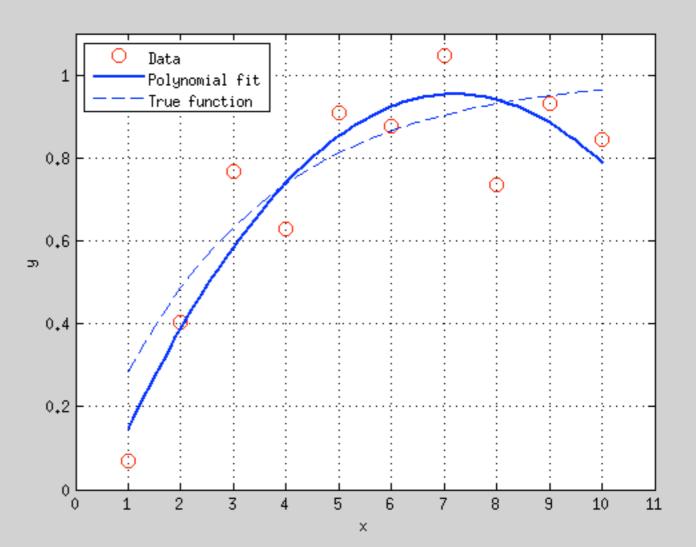
(i) New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>.

betaHat =

-0.1298 0.3011 -0.0209

*f*x >>

31



Nonlinear regression

The model is a nonlinear function of the parameters.

We can still write down the likelihood as before.

But the maximum likelihood equations cannot be solved analytically.

Iterative least-squared minimization

Choose an initial guess for the parameters.

Evaluate SSR.

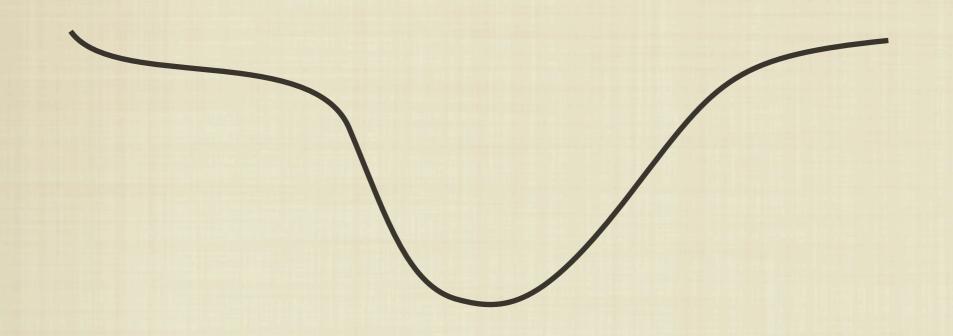
Propose a move in parameter space.

If move reduces SSR, then update parameter values.

Otherwise, propose a different move.

How to choose the move in parameter space?

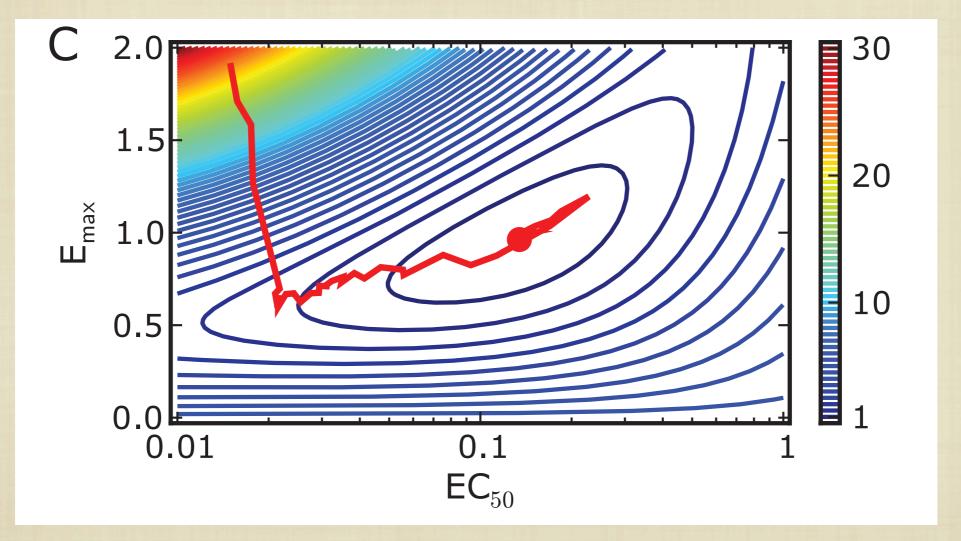
Gradient descent: Far from a minima, it is best to find the gradient (i.e. direction of steepest descent), and move down the gradient of the SSR function.



Gauss-Newton: Near a minima, construct a Taylor-series approximation of the function (to 2nd order) and determine the location of the minima.

A compromise - Levenberg-Marquardt

Switches between Gradient descent when far from minima, and to Gauss-Newton when close to minima.



Practical considerations

Need to specify initial guess.

Can be trapped in local minima if initial guess is not good.

- Try a number of random initial guesses, and pick the final result that has the lowest SSR.
- If computationally feasible, good to plot the SSR landscape over some reasonable parameter range.

Other likelihood maximization schemes

Based on stochastic simulations:

Markov chain Monte Carlo (MCMC)

Simulated annealing

Also, many other optimization techniques [Major branch of applied math].

An example of MCMC

Algorithm 3

1: $n \leftarrow$ Number of MCMC steps. 2: $s = \{s_1, s_2, s_3, s_4\} \longleftarrow$ Scale for displacement along each parameter axis. 3: Choose a random initial position in parameter space $\theta^{(0)} = \left\{ \theta_1^{(0)}, \theta_2^{(0)}, \theta_3^{(0)}, \theta_4^{(0)} \right\}$ 4: Calculate the log likelihood of the guessed parameter set, $L(\theta^{(0)}|\mathbf{O})$ using algorithm 2. 5: for i = 1 to i = n/4 do for k = 1 to k = 4 do 6: l = 4(i-1) + k - 17: Propose a displacement $\delta \theta_k$ along the kth parameter axis, drawn from a normal 8: distribution with mean 0 and variance s_k : $\theta^{(\text{proposed})} = \theta^{(l)} + \delta \theta_k$. Calculate $L(\theta^{(\text{proposed})}|\mathbf{O})$. 9: if $L(\theta^{(\text{proposed})}|\mathbf{O}) \geq L(\theta^{(l)}|\mathbf{O})$ then 10: $\theta^{(l+1)} = \theta^{(\text{proposed})}$ 11:else 12:Generate a uniformly distributed random number $u \in U(0, 1)$ 13:if $\log u \leq L(\theta^{(\text{proposed})}|\mathbf{O}) - L(\theta^{(l)}|\mathbf{O})$ then 14:1.0Α $\theta^{(l+1)} = \theta^{(\text{proposed})}$ 15:

```
16: else
```

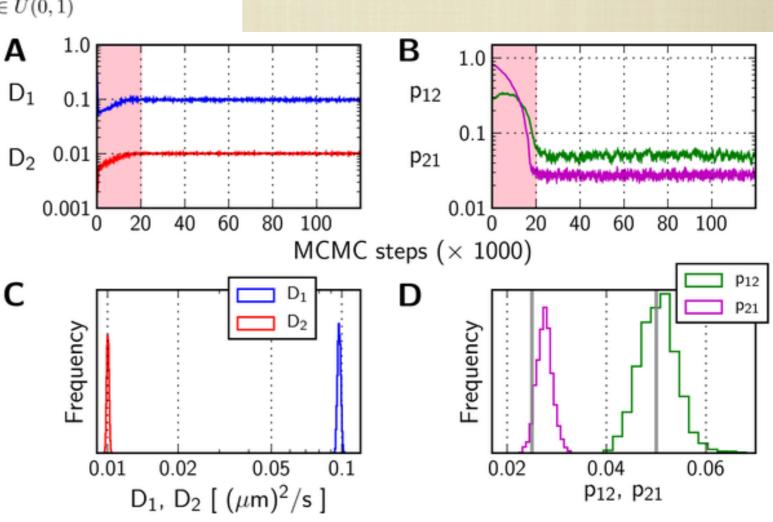
```
17: \theta^{(l+1)} = \theta^{(l)}
```

```
18: end if
```

```
19: end if
```

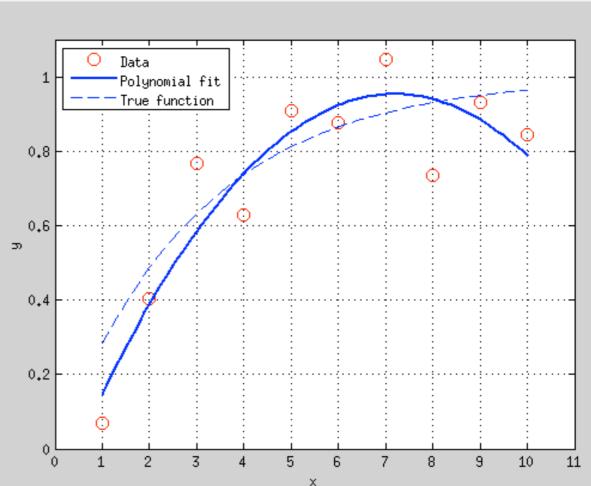
```
20: end for
```

21: end for



Diagnostics: Asessing quality of fits

- Visual assessment: Does the fit look reasonable?
 <u>File Edit View Insert Tools Desktop Window Help</u>
 <u>Sektop Window Help</u>
 <u>Sektop Window Help</u>
- Are the parameters estimates physically possible?
- Quantify: R²



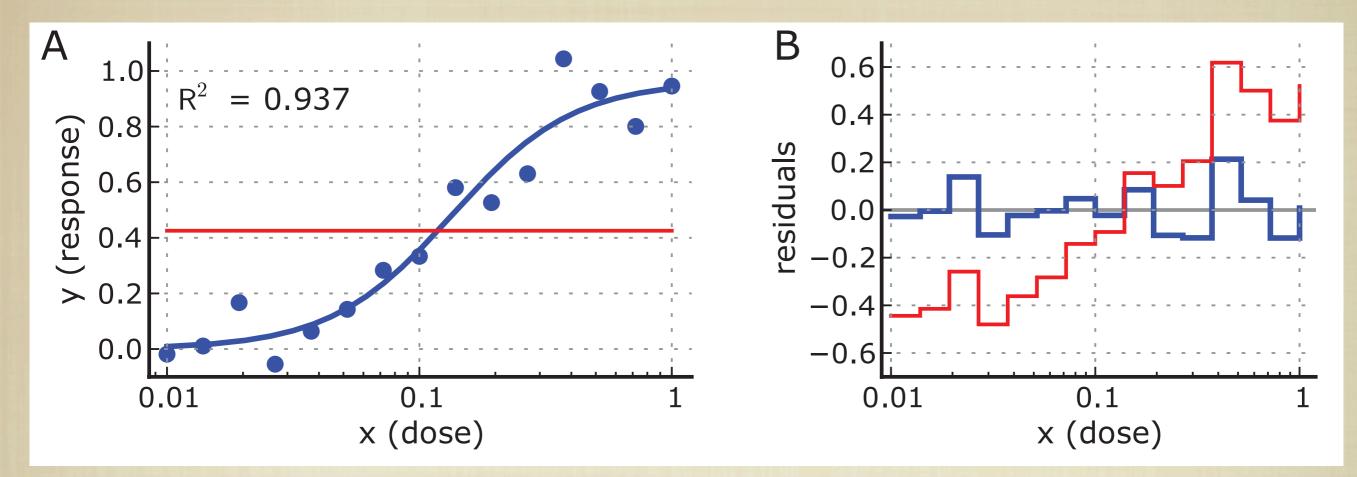
31

 $R^2 = 1 - \text{SSR}/\text{SST},$

where SST is the total sum of squares (SST),

$$SST = \sum_{i=1}^{N} \left[(y_i)_{\text{observed}} - \overline{y}_{\text{observed}} \right]^2,$$

Diagnostics: Asessing quality of fits



Are the residuals randomly distributed?

Tomorrow

Bootstrap.

Comparing parameters from two different fits - Hypothesis testing.