
Experimental data analysis
Lecture  2: Nonlinear regression

Dodo Das



Review of lecture 1

Likelihood of a model.

Likelihood maximization + Normal errors = Least squares 
regression 

Linear regression. Normal equations. 



Demo 1: Simple linear regression in MATLAB
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Demo II: Polynomial regression in MATLAB



Demo II: Polynomial regression in MATLAB



Nonlinear regression

The model is a nonlinear function of the parameters. 

We can still write down the likelihood as before.

But the maximum likelihood equations cannot be solved 
analytically. 



Iterative least-squared minimization

Choose an initial guess for the parameters. 

Evaluate SSR. 

Propose a move in parameter space.

If move reduces SSR, then update parameter values. 

Otherwise, propose a different move.



How to choose the move in parameter space?

Gradient descent: Far from a minima, it is best to find the 
gradient (i.e. direction of steepest descent), and move down 
the gradient of the SSR function.  

Gauss-Newton: Near a minima, construct a Taylor-series 
approximation of the function (to 2nd order) and determine 
the location of the minima. 



A compromise - Levenberg-Marquardt

Switches between Gradient descent when far from minima, 
and to Gauss-Newton when close to minima. 

Figure 3: Overview of fitting data to a model. A) Simulated dose-response data (solid circles) generated from a
Hill function (equation 1) using parameter values Emax = 0.8, LEC50 = −1.0, and n = 2, and with normally
distributed noise (with a standard deviation of 0.15) added to mimic experimental error. The best-fit curve (solid
line) is obtained from nonlinear least squares regression between the data and a Hill function (equation 1). See
Table 1 for the best-fit parameter estimates. Nonlinear data fitting algorithms work by finding the model parameters
that minimize the distance between the data and the curve. The distance is measured as the sum of squared residuals
(SSR), where the residuals are the distance between the data and the curve. B) Residuals between the best fit curve
and the data shown in panel A. C) Heat map of the SSR as a function of EC50 and Emax along with the path taken
by the SSR minimization algorithm terminating at the best-fit estimate (red line) which lies near the minimum of the
SSR landscape.

Figure 4: Bootstrap distribution and confidence intervals for the parameter estimates shown in Table 1 Missing
y-axix, add panel labels, add panel captions.
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Figure 5: Determining statistical differences between two curves using a Bonferroni corrected t-test. A) Two sim-
ulated dose-response curves (colored circles) are shown. We wish to determine if these two curves are statistically
different. To do this, we fit the standard three parameter Hill function to the curve (solid lines). We find excellent
fits with R2 = 0.89 (blue) and R2 = 0.95 (red). B-D) Estimates of Emax, EC50 and n are shown along with their
standard errors for the two curves. Based on the values and the standard error, we expect statistical differences in
EC50 but not in n and Emax. This is indeed reflected in the Bonferroni corrected t-test, see Table 3. Simulated dose-
response curves are generated by adding normally distributed noise (with σ = 0.15) to the standard three parameter
Hill function with Emax = 0.9, EC50 = 10−1.5, n = 1.0 (blue curve) and Emax = 1.0, EC50 = 10−0.5, n = 2.0 (red
curve).
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Practical considerations

Need to specify initial guess.

Can be trapped in local minima if initial guess is not good.

Try a number of random initial guesses, and pick the final 
result that has the lowest SSR. 

If computationally feasible, good to plot the SSR landscape 
over some reasonable parameter range. 



Other likelihood maximization schemes

Based on stochastic simulations: 

Markov chain Monte Carlo (MCMC)

Simulated annealing

Also, many other optimization techniques [Major branch of 
applied math].



An example of MCMC



Diagnostics: Asessing quality of fits

Visual assessment: Does the 
fit look reasonable?

Are the parameters 
estimates physically 
possible?

Quantify: R2

1. Visual inspection. As a first step, it is useful to examine the best fit curve overlaid on the experimental data to
ensure that indeed the fit closely approximates the data. As seen in Fig. 3a, the smooth best fit curve does
indeed qualitatively match the simulated dose response curve.

2. Randomness of residuals. The best fit curve represents the predicted value of the response variable. For a good
model, we expect the experimental data to be randomly distributed about the best fit curve. This implies that
the residuals should be randomly positive or negative. As an example, note how the residuals for the fit to
the dose response data (Fig. 3b, solid blue lines) are randomly distributed about the horizontal line through 0.
Systematic deviations from such randomness are the hallmark of a poor fit, and suggest the need for a better
model. For example, we also plot residuals between the data points and the average of observed responses
(Fig. 3b, solid red lines). Note how these residuals are distributed very differently, with mostly negative
values to the left of the midpoint, and mostly positive values to the right. Also note how the magnitudes of
these residuals are the greatest near the two ends, and smallest near the middle. These observations suggest
that a simple average of all the responses is not a sufficiently good descriptor for these data.

3. Coefficient of determination (R2). Beyond these qualitative features, a more objective measure of goodness-of-
fit is the coefficient of determination, R2. It is defined as,

R2 = 1− SSR/SST, (6)

where SST is the total sum of squares (SST),

SST =
N
∑

i=1

[

(yi)observed − ȳobserved
]2
, (7)

and ȳobserved is the average response. In words, SST is the sum of squared residuals between the data and a
horizontal line through the average of the data. It is a measure of the intrinsic variability in a set of observed
values. R2 measures the proportion of the variability that can be accounted for by the model. Generally, we
expect a model to be a better predictor of the data than simply the average value, i.e. we expect SSR < SST.
When this is the case, R2 > 0. If the model fits the data perfectly, SSR = 0, and R2 = 1. If a model is so
exceptionally poor that it is a worse predictor than the average value, then SSR > SST, and R2 < 0. For the
fit of simulated dose response data in Fig. 3a, R2 = 0.93, reinforcing our qualitative assessment that the fit is
of an overall good quality.

4. Parameter values. Finally, it is also important that the fitted parameter values are reasonable. Indications that the
model does not accurately capture the data include parameter estimates that are unreasonably low or high, or
have an opposite sign to what is expected. In certain data fitting programs, it is possible to impose constraints
on the parameters that restrict them to certain ranges (e.g.: when fitting dose response curves, we may specify
that EC50,Emax, n > 0).

2.5 Parameter confidence intervals (CIs)

We noted above that because of noise in the data, the parameter estimates recovered from the fitting procedure are
not identical to the ones used for simulating the data. This suggests that there is some uncertainty in our parameter
estimates, as seen in the standard errors of the best fit estimates in Table 1. What do these standard errors mean? Data
fitting algorithms assume that the random experimental noise at each data point is normally distributed. Therefore,
if the experiment were to be repeated many times, we would get somewhat different data, and different values of
best fit parameters each time. In other words, our parameter estimates also follow some probability distribution that
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Diagnostics: Asessing quality of fits

Are the residuals randomly distributed?

Figure 3: Overview of fitting data to a model. A) Simulated dose-response data (solid circles) generated from a
Hill function (equation 1) using parameter values Emax = 0.8, LEC50 = −1.0, and n = 2, and with normally
distributed noise (with a standard deviation of 0.15) added to mimic experimental error. The best-fit curve (solid
line) is obtained from nonlinear least squares regression between the data and a Hill function (equation 1). See
Table 1 for the best-fit parameter estimates. Nonlinear data fitting algorithms work by finding the model parameters
that minimize the distance between the data and the curve. The distance is measured as the sum of squared residuals
(SSR), where the residuals are the distance between the data and the curve. B) Residuals between the best fit curve
and the data shown in panel A. C) Heat map of the SSR as a function of EC50 and Emax along with the path taken
by the SSR minimization algorithm terminating at the best-fit estimate (red line) which lies near the minimum of the
SSR landscape.

Figure 4: Bootstrap distribution and confidence intervals for the parameter estimates shown in Table 1 Missing
y-axix, add panel labels, add panel captions.
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Figure 5: Determining statistical differences between two curves using a Bonferroni corrected t-test. A) Two sim-
ulated dose-response curves (colored circles) are shown. We wish to determine if these two curves are statistically
different. To do this, we fit the standard three parameter Hill function to the curve (solid lines). We find excellent
fits with R2 = 0.89 (blue) and R2 = 0.95 (red). B-D) Estimates of Emax, EC50 and n are shown along with their
standard errors for the two curves. Based on the values and the standard error, we expect statistical differences in
EC50 but not in n and Emax. This is indeed reflected in the Bonferroni corrected t-test, see Table 3. Simulated dose-
response curves are generated by adding normally distributed noise (with σ = 0.15) to the standard three parameter
Hill function with Emax = 0.9, EC50 = 10−1.5, n = 1.0 (blue curve) and Emax = 1.0, EC50 = 10−0.5, n = 2.0 (red
curve).
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Tomorrow

Parameter confidence intervals.

Bootstrap.

Comparing parameters from two different fits - Hypothesis 
testing.


