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Abstract. We consider the problem of extending the semistable reduction theorem of
[KKMS] from the case of one-parameter families of varieties to families over a base of
arbitrary dimension. Following [KKMS], semistable reduction of such families can be
reduced to a problem in the combinatorics of polyhedral complexes [AK]. In this paper we
solve it in the case when the relative dimension of the morphism is at most three, i.e., for
families of surfaces and threefolds.

1. Introduction

One of the milestones in algebraic geometry is the semistable reduction theorem proved
in [KKMS]:

Theorem 1.1[KKMS]. Let f : X → C be a flat morphism from a variety X onto a
nonsingular curve C, defined over an algebraically closed field k of characteristic zero.
Assume that0 ∈ C is a point and the restriction f: X\ f −1(0)→ C\{0} is smooth. Then
there exist a finite morphismπ : C′ → C, with π−1(0) = {0′}, and a proper birational
morphism(in fact, a blowup with center lying in the special fiber) p: X′ → X ×C C′,

X′
p→ X ×C C′ → X
↓ ↓
C′

π→ C

so that the induced morphism f′: X′ → C′ is semistable; i.e.,

(i) both X′ and C′ are nonsingular, and
(ii) the special fiber f′−1

(0′) is a reduced divisor with nonsingular components
crossing normally.
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To prove the theorem, Kempf et al. [KKMS] invented the theory of toroidal embed-
dings and reduced the geometric problem to the following purely combinatorial problem:

Theorem 1.2[KKMS]. Let P⊂ Rn be an n-dimensional polytope with vertices lying
in the integral pointsZn ⊂ Rn. Then there exists an integer M and a projective subdi-
vision{Pα}α of P such that every Pα has vertices in(1/M)Zn and the volume of Pα (in
the usual metric) is the minimal possible: vol(Pα) = 1/Mnn!.

Here a subdivision is called projective (or coherent) if it is defined by a continuous
piecewise linear convex function.

The main goal of [AK] was to extend the semistable reduction theorem to the case
where the base variety has arbitrary dimension. The problem can then be formulated as
follows:

Conjecture 1.3. Let f : X → B be a surjective morphism of projective varieties
with geometrically integral generic fiber, defined over an algebraically closed field of
characteristic zero. There exist a proper surjective generically finite morphism B′ → B
and a proper birational morphism X′ → X ×B B′ such that X′ → B′ is semistable;
i.e., for any closed point x′ ∈ X′ and b′ = f ′(x′) ∈ B′ one can find formal coordinates
x1, . . . , xn at x′ and t1, . . . , tm at b so that the morphism f is given by

ti =
l i∏

j=l i−1+1

xj

for some0= l0 < l1 < · · · < lm ≤ n.

Using the theory of toroidal embeddings, the geometric problem of semistable re-
duction can again be reduced to a combinatorial problem involving conical polyhedral
complexes. The aim of this paper is to solve the combinatorial problem for the case when
f has low relative dimension. First, we recall the definition of polyhedral complexes and
morphisms.

1.1. Polyhedral Complexes

We consider (rational, conical) polyhedral complexes1 = (|1|, ({σ, Nσ }) consisting
of a finite collection of latticesNσ ∼= Zn and rational full conesσ ⊂ Nσ ⊗ R with a
vertex. The conesσ are glued together to form the space|1| so that the usual axioms of
polyhedral complexes hold:

1. If σ ∈ 1 is a cone, then every faceσ ′ of σ is also in1, andNσ ′ = Nσ |Span(σ ′).
2. The intersection of two conesσ1 ∩ σ2 is a face of both of them.

A morphism f1: 1X → 1B of polyhedral complexes1X = (|1X|, {σ, Nσ }) and
1B = (|1B|, {τ, Nτ }) is a compatible collection of linear mapsfσ : (σ, Nσ )→ (τ, Nτ );
i.e., if σ ′ is a face ofσ , then fσ ′ is the restriction offσ . We only consider morphisms
f : 1X → 1B such thatf −1

σ (0) ∩ σ = {0} for all σ ∈ 1X.



Semistable Reduction in Characteristic Zero 113

Polyhedral complexes arise naturally in the theory of toroidal embeddings [KKMS].
They generalize the notion of fans of toric varieties. An open embedding of varieties
UX ⊂ X is said to be toroidal if it is locally formally isomorphic to a torus embedding
T ⊂ Xσ ; a morphism of toroidal embeddings is a morphism of varieties that locally
formally comes from a toric morphism. To a toroidal embedding one associates a poly-
hedral complex, and a morphism of toroidal embeddings gives rise to a morphism of
polyhedral complexes. The condition of semistability, when applied to a toroidal embed-
ding, translates into the following condition on the associated morphism of polyhedral
complexes.

Definition 1.4. A surjective morphismf1: 1X → 1B such that f −1(0) = {0} is
semistableif:

1. 1X and1B are nonsingular.
2. For any coneσ ∈ 1X, we havef (σ ) ∈ 1B and f (Nσ ) = Nf (σ ).

We say thatf is weakly semistableif it satisfies the two conditions except that1X may
be singular.

The following two operations are allowed on1X and1B:

1. Projective subdivisions1′X of1X and1′B of1B such thatf induces a morphism
f ′: 1′X → 1′B.

2. Lattice alterations: let1′X = (|1X|, {σ, N ′σ }),1′B = (|1B|, {τ, N ′τ }), for some
compatible collection of sublatticesN ′τ ⊂ Nτ , N ′σ = f −1(N ′τ ) ∩ Nσ , and let
f ′: 1′X → 1′B be the morphism induced byf .

Conjecture 1.5(Combinatorial Semistable Reduction).Given a surjective morphism
f : 1X → 1B, such that f−1(0) = {0}, there exists a projective subdivision f′: 1′X →
1′B followed by a lattice alteration f′′: 1′′X → 1′′B so that f′′ is semistable.

1X′′ → 1X′ → 1X

↓ f ′′ ↓ f ′ ↓ f

1B′′ → 1B′ → 1B

The importance of Conjecture 1.5 lies in the fact that it implies Conjecture 1.3 [AK].
Although we are concerned with the combinatorial version of semistable reduction in this
paper, we indicate briefly how the two conjectures are related. It is shown in [AK] that a
morphismf : X→ B as in Conjecture 1.3 can be modified to a toroidal morphism, and so
we get a morphism of polyhedral complexesf1: 1X → 1B. Then one checks that iff1 is
semistable according to Definition 1.4, thenf is semistable as defined in Conjecture 1.3.
It remains to show that the two combinatorial operations onf1: 1X → 1B have
geometric analogues forf : X→ B. Indeed, subdivisions of1X and1B correspond to
birational morphisms (see [KKMS]), and a lattice alteration corresponds to a finite base
change (see [AK]).

In the case when dim(1B) = 1, Conjecture 1.5 reduces to the combinatorial version
of the semistable reduction theorem proved in [KKMS]. In [AK] the conjecture was
proved with semistable replaced by weakly semistable. The main result of this paper is
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Theorem 1.6. Conjecture1.5 is true if f1 has relative dimension≤ 3. Hence, Con-
jecture1.3 is true if f has relative dimension≤ 3.

The relative dimension of a linear mapfσ : σ → τ of conesσ, τ is dim(σ ) −
dim( f (σ )). The relative dimension off1: 1X → 1B is by definition the maximum of
the relative dimensions offσ : σ → τ over allσ ∈ 1X. To see that the second statement of
the theorem follows from the first, consider a surjective morphism of affine toric varieties
f : Xσ → Xτ defined by a linear map of cones and latticesf1: (σ, Nσ ) → (τ, Nτ ).
A general fiber of this morphism has dimension equal to the rank of the kernel of
f1: Nσ → Nτ , and this is at least the relative dimension off1: σ → τ . Therefore,
if a toroidal morphismf : X → B has relative dimension≤ d, then the associated
morphism of polyhedral complexesf1: 1X → 1B also has relative dimension≤ d.

We remark that semistable reduction for families of curves over a base of an arbitrary
dimension was proved by de Jong [dJ]. Thus, the new result of Theorem 1.6 is semistable
reduction for families of surfaces and threefolds.

The rest of the paper is organized as follows. In Section 2 we use the construction of
[KKMS] to make f semistable over the edges of1B without increasing the multiplicity of
1X. In Section 3 we modify the barycentric subdivision of1X so that we get a morphism
to the barycentric subdivision of1B. It is shown in Section 4 that in certain situations we
can choose a modified barycentric subdivision that decreases the multiplicity of1X. The
conditions when this happens are then verified for relative dimension≤ 3 in Section 5.

2. Notation and Preliminaries

2.1. Notation

We use notation from [KKMS] and [F]. For a coneσ ∈ N⊗Rwe writeσ = 〈v1, . . . , vn〉
if the pointsv1, . . . , vn lie on the one-dimensional edges ofσ and generate the cone.
If vi are the first lattice points along the edges we call them primitive points ofσ . An
n-dimensional cone is simplicial if it has exactlyn primitive points. For a simplicial cone
σ with primitive pointsv1, . . . , vn, the multiplicity ofσ is

m(σ, Nσ ) = [Nσ : Zv1⊕ · · · ⊕ Zvn].

A polyhedral complex1 is nonsingular if and only ifm(σ, Nσ ) = 1 for all σ ∈ 1. To
compute the multiplicity ofσ we can count the representativesw ∈ Nσ of classes of
Nσ /Zv1⊕ . . .⊕ Zvn of the form

w =
∑

i

αi vi , 0≤ αi < 1.

The set of all such points is denoted byW(σ ). For conesσ1, σ2 ∈ 1 we writeσ1 ≤ σ2

if σ1 is a face ofσ2. Notice that ifσ1 ≤ σ2, then the multiplicity ofσ1 is at most the
multiplicity of σ2. Hence, to compute the multiplicity of a polyhedral complex1, it
suffices to consider maximal cones only.

Let f1: 1X → 1B be a morphism of polyhedral complexes, and assume that1B

is simplicial. Letu1, . . . ,um be the primitive points of1B, and let M1, . . . ,Mm be
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positive integers. By taking the(M1, . . . ,Mm)-sublattice atu1, . . . ,um we mean the
lattice alterationN ′τ = Z{mi1ui1, . . . ,mil uil } for all conesτ ∈ 1B with primitive points
ui1, . . . ,uil .

A subdivision1′ of 1 is called projective if there exists a homogeneous continuous
piecewise linear functionψ : |1| → R, convex on each coneσ ∈ 1, and taking rational
values on the lattice pointsNσ such that the maximal cones of1′ are exactly the maximal
pieces in whichψ is linear.

2.2. Applying the Result of[KKMS]

Let σ1 ⊂ Rn1 andσ2 ⊂ Rn2 be two cones. We considerσ1 × σ2 as a cone inRn1+n2. If
{σ1,α}α is a subdivision ofσ1, and{σ2,β}β is a subdivision ofσ2, then{σ1,α × σ2,β}α,β
gives us a subdivision ofσ1× σ2.

If 1X and1B are simplicial, we say thatf : 1X → 1B is simplicial if f (σ ) ∈ 1B for
all σ ∈ 1X. Assume thatf1: 1X → 1B is a simplicial map of simplicial complexes. Let
ui , i = 1, . . . ,m, be the primitive points of1B, and letvi j , i = 1, . . . ,m, j = 1, . . . , Ji ,
be the primitive points of1X such thatvi j is mapped to an integer multiple ofui . For each
i = 1, . . . ,m we denote by1X,i the subcomplex of1X lying over the cone〈ui 〉 of1B:

1X,i = f −1
1 (〈ui 〉).

Note that if we forget the lattices of1X, then by the assumption thatf −1
1 (0) = {0} we

get that1X = 1X,1× · · · ×1X,m. If 1′X,i are subdivisions of1X,i , we get a subdivison
1′X of 1X by taking the product

1′X = 1′X,1× · · · ×1′X,m.

Lemma 2.1. If 1′X,i are projective subdivisions of1X,i , then1′X is a projective sub-
division of1X.

Proof. Let ψi be a convex piecewise linear function defining the subdivison|1′X,i |.
Extendψi linearly to the entire|1X| by settingψi (|1X, j |) = 0 for j 6= i . Clearly,
ψ =∑i ψi is a convex piecewise linear function defining the subdivision1′X.

Consider the restrictionf1|1X,i : 1X,i → R+ui . By the Main Theorem of Chapter 2
in [KKMS] there exist a subdivision1′X,i of 1X,i and a positive integerMi such that
after taking theMi -sublattice atui the induced morphismf ′1|1′X,i is semistable. We let
1′X be the product of the subdivisions1′X,i , and we take the(M1, . . . ,Mm)-sublattice
at (u1, . . . ,un). Then f ′1: 1′X → 1′B is a simplicial map andf ′1|1′X,i is semistable for
all i .

Lemma 2.2. The multiplicity of1′X is not greater than the multiplicity of1X.

Proof. Let σ ∈ 1X have primitive pointsvi j and letσ ′ ⊂ σ be a maximal cone in the
subdivision with primitive pointsv′i j . The multiplicity ofσ ′ is the number of points in
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W(σ ′). We show thatW(σ ′) can be mapped injectively toW(σ ), hence the multiplicity
of σ ′ is not greater than the multiplicity ofσ .

If w′ ∈ W(σ ′), we write

w′ =
∑
i, j

(βi j + bi j )vi j , 0≤ βi j < 1, bi j ∈ Z+.

Thenw = ∑
i j βi j vi j ∈ Nσ is in W(σ ). If two pointsw′1, w

′
2 ∈ W(σ ′) give the same

w, then their differencew′1−w′2 is an integral linear combination ofvi j . However, then
w′1−w′2 is also an integral linear combination ofv′i j becauseZ{v′i j }i, j = Z{vi j }i, j ∩Nσ ′ .
Hencew′1− w′2 = 0.

3. Modified Barycentric Subdivisions

Let f1: 1X → 1B be a simplicial morphism. Consider the barycentric subdivision
BS(1B) of 1B. The one-dimensional cones ofBS(1B) are of the formR+τ̂ where
τ̂ =∑ui is the barycenter of a coneτ ∈ 1B with primitive pointsu1, . . . ,um. A cone
τ ′ ∈ BS(1B) is spanned bŷτ1, . . . , τ̂k, whereτ1 ≤ τ2 ≤ · · · ≤ τk is a chain of cones in
1B.

In general, f1 does not induce a morphismBS(1X) → BS(1B). For example, if
σ = 〈v11, v12, v21〉, τ = 〈u1,u2〉, and f1: vi j 7→ ui , then f1 does not induce a morphism
of barycentric subdivisions. To get a morphism we need to modify the barycentersσ̂ of
conesσ ∈ 1X so that they map to (multiples of) barycenters of1B.

Definition 3.1. The data ofmodified barycentersconsists of:

1. A subset of cones̃1X ⊂ 1X.
2. For each coneσ ∈ 1̃X a lattice pointbσ ∈ int(σ ) ∩ Nσ such thatf1(bσ ) ∈ R+τ̂

for someτ ∈ 1B.

Recall that for any total order≺ on the set of cones in1X refining the partial order≤,
the barycentric subdivisionBS(1X) can be realized as a sequence of star subdivisions
at the barycenterŝσ for all conesσ ∈ 1X in the descending order≺.

Definition 3.2. Given modified barycenters(1̃X, {bσ }) and a total order≺ on 1X

refining the partial order≤, themodified barycentric subdivision MBS1̃X ,{bσ },≺(1X)

is the sequence of star subdivisions atbσ for all σ ∈ 1̃X in the descending order≺.

Example 3.3. Let f1: 〈v11, v12, v21〉 → 〈u1,u2〉 be the morphism defined by
f1: vi j 7→ ui . Let 1̃X consist of the two cones̃1X = {〈v11, v21〉, 〈v12, v21〉}, and
let the modified barycenters be{bσ } = {v11 + v21, v12 + v21}. Depending on whether
〈v11, v21〉 ≺ 〈v12, v21〉 or vice versa, we get two modified barycentric subdivisions as
shown in Fig. 1.

To simplify notation, we writeMBS1̃X
(1X) or simply MBS(1X) instead of

MBS1̃X ,{bσ },≺(1X). By definition, MBS(1X) is a projective simplicial subdivision of
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Fig. 1. Two modified barycentric subdivisions from Example 3.3

1X. Next, we show that, as in the case of the ordinary barycentric subdivision, the cones
of MBS(1X) can be characterized by chains of cones in1X. We may assume that the
zero- and one-dimensional cones of1X are all in1̃X, and they precede all other cones
in the order≺. For a coneσ ∈ 1X let σ̃ be the maximal face ofσ (with respect to≺) in
1̃X. Given a chain of conesσ1 ≤ · · · ≤ σk in 1X, the cone〈bσ̃1, . . . ,bσ̃k〉 is a subcone
of σk. Let C(1X) be the set of all such cones corresponding to chainsσ1 ≤ · · · ≤ σk

in 1X.

Proposition 3.4. C(1X) = MBS(1X).

Proof. We do induction on the number of cones in1̃X of dimension at least 2. If̃1X

contains only zero- or one-dimensional cones, then the statement is trivial. So, assume
that1̃X = 1̃X,0∪{σ0}, whereσ ≺ σ0 for anyσ ∈ 1̃X,0, and assume that the proposition
is proved for1̃X,0.

Without loss of generality we may assume that1X consists of cones containingσ0

and their faces only. We getMBS1̃X
(1X) from1X if we first subdivide atbσ0 and then at

bσ for σ ∈ 1̃X,0 in the descending order≺. If 1X,0 is the subcomplex of1X consisting
of conesnotcontainingσ0, then the star subdivision of1X atbσ0 is1X,0× 〈bσ0〉. Since
σ0 is greater than anyσ ∈ 1̃X,0 with respect to≺, all bσ ∈ 1X,0, and we see that

MBS1̃X
(1X) = MBS1̃X,0

(1X,0)× 〈bσ0〉.
A cone inMBS1̃X,0

(1X,0)× 〈bσ0〉 is of the formσ × ρ, whereρ is a face of〈bσ0〉, i.e.
either{0} or 〈bσ0〉 itself, and whereσ is a cone inMBS1̃X,0

(1X,0). Applying induction
hypothesis toMBS1̃X,0

(1X,0), we get thatσ = 〈bσ̃1, . . . ,bσ̃l 〉 for a chain of conesσ1 ≤
· · · ≤ σl in 1X,0. Now if ρ = {0}, thenσ × ρ = 〈bσ̃1, . . . ,bσ̃l 〉 ∈ C(1X). If ρ = 〈bσ0〉,
we letσl+1 be a cone in1X that contains bothσl andσ0. Thenσ̃l+1 = σ0, andσ × ρ =
〈bσ̃1, . . . ,bσ̃l ,bσ̃l+1〉 ∈ C(1X).

Conversely, let〈bσ̃1, . . . ,bσ̃l 〉 be a cone inC(1X) for some chainσ1 ≤ · · · ≤ σl in
1X. Then for somek ≤ l we have that̃σ1, . . . , σ̃k ∈ 1̃X,0, andσ̃k+1 = · · · = σ̃l = σ0.
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By induction hypothesis, the cone〈bσ̃1, . . . ,bσ̃k〉 coming from the chainσ1 ≤ · · · ≤ σk

in1X,0 is in MBS1̃X,0
(1X,0). Hence the cone〈bσ̃1, . . . ,bσ̃l 〉 is of the formσ × ρ, where

σ = 〈bσ̃1, . . . ,bσ̃k〉 ∈ MBS1̃X,0
(1X,0), andρ = 〈bσ0〉 if k < l , andρ = {0} if k = l .

Corollary 3.5. Assume that f1: 1X → 1B is a simplicial morphism. If f1(σ̃ ) =
f1(σ) for all σ ∈ 1X, then f1 induces a simplicial morphism f′1: MBS(1X) →
BS(1B).

Proof. Let σ ′ ∈ MBS(1X) correspond to a chainσ1 ≤ · · · ≤ σk in 1X. Since f1 is
simplicial, we have a chain of conesf1(σ1) ≤ · · · ≤ f1(σk) in 1B. Recall thatbσ̃i is
mapped to a multiple of a barycenter:f1(bσ̃i ) = R+τ̂ for someτ ∈ 1B. The assumption

that f1(σ̃i ) = f1(σi ) implies that f1(bσ̃i ) ∈ R+ f̂1(σi ), hence the cone〈bσ̃1, . . . ,bσ̃k〉
is mapped onto the cone〈 f̂1(σ1), . . . , f̂1(σk)〉 ∈ BS(1B).

Example 3.6. Assume thatf1: 1X → 1B is a simplicial morphism taking primitive
points of1X to primitive points of1B. Then for a coneσ ∈ 1X such thatf1: σ

'→ τ

for someτ ∈ 1B, we havef1(σ̂ ) = τ̂ .
Let1X = {σ ∈ 1X: f1|σ is injective}, bσ = σ̂ . Clearly, the hypothesis of the lemma

is satisfied, and we have a simplicial morphismf ′1: MBS
1X
(1X)→ BS(1B).

Conversely, if(1̃X, {bσ }) is the data of modified barycenters such thatf1 induces a
morphism f ′1: MBS1̃X

(1X)→ BS(1B), then1X ⊂ 1̃X. Thus, we may always assume

that1X ⊂ 1̃X.

4. Reducing the Multiplicity of 1X

Proposition 4.1. Let f1: 1X → 1B be a simplicial morphism taking primitive points
to primitive points. Assume that1B is nonsingular, 1X is singular, and every singular
coneσ ∈ 1X contains a pointw ∈ W(σ )\{0} mapping to a barycenter in1B. Then
there exists a modified barycentric subdivision MBS(1X) of 1X having multiplicity
strictly less than the multiplicity of1X such that f1 induces a simplicial morphism
f ′1: MBS(1X)→ BS(1B).

Proof. For every singular coneσ ∈ 1X we choose a pointwσ as follows. By assump-
tion, there exists a pointw ∈ W(σ )\{0} mapping to a barycenter of1B: f1(w) = τ̂ .
Then for a unique coneτ0 ∈ 1B we have f1(σ) = τ × τ0. We choose a faceσ0 ≤ σ
such thatf1: σ0

'→ τ0. Setwσ = w + σ̂0; then

f1(wσ ) = f1(w)+ f1(σ̂0) = τ̂ + τ̂0 = f̂1(σ).

Having chosen the set{wσ }, we may remove some of the pointswσ if necessary so that
every simplexρ ∈ 1X contains at most onewσ in its interior. With1X as in Example 3.6,
let 1̃X = 1X ∪ {ρ ∈ 1X|wσ ∈ int (ρ) for some singularσ }, bρ = ρ̂ if ρ ∈ 1X, and
bρ = wσ if wσ ∈ int(ρ).
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Next we specify the order≺. We refine the partial order≤ as follows: for two faces
σ1 andσ2 of a coneσ ∈ 1X we setσ1 ≺0 σ2 if dim f1(σ1) < dim f1(σ2). Since
1X ⊂ 1̃X, this ensures that the conditionf1(σ̃ ) = f1(σ) of Corollary 3.5 is satisfied
for any refinement of≺0. Now if σ is singular, then the pointwσ constructed above lies
in the interior of a faceρσ such thatf1(ρσ ) = f1(σ). We further refine the order≺0

by settingσ1 ≺0 ρσ for any faceσ1 of the singular coneσ . Thenσ̃ = ρσ wheneverσ is
singular. Finally we let≺ be any refinement of≺0 to a total order.

Letσ ∈ 1X be a cone, and let a maximal coneσ ′ ∈ MBS(1X) be given by a maximal
chain of faces ofσ : σ1 ≤ · · · ≤ σn. We have to show thatm(σ ′, Nσ ′) ≤ m(σ, Nσ ), and
if σ is singular, then the inequality is strict.

We can order the primitive pointsv1, . . . , vn ofσ so thatσ1 = 〈v1〉, σ2 = 〈v1, v2〉, . . . ,
σn = 〈v1, . . . , vn〉. Sincebσ̃i ∈ σi , the primitive points ofσ ′ = 〈bσ̃1, . . . ,bσ̃n〉 can be
written as

v′1 = 1

µ1
bσ̃1 = a11v1,

v′2 = 1

µ2
bσ̃2 = a21v1 + a22v2,

· · ·
v′n = 1

µn
bσ̃n = an1v1 + · · · + annvn

for someai j ≥ 0 and integersµi ≥ 1. The multiplicity ofσ ′ is a11 · a22 · · ·ann times the
multiplicity of σ . By the choice ofbρ above, allaii ≤ 1, hencem(σ ′, Nσ ′) ≤ m(σ, Nσ ).
If σ is singular, leti be the smallest index such that the faceσi is singular. Then, with
notation as above,bσ̃i = w+ σ̂0 for somew ∈ W(σi )\{0}, andσ0 ≤ σi . Now if aii = 1,
thenw ∈ 〈v1, . . . , vi−1〉, and this gives a contradiction with the choice ofi . Hence
aii < 1 andm(σ ′, Nσ ′) < m(σ, Nσ ).

5. Families of Surfaces and Threefolds

Proof of Theorem1.6. Let f1: 1X → 1B be a surjective morphism of polyhedral
complexes such thatf −1

1 (0) = {0}. It is shown in [AK] that there exist projective
simplicial subdivisions1′X of 1X and1′B of 1B such that1B is nonsingular andf1
induces a simplicial morphismf ′1: 1′X → 1′B. To obtain these subdivisions, one first
subdivides1B such that the image of every cone in1X is a union of cones in1′B. The
convex piecewise linear function defining the subdivision1′B can then be composed
with f1 to give a subdivision of1X. A sequence of star subdivisions centered at the one-
dimensional edges yields the required simplicial subdivision1′X. Thus, we may assume
that1X is simplicial,1B is nonsingular, andf1: 1X → 1B is a simplicial map.

Applying the construction of [KKMS] over the edges of1B (Section 2.2), we can
make f1|1X,i semistable without increasing the multiplicity of1X. We show below that
every singular simplexσ ∈ 1X contains a pointw ∈ W(σ )\{0}mapping to a barycenter
of 1B. By Proposition 4.1, there exists a modified barycentric subdivision such that
f1 induces a simplicial morphismf ′1: MBS(1X) → BS(1B), with multiplicity of
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MBS(1X) strictly less than the multiplicity of1X. Since f ′1 is simplicial andBS(1B)

nonsingular, the proof is completed by induction on the multiplicity of1X.
Consider the restriction off1 to a singular simplexf1: σ → τ , whereτ has prim-

itive pointsu1, . . . ,um, σ has primitive pointsvi j , i = 1, . . . ,m, j = 1, . . . , Ji , and
f1(vi j ) = ui . Sinceσ is singular, it contains a pointw ∈ W(σ )\{0}:

w =
∑
i, j

αi j vi j , 0≤ αi j < 1,
∑

αi j > 0.

Considering a face ofσ if necessary, we may assume thatw lies in the interior ofσ ,
hence 0< αi j . Since f1(w) ∈ Nτ , it follows that

∑
j αi j ∈ Z for all i . In particular, if

Ji0 = 1 for somei0, thenαi01 = 0, andw lies in a face ofσ . So we may assume that
Ji > 1 for all i . Since the relative dimension off1 is

∑
i (Ji − 1), we have to consider

all possible decompositions
∑

i (Ji − 1) ≤ 3, whereJi > 1 for all i .
The cases when the relative dimension off1 is 0 or 1 are trivial and left to the reader.
If the relative dimension off1 is 2, then eitherJ1 = 3 or J1 = J2 = 2. In the first

case we have that〈v11, v12, v13〉 is singular, contradicting the semistability off1|1X,1.
In the second case,α11+ α12, α21+ α22 ∈ Z and 0< αi j < 1 imply thatα11+ α12 =
α21+ α22 = 1. Hencef1(w) = u1+ u2 is a barycenter.

In relative dimension 3, eitherJ1 = 4, or J1 = 3, J2 = 2, or J1 = J2 = J3 = 2.
In the first case we get a contradiction with the semistability off1|1X,1; the third case
givesα11 + α12 = α21 + α22 = α31 + α32 = 1 as for relative dimension 2. In the
second case, eitherα11+ α12+ α13 = α21+ α22 = 1 andw maps to a barycenter, or
α11+ α12+ α13 = 2, α21+ α22 = 1 and(

∑
vi j )− w maps to a barycenter.

Example 5.1. We show by an example that the previous construction of modified
barycentric subdivisions does not work in relative dimension≥ 4. Letτ = 〈u1,u2〉 and
σ = 〈v11, v12, v13, v14, v21, v22〉, with latticesNτ = Z{u1,u2}andNσ = Z{v11, . . . , v22,
1
2(v11+ · · · + v22)}. ThenW(σ )\{0} consists of a single pointw = 1

2(v11+ · · · + v22),
and if f1 mapsvi j to ui , thenw is mapped to 2u1+ u2, which is not a barycenter.
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