Semistable Reduction in Characteristic Zero for Families of Surfaces and Threefolds

K. Karu

Department of Mathematics, Boston University, 111 Cummington, Boston, MA 02215, USA
kllkr@math.bu.edu

Abstract

We consider the problem of extending the semistable reduction theorem of [KKMS] from the case of one-parameter families of varieties to families over a base of arbitrary dimension. Following [KKMS], semistable reduction of such families can be reduced to a problem in the combinatorics of polyhedral complexes [AK]. In this paper we solve it in the case when the relative dimension of the morphism is at most three, i.e., for families of surfaces and threefolds.

1. Introduction

One of the milestones in algebraic geometry is the semistable reduction theorem proved in [KKMS]:

Theorem 1.1 [KKMS]. Let $f: X \rightarrow C$ be a flat morphism from a variety X onto a nonsingular curve C, defined over an algebraically closed field k of characteristic zero. Assume that $0 \in C$ is a point and the restriction $f: X \backslash f^{-1}(0) \rightarrow C \backslash\{0\}$ is smooth. Then there exist a finite morphism $\pi: C^{\prime} \rightarrow C$, with $\pi^{-1}(0)=\left\{0^{\prime}\right\}$, and a proper birational morphism (in fact, a blowup with center lying in the special fiber) $p: X^{\prime} \rightarrow X \times{ }_{C} C^{\prime}$,

$$
\begin{array}{rlll}
X^{\prime} \xrightarrow{p} & X \times \times_{C} C^{\prime} & \rightarrow & X \\
& \downarrow & & \downarrow \\
& C^{\prime} & & \rightarrow \\
& & C
\end{array}
$$

so that the induced morphism $f^{\prime}: X^{\prime} \rightarrow C^{\prime}$ is semistable; i.e.,
(i) both X^{\prime} and C^{\prime} are nonsingular, and
(ii) the special fiber $f^{\prime-1}\left(0^{\prime}\right)$ is a reduced divisor with nonsingular components crossing normally.

To prove the theorem, Kempf et al. [KKMS] invented the theory of toroidal embeddings and reduced the geometric problem to the following purely combinatorial problem:

Theorem $1.2[\mathrm{KKMS}] . \quad$ Let $P \subset \mathbb{R}^{n}$ be an n-dimensional polytope with vertices lying in the integral points $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$. Then there exists an integer M and a projective subdivision $\left\{P_{\alpha}\right\}_{\alpha}$ of P such that every P_{α} has vertices in $(1 / M) \mathbb{Z}^{n}$ and the volume of P_{α} (in the usual metric) is the minimal possible: $\operatorname{vol}\left(P_{\alpha}\right)=1 / M^{n} n!$.

Here a subdivision is called projective (or coherent) if it is defined by a continuous piecewise linear convex function.

The main goal of [AK] was to extend the semistable reduction theorem to the case where the base variety has arbitrary dimension. The problem can then be formulated as follows:

Conjecture 1.3. Let $f: X \rightarrow B$ be a surjective morphism of projective varieties with geometrically integral generic fiber, defined over an algebraically closed field of characteristic zero. There exist a proper surjective generically finite morphism $B^{\prime} \rightarrow B$ and a proper birational morphism $X^{\prime} \rightarrow X \times_{B} B^{\prime}$ such that $X^{\prime} \rightarrow B^{\prime}$ is semistable; i.e., for any closed point $x^{\prime} \in X^{\prime}$ and $b^{\prime}=f^{\prime}\left(x^{\prime}\right) \in B^{\prime}$ one can find formal coordinates x_{1}, \ldots, x_{n} at x^{\prime} and t_{1}, \ldots, t_{m} at b so that the morphism f is given by

$$
t_{i}=\prod_{j=l_{i-1}+1}^{l_{i}} x_{j}
$$

for some $0=l_{0}<l_{1}<\cdots<l_{m} \leq n$.
Using the theory of toroidal embeddings, the geometric problem of semistable reduction can again be reduced to a combinatorial problem involving conical polyhedral complexes. The aim of this paper is to solve the combinatorial problem for the case when f has low relative dimension. First, we recall the definition of polyhedral complexes and morphisms.

1.1. Polyhedral Complexes

We consider (rational, conical) polyhedral complexes $\Delta=\left(|\Delta|,\left(\left\{\sigma, N_{\sigma}\right\}\right)\right.$ consisting of a finite collection of lattices $N_{\sigma} \cong \mathbb{Z}^{n}$ and rational full cones $\sigma \subset N_{\sigma} \otimes \mathbb{R}$ with a vertex. The cones σ are glued together to form the space $|\Delta|$ so that the usual axioms of polyhedral complexes hold:

1. If $\sigma \in \Delta$ is a cone, then every face σ^{\prime} of σ is also in Δ, and $N_{\sigma^{\prime}}=\left.N_{\sigma}\right|_{\operatorname{Span}\left(\sigma^{\prime}\right)}$.
2. The intersection of two cones $\sigma_{1} \cap \sigma_{2}$ is a face of both of them.

A morphism $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ of polyhedral complexes $\Delta_{X}=\left(\left|\Delta_{X}\right|,\left\{\sigma, N_{\sigma}\right\}\right)$ and $\Delta_{B}=\left(\left|\Delta_{B}\right|,\left\{\tau, N_{\tau}\right\}\right)$ is a compatible collection of linear maps $f_{\sigma}:\left(\sigma, N_{\sigma}\right) \rightarrow\left(\tau, N_{\tau}\right) ;$ i.e., if σ^{\prime} is a face of σ, then $f_{\sigma^{\prime}}$ is the restriction of f_{σ}. We only consider morphisms $f: \Delta_{X} \rightarrow \Delta_{B}$ such that $f_{\sigma}^{-1}(0) \cap \sigma=\{0\}$ for all $\sigma \in \Delta_{X}$.

Polyhedral complexes arise naturally in the theory of toroidal embeddings [KKMS]. They generalize the notion of fans of toric varieties. An open embedding of varieties $U_{X} \subset X$ is said to be toroidal if it is locally formally isomorphic to a torus embedding $T \subset X_{\sigma}$; a morphism of toroidal embeddings is a morphism of varieties that locally formally comes from a toric morphism. To a toroidal embedding one associates a polyhedral complex, and a morphism of toroidal embeddings gives rise to a morphism of polyhedral complexes. The condition of semistability, when applied to a toroidal embedding, translates into the following condition on the associated morphism of polyhedral complexes.

Definition 1.4. A surjective morphism $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ such that $f^{-1}(0)=\{0\}$ is semistable if:

1. Δ_{X} and Δ_{B} are nonsingular.
2. For any cone $\sigma \in \Delta_{X}$, we have $f(\sigma) \in \Delta_{B}$ and $f\left(N_{\sigma}\right)=N_{f(\sigma)}$.

We say that f is weakly semistable if it satisfies the two conditions except that Δ_{X} may be singular.

The following two operations are allowed on Δ_{X} and Δ_{B} :

1. Projective subdivisions Δ_{X}^{\prime} of Δ_{X} and Δ_{B}^{\prime} of Δ_{B} such that f induces a morphism $f^{\prime}: \Delta_{X}^{\prime} \rightarrow \Delta_{B}^{\prime}$.
2. Lattice alterations: let $\Delta_{X}^{\prime}=\left(\left|\Delta_{X}\right|,\left\{\sigma, N_{\sigma}^{\prime}\right\}\right), \Delta_{B}^{\prime}=\left(\left|\Delta_{B}\right|,\left\{\tau, N_{\tau}^{\prime}\right\}\right)$, for some compatible collection of sublattices $N_{\tau}^{\prime} \subset N_{\tau}, N_{\sigma}^{\prime}=f^{-1}\left(N_{\tau}^{\prime}\right) \cap N_{\sigma}$, and let $f^{\prime}: \Delta_{X}^{\prime} \rightarrow \Delta_{B}^{\prime}$ be the morphism induced by f.

Conjecture 1.5 (Combinatorial Semistable Reduction). Given a surjective morphism $f: \Delta_{X} \rightarrow \Delta_{B}$, such that $f^{-1}(0)=\{0\}$, there exists a projective subdivision $f^{\prime}: \Delta_{X}^{\prime} \rightarrow$ Δ_{B}^{\prime} followed by a lattice alteration $f^{\prime \prime}: \Delta_{X}^{\prime \prime} \rightarrow \Delta_{B}^{\prime \prime}$ so that $f^{\prime \prime}$ is semistable.

$$
\begin{array}{lllll}
\Delta_{X^{\prime \prime}} & \rightarrow & \Delta_{X^{\prime}} & \rightarrow & \Delta_{X} \\
\downarrow f^{\prime \prime} & & \downarrow f^{\prime} & & \downarrow f \\
\Delta_{B^{\prime \prime}} & \rightarrow & \Delta_{B^{\prime}} & \rightarrow & \Delta_{B}
\end{array}
$$

The importance of Conjecture 1.5 lies in the fact that it implies Conjecture 1.3 [AK]. Although we are concerned with the combinatorial version of semistable reduction in this paper, we indicate briefly how the two conjectures are related. It is shown in [AK] that a morphism $f: X \rightarrow B$ as in Conjecture 1.3 can be modified to a toroidal morphism, and so we get a morphism of polyhedral complexes $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$. Then one checks that if f_{Δ} is semistable according to Definition 1.4, then f is semistable as defined in Conjecture 1.3. It remains to show that the two combinatorial operations on $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ have geometric analogues for $f: X \rightarrow B$. Indeed, subdivisions of Δ_{X} and Δ_{B} correspond to birational morphisms (see [KKMS]), and a lattice alteration corresponds to a finite base change (see [AK]).

In the case when $\operatorname{dim}\left(\Delta_{B}\right)=1$, Conjecture 1.5 reduces to the combinatorial version of the semistable reduction theorem proved in [KKMS]. In [AK] the conjecture was proved with semistable replaced by weakly semistable. The main result of this paper is

Theorem 1.6. Conjecture 1.5 is true if f_{Δ} has relative dimension ≤ 3. Hence, Conjecture 1.3 is true if f has relative dimension ≤ 3.

The relative dimension of a linear map $f_{\sigma}: \sigma \rightarrow \tau$ of cones σ, τ is $\operatorname{dim}(\sigma)-$ $\operatorname{dim}(f(\sigma))$. The relative dimension of $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ is by definition the maximum of the relative dimensions of $f_{\sigma}: \sigma \rightarrow \tau$ over all $\sigma \in \Delta_{X}$. To see that the second statement of the theorem follows from the first, consider a surjective morphism of affine toric varieties $f: X_{\sigma} \rightarrow X_{\tau}$ defined by a linear map of cones and lattices $f_{\Delta}:\left(\sigma, N_{\sigma}\right) \rightarrow\left(\tau, N_{\tau}\right)$. A general fiber of this morphism has dimension equal to the rank of the kernel of $f_{\Delta}: N_{\sigma} \rightarrow N_{\tau}$, and this is at least the relative dimension of $f_{\Delta}: \sigma \rightarrow \tau$. Therefore, if a toroidal morphism $f: X \rightarrow B$ has relative dimension $\leq d$, then the associated morphism of polyhedral complexes $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ also has relative dimension $\leq d$.

We remark that semistable reduction for families of curves over a base of an arbitrary dimension was proved by de Jong [dJ]. Thus, the new result of Theorem 1.6 is semistable reduction for families of surfaces and threefolds.

The rest of the paper is organized as follows. In Section 2 we use the construction of [KKMS] to make f semistable over the edges of Δ_{B} without increasing the multiplicity of Δ_{X}. In Section 3 we modify the barycentric subdivision of Δ_{X} so that we get a morphism to the barycentric subdivision of Δ_{B}. It is shown in Section 4 that in certain situations we can choose a modified barycentric subdivision that decreases the multiplicity of Δ_{X}. The conditions when this happens are then verified for relative dimension ≤ 3 in Section 5 .

2. Notation and Preliminaries

2.1. Notation

We use notation from [KKMS] and [F]. For a cone $\sigma \in N \otimes \mathbb{R}$ we write $\sigma=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ if the points v_{1}, \ldots, v_{n} lie on the one-dimensional edges of σ and generate the cone. If v_{i} are the first lattice points along the edges we call them primitive points of σ. An n-dimensional cone is simplicial if it has exactly n primitive points. For a simplicial cone σ with primitive points v_{1}, \ldots, v_{n}, the multiplicity of σ is

$$
m\left(\sigma, N_{\sigma}\right)=\left[N_{\sigma}: \mathbb{Z} v_{1} \oplus \cdots \oplus \mathbb{Z} v_{n}\right]
$$

A polyhedral complex Δ is nonsingular if and only if $m\left(\sigma, N_{\sigma}\right)=1$ for all $\sigma \in \Delta$. To compute the multiplicity of σ we can count the representatives $w \in N_{\sigma}$ of classes of $N_{\sigma} / \mathbb{Z} v_{1} \oplus \ldots \oplus \mathbb{Z} v_{n}$ of the form

$$
w=\sum_{i} \alpha_{i} v_{i}, \quad 0 \leq \alpha_{i}<1
$$

The set of all such points is denoted by $W(\sigma)$. For cones $\sigma_{1}, \sigma_{2} \in \Delta$ we write $\sigma_{1} \leq \sigma_{2}$ if σ_{1} is a face of σ_{2}. Notice that if $\sigma_{1} \leq \sigma_{2}$, then the multiplicity of σ_{1} is at most the multiplicity of σ_{2}. Hence, to compute the multiplicity of a polyhedral complex Δ, it suffices to consider maximal cones only.

Let $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ be a morphism of polyhedral complexes, and assume that Δ_{B} is simplicial. Let u_{1}, \ldots, u_{m} be the primitive points of Δ_{B}, and let M_{1}, \ldots, M_{m} be
positive integers. By taking the $\left(M_{1}, \ldots, M_{m}\right)$-sublattice at u_{1}, \ldots, u_{m} we mean the lattice alteration $N_{\tau}^{\prime}=\mathbb{Z}\left\{m_{i_{1}} u_{i_{1}}, \ldots, m_{i_{l}} u_{i_{l}}\right\}$ for all cones $\tau \in \Delta_{B}$ with primitive points $u_{i_{1}}, \ldots, u_{i_{l}}$.

A subdivision Δ^{\prime} of Δ is called projective if there exists a homogeneous continuous piecewise linear function $\psi:|\Delta| \rightarrow \mathbb{R}$, convex on each cone $\sigma \in \Delta$, and taking rational values on the lattice points N_{σ} such that the maximal cones of Δ^{\prime} are exactly the maximal pieces in which ψ is linear.

2.2. Applying the Result of $[K K M S]$

Let $\sigma_{1} \subset \mathbb{R}^{n_{1}}$ and $\sigma_{2} \subset \mathbb{R}^{n_{2}}$ be two cones. We consider $\sigma_{1} \times \sigma_{2}$ as a cone in $\mathbb{R}^{n_{1}+n_{2}}$. If $\left\{\sigma_{1, \alpha}\right\}_{\alpha}$ is a subdivision of σ_{1}, and $\left\{\sigma_{2, \beta}\right\}_{\beta}$ is a subdivision of σ_{2}, then $\left\{\sigma_{1, \alpha} \times \sigma_{2, \beta}\right\}_{\alpha, \beta}$ gives us a subdivision of $\sigma_{1} \times \sigma_{2}$.

If Δ_{X} and Δ_{B} are simplicial, we say that $f: \Delta_{X} \rightarrow \Delta_{B}$ is simplicial if $f(\sigma) \in \Delta_{B}$ for all $\sigma \in \Delta_{X}$. Assume that $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ is a simplicial map of simplicial complexes. Let $u_{i}, i=1, \ldots, m$, be the primitive points of Δ_{B}, and let $v_{i j}, i=1, \ldots, m, j=1, \ldots, J_{i}$, be the primitive points of Δ_{X} such that $v_{i j}$ is mapped to an integer multiple of u_{i}. For each $i=1, \ldots, m$ we denote by $\Delta_{X, i}$ the subcomplex of Δ_{X} lying over the cone $\left\langle u_{i}\right\rangle$ of Δ_{B} :

$$
\Delta_{X, i}=f_{\Delta}^{-1}\left(\left\langle u_{i}\right\rangle\right) .
$$

Note that if we forget the lattices of Δ_{X}, then by the assumption that $f_{\Delta}^{-1}(0)=\{0\}$ we get that $\Delta_{X}=\Delta_{X, 1} \times \cdots \times \Delta_{X, m}$. If $\Delta_{X, i}^{\prime}$ are subdivisions of $\Delta_{X, i}$, we get a subdivison Δ_{X}^{\prime} of Δ_{X} by taking the product

$$
\Delta_{X}^{\prime}=\Delta_{X, 1}^{\prime} \times \cdots \times \Delta_{X, m}^{\prime}
$$

Lemma 2.1. If $\Delta_{X, i}^{\prime}$ are projective subdivisions of $\Delta_{X, i}$, then Δ_{X}^{\prime} is a projective subdivision of Δ_{X}.

Proof. Let ψ_{i} be a convex piecewise linear function defining the subdivison $\left|\Delta_{X, i}^{\prime}\right|$. Extend ψ_{i} linearly to the entire $\left|\Delta_{X}\right|$ by setting $\psi_{i}\left(\left|\Delta_{X, j}\right|\right)=0$ for $j \neq i$. Clearly, $\psi=\sum_{i} \psi_{i}$ is a convex piecewise linear function defining the subdivision Δ_{X}^{\prime}.

Consider the restriction $\left.f_{\Delta}\right|_{\Delta_{X, i}}: \Delta_{X, i} \rightarrow \mathbb{R}_{+} u_{i}$. By the Main Theorem of Chapter 2 in [KKMS] there exist a subdivision $\Delta_{X, i}^{\prime}$ of $\Delta_{X, i}$ and a positive integer M_{i} such that after taking the M_{i}-sublattice at u_{i} the induced morphism $\left.f_{\Delta}^{\prime}\right|_{\Delta_{X, i}^{\prime}}$ is semistable. We let Δ_{X}^{\prime} be the product of the subdivisions $\Delta_{X, i}^{\prime}$, and we take the $\left(M_{1}, \ldots, M_{m}\right)$-sublattice at $\left(u_{1}, \ldots, u_{n}\right)$. Then $f_{\Delta}^{\prime}: \Delta_{X}^{\prime} \rightarrow \Delta_{B}^{\prime}$ is a simplicial map and $\left.f_{\Delta}^{\prime}\right|_{\Delta_{X, i}^{\prime}}$ is semistable for all i.

Lemma 2.2. The multiplicity of Δ_{X}^{\prime} is not greater than the multiplicity of Δ_{X}.
Proof. Let $\sigma \in \Delta_{X}$ have primitive points $v_{i j}$ and let $\sigma^{\prime} \subset \sigma$ be a maximal cone in the subdivision with primitive points $v_{i j}^{\prime}$. The multiplicity of σ^{\prime} is the number of points in
$W\left(\sigma^{\prime}\right)$. We show that $W\left(\sigma^{\prime}\right)$ can be mapped injectively to $W(\sigma)$, hence the multiplicity of σ^{\prime} is not greater than the multiplicity of σ.

If $w^{\prime} \in W\left(\sigma^{\prime}\right)$, we write

$$
w^{\prime}=\sum_{i, j}\left(\beta_{i j}+b_{i j}\right) v_{i j}, \quad 0 \leq \beta_{i j}<1, \quad b_{i j} \in \mathbb{Z}_{+}
$$

Then $w=\sum_{i j} \beta_{i j} v_{i j} \in N_{\sigma}$ is in $W(\sigma)$. If two points $w_{1}^{\prime}, w_{2}^{\prime} \in W\left(\sigma^{\prime}\right)$ give the same w, then their difference $w_{1}^{\prime}-w_{2}^{\prime}$ is an integral linear combination of $v_{i j}$. However, then $w_{1}^{\prime}-w_{2}^{\prime}$ is also an integral linear combination of $v_{i j}^{\prime}$ because $\mathbb{Z}\left\{v_{i j}^{\prime}\right\}_{i, j}=\mathbb{Z}\left\{v_{i j}\right\}_{i, j} \cap N_{\sigma^{\prime}}$. Hence $w_{1}^{\prime}-w_{2}^{\prime}=0$.

3. Modified Barycentric Subdivisions

Let $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ be a simplicial morphism. Consider the barycentric subdivision $B S\left(\Delta_{B}\right)$ of Δ_{B}. The one-dimensional cones of $B S\left(\Delta_{B}\right)$ are of the form $\mathbb{R}_{+} \hat{\tau}$ where $\hat{\tau}=\sum u_{i}$ is the barycenter of a cone $\tau \in \Delta_{B}$ with primitive points u_{1}, \ldots, u_{m}. A cone $\tau^{\prime} \in B S\left(\Delta_{B}\right)$ is spanned by $\hat{\tau}_{1}, \ldots, \hat{\tau}_{k}$, where $\tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{k}$ is a chain of cones in Δ_{B}.

In general, f_{Δ} does not induce a morphism $B S\left(\Delta_{X}\right) \rightarrow B S\left(\Delta_{B}\right)$. For example, if $\sigma=\left\langle v_{11}, v_{12}, v_{21}\right\rangle, \tau=\left\langle u_{1}, u_{2}\right\rangle$, and $f_{\Delta}: v_{i j} \mapsto u_{i}$, then f_{Δ} does not induce a morphism of barycentric subdivisions. To get a morphism we need to modify the barycenters $\hat{\sigma}$ of cones $\sigma \in \Delta_{X}$ so that they map to (multiples of) barycenters of Δ_{B}.

Definition 3.1. The data of modified barycenters consists of:

1. A subset of cones $\tilde{\Delta}_{X} \subset \Delta_{X}$.
2. For each cone $\sigma \in \tilde{\Delta}_{X}$ a lattice point $b_{\sigma} \in \operatorname{int}(\sigma) \cap N_{\sigma}$ such that $f_{\Delta}\left(b_{\sigma}\right) \in \mathbb{R}_{+} \hat{\tau}$ for some $\tau \in \Delta_{B}$.

Recall that for any total order \prec on the set of cones in Δ_{X} refining the partial order \leq, the barycentric subdivision $B S\left(\Delta_{X}\right)$ can be realized as a sequence of star subdivisions at the barycenters $\hat{\sigma}$ for all cones $\sigma \in \Delta_{X}$ in the descending order \prec.

Definition 3.2. Given modified barycenters $\left(\tilde{\Delta}_{X},\left\{b_{\sigma}\right\}\right)$ and a total order \prec on Δ_{X} refining the partial order \leq, the modified barycentric subdivision $M B S_{\tilde{\Delta}_{X},\left\{b_{\sigma}\right\},<}\left(\Delta_{X}\right)$ is the sequence of star subdivisions at b_{σ} for all $\sigma \in \tilde{\Delta}_{X}$ in the descending order \prec.

Example 3.3. Let $f_{\Delta}:\left\langle v_{11}, v_{12}, v_{21}\right\rangle \rightarrow\left\langle u_{1}, u_{2}\right\rangle$ be the morphism defined by $f_{\Delta}: v_{i j} \mapsto u_{i}$. Let $\tilde{\Delta}_{X}$ consist of the two cones $\tilde{\Delta}_{X}=\left\{\left\langle v_{11}, v_{21}\right\rangle,\left\langle v_{12}, v_{21}\right\rangle\right\}$, and let the modified barycenters be $\left\{b_{\sigma}\right\}=\left\{v_{11}+v_{21}, v_{12}+v_{21}\right\}$. Depending on whether $\left\langle v_{11}, v_{21}\right\rangle \prec\left\langle v_{12}, v_{21}\right\rangle$ or vice versa, we get two modified barycentric subdivisions as shown in Fig. 1.

To simplify notation, we write $M B S_{\tilde{\Delta}_{X}}\left(\Delta_{X}\right)$ or simply $\operatorname{MBS}\left(\Delta_{X}\right)$ instead of $M B S_{\tilde{\Delta}_{X},\left\{b_{\sigma}\right\},<}\left(\Delta_{X}\right)$. By definition, $\operatorname{MBS}\left(\Delta_{X}\right)$ is a projective simplicial subdivision of

Fig. 1. Two modified barycentric subdivisions from Example 3.3
Δ_{X}. Next, we show that, as in the case of the ordinary barycentric subdivision, the cones of $\operatorname{MBS}\left(\Delta_{X}\right)$ can be characterized by chains of cones in Δ_{X}. We may assume that the zero- and one-dimensional cones of Δ_{X} are all in $\tilde{\Delta}_{X}$, and they precede all other cones in the order \prec. For a cone $\sigma \in \Delta_{X}$ let $\tilde{\sigma}$ be the maximal face of σ (with respect to \prec) in $\tilde{\Delta}_{X}$. Given a chain of cones $\sigma_{1} \leq \cdots \leq \sigma_{k}$ in Δ_{X}, the cone $\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{k}}\right\rangle$ is a subcone of σ_{k}. Let $C\left(\Delta_{X}\right)$ be the set of all such cones corresponding to chains $\sigma_{1} \leq \cdots \leq \sigma_{k}$ in Δ_{X}.

Proposition 3.4. $C\left(\Delta_{X}\right)=\operatorname{MBS}\left(\Delta_{X}\right)$.
Proof. We do induction on the number of cones in $\tilde{\Delta}_{X}$ of dimension at least 2. If $\tilde{\Delta}_{X}$ contains only zero- or one-dimensional cones, then the statement is trivial. So, assume that $\tilde{\Delta}_{X}=\tilde{\Delta}_{X, 0} \cup\left\{\sigma_{0}\right\}$, where $\sigma \prec \sigma_{0}$ for any $\sigma \in \tilde{\Delta}_{X, 0}$, and assume that the proposition is proved for $\tilde{\Delta}_{X, 0}$.

Without loss of generality we may assume that Δ_{X} consists of cones containing σ_{0} and their faces only. We get $M B S_{\tilde{\Delta}_{X}}\left(\Delta_{X}\right)$ from Δ_{X} if we first subdivide at $b_{\sigma_{0}}$ and then at b_{σ} for $\sigma \in \tilde{\Delta}_{X, 0}$ in the descending order \prec. If $\Delta_{X, 0}$ is the subcomplex of Δ_{X} consisting of cones not containing σ_{0}, then the star subdivision of Δ_{X} at $b_{\sigma_{0}}$ is $\Delta_{X, 0} \times\left\langle b_{\sigma_{0}}\right\rangle$. Since σ_{0} is greater than any $\sigma \in \tilde{\Delta}_{X, 0}$ with respect to \prec, all $b_{\sigma} \in \Delta_{X, 0}$, and we see that

$$
M B S_{\tilde{\Delta}_{X}}\left(\Delta_{X}\right)=M B S_{\tilde{\Delta}_{X, 0}}\left(\Delta_{X, 0}\right) \times\left\langle b_{\sigma_{0}}\right\rangle
$$

A cone in $M B S_{\tilde{\Delta}_{X, 0}}\left(\Delta_{X, 0}\right) \times\left\langle b_{\sigma_{0}}\right\rangle$ is of the form $\sigma \times \rho$, where ρ is a face of $\left\langle b_{\sigma_{0}}\right\rangle$, i.e. either $\{0\}$ or $\left\langle b_{\sigma_{0}}\right\rangle$ itself, and where σ is a cone in $M B S_{\tilde{\Delta}_{X, 0}}\left(\Delta_{X, 0}\right)$. Applying induction hypothesis to $M B S_{\tilde{\Delta}_{X, 0}}\left(\Delta_{X, 0}\right)$, we get that $\sigma=\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{l}}\right\rangle$ for a chain of cones $\sigma_{1} \leq$ $\cdots \leq \sigma_{l}$ in $\Delta_{X, 0}$. Now if $\rho=\{0\}$, then $\sigma \times \rho=\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{l}}\right\rangle \in C\left(\Delta_{X}\right)$. If $\rho=\left\langle b_{\sigma_{0}}\right\rangle$, we let σ_{l+1} be a cone in Δ_{X} that contains both σ_{l} and σ_{0}. Then $\tilde{\sigma}_{l+1}=\sigma_{0}$, and $\sigma \times \rho=$ $\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{l}}, b_{\tilde{\sigma}_{l+1}}\right\rangle \in C\left(\Delta_{X}\right)$.

Conversely, let $\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{l}}\right\rangle$ be a cone in $C\left(\Delta_{X}\right)$ for some chain $\sigma_{1} \leq \cdots \leq \sigma_{l}$ in Δ_{X}. Then for some $k \leq l$ we have that $\tilde{\sigma}_{1}, \ldots, \tilde{\sigma}_{k} \in \tilde{\Delta}_{X, 0}$, and $\tilde{\sigma}_{k+1}=\cdots=\tilde{\sigma}_{l}=\sigma_{0}$.

By induction hypothesis, the cone $\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{k}}\right\rangle$ coming from the chain $\sigma_{1} \leq \cdots \leq \sigma_{k}$ in $\Delta_{X, 0}$ is in $M B S_{\tilde{\Delta}_{X, 0}}\left(\Delta_{X, 0}\right)$. Hence the cone $\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{l}}\right\rangle$ is of the form $\sigma \times \rho$, where $\sigma=\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{k}}\right\rangle \in M B S_{\tilde{\Delta}_{X, 0}}\left(\Delta_{X, 0}\right)$, and $\rho=\left\langle b_{\sigma_{0}}\right\rangle$ if $k<l$, and $\rho=\{0\}$ if $k=l$.

Corollary 3.5. Assume that $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ is a simplicial morphism. If $f_{\Delta}(\tilde{\sigma})=$ $f_{\Delta}(\sigma)$ for all $\sigma \in \Delta_{X}$, then f_{Δ} induces a simplicial morphism $f_{\Delta}^{\prime}: \operatorname{MBS}\left(\Delta_{X}\right) \rightarrow$ $B S\left(\Delta_{B}\right)$.

Proof. Let $\sigma^{\prime} \in \operatorname{MBS}\left(\Delta_{X}\right)$ correspond to a chain $\sigma_{1} \leq \cdots \leq \sigma_{k}$ in Δ_{X}. Since f_{Δ} is simplicial, we have a chain of cones $f_{\Delta}\left(\sigma_{1}\right) \leq \cdots \leq f_{\Delta}\left(\sigma_{k}\right)$ in Δ_{B}. Recall that $b_{\tilde{\sigma}_{i}}$ is mapped to a multiple of a barycenter: $f_{\Delta}\left(b_{\tilde{\sigma}_{i}}\right)=\mathbb{R}_{+} \hat{\tau}$ for some $\tau \in \Delta_{B}$. The assumption that $f_{\Delta}\left(\tilde{\sigma}_{i}\right)=f_{\Delta}\left(\sigma_{i}\right)$ implies that $f_{\Delta}\left(b_{\tilde{\sigma}_{i}}\right) \in \mathbb{R}_{+} \widehat{f_{\Delta}\left(\sigma_{i}\right)}$, hence the cone $\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{k}}\right\rangle$ is mapped onto the cone $\left\langle\widehat{f_{\Delta}\left(\sigma_{1}\right)}, \ldots, \widehat{f_{\Delta}\left(\sigma_{k}\right)}\right\rangle \in B S\left(\Delta_{B}\right)$.

Example 3.6. Assume that $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ is a simplicial morphism taking primitive points of Δ_{X} to primitive points of Δ_{B}. Then for a cone $\sigma \in \Delta_{X}$ such that $f_{\Delta}: \sigma \stackrel{\simeq}{\hookrightarrow} \tau$ for some $\tau \in \Delta_{B}$, we have $f_{\Delta}(\hat{\sigma})=\hat{\tau}$.

Let $\bar{\Delta}_{X}=\left\{\sigma \in \Delta_{X}:\left.f_{\Delta}\right|_{\sigma}\right.$ is injective $\}, b_{\sigma}=\hat{\sigma}$. Clearly, the hypothesis of the lemma is satisfied, and we have a simplicial morphism $f_{\Delta}^{\prime}: M B S_{\bar{\Delta}_{X}}\left(\Delta_{X}\right) \rightarrow B S\left(\Delta_{B}\right)$.

Conversely, if $\left(\tilde{\Delta}_{X},\left\{b_{\sigma}\right\}\right)$ is the data of modified barycenters such that f_{Δ} induces a morphism $f_{\Delta}^{\prime}: M B S_{\tilde{\Delta}_{X}}\left(\Delta_{X}\right) \rightarrow B S\left(\Delta_{B}\right)$, then $\bar{\Delta}_{X} \subset \tilde{\Delta}_{X}$. Thus, we may always assume that $\bar{\Delta}_{X} \subset \tilde{\Delta}_{X}$.

4. Reducing the Multiplicity of Δ_{X}

Proposition 4.1. Let $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ be a simplicial morphism taking primitive points to primitive points. Assume that Δ_{B} is nonsingular, Δ_{X} is singular, and every singular cone $\sigma \in \Delta_{X}$ contains a point $w \in W(\sigma) \backslash\{0\}$ mapping to a barycenter in Δ_{B}. Then there exists a modified barycentric subdivision $\operatorname{MBS}\left(\Delta_{X}\right)$ of Δ_{X} having multiplicity strictly less than the multiplicity of Δ_{X} such that f_{Δ} induces a simplicial morphism $f_{\Delta}^{\prime}: \operatorname{MBS}\left(\Delta_{X}\right) \rightarrow B S\left(\Delta_{B}\right)$.

Proof. For every singular cone $\sigma \in \Delta_{X}$ we choose a point w_{σ} as follows. By assumption, there exists a point $w \in W(\sigma) \backslash\{0\}$ mapping to a barycenter of $\Delta_{B}: f_{\Delta}(w)=\hat{\tau}$. Then for a unique cone $\tau_{0} \in \Delta_{B}$ we have $f_{\Delta}(\sigma)=\tau \times \tau_{0}$. We choose a face $\sigma_{0} \leq \sigma$ such that $f_{\Delta}: \sigma_{0} \xrightarrow{\simeq} \tau_{0}$. Set $w_{\sigma}=w+\hat{\sigma}_{0}$; then

$$
f_{\Delta}\left(w_{\sigma}\right)=f_{\Delta}(w)+f_{\Delta}\left(\hat{\sigma}_{0}\right)=\hat{\tau}+\hat{\tau}_{0}=\widehat{f_{\Delta}(\sigma)}
$$

Having chosen the set $\left\{w_{\sigma}\right\}$, we may remove some of the points w_{σ} if necessary so that every simplex $\rho \in \Delta_{X}$ contains at most one w_{σ} in its interior. With $\bar{\Delta}_{X}$ as in Example 3.6, let $\tilde{\Delta}_{X}=\bar{\Delta}_{X} \cup\left\{\rho \in \Delta_{X} \mid w_{\sigma} \in \operatorname{int}(\rho)\right.$ for some singular $\left.\sigma\right\}, b_{\rho}=\hat{\rho}$ if $\rho \in \bar{\Delta}_{X}$, and $b_{\rho}=w_{\sigma}$ if $w_{\sigma} \in \operatorname{int}(\rho)$.

Next we specify the order \prec. We refine the partial order \leq as follows: for two faces σ_{1} and σ_{2} of a cone $\sigma \in \Delta_{X}$ we set $\sigma_{1} \prec_{0} \sigma_{2}$ if $\operatorname{dim} f_{\Delta}\left(\sigma_{1}\right)<\operatorname{dim} f_{\Delta}\left(\sigma_{2}\right)$. Since $\bar{\Delta}_{X} \subset \tilde{\Delta}_{X}$, this ensures that the condition $f_{\Delta}(\tilde{\sigma})=f_{\Delta}(\sigma)$ of Corollary 3.5 is satisfied for any refinement of \prec_{0}. Now if σ is singular, then the point w_{σ} constructed above lies in the interior of a face ρ_{σ} such that $f_{\Delta}\left(\rho_{\sigma}\right)=f_{\Delta}(\sigma)$. We further refine the order \prec_{0} by setting $\sigma_{1} \prec_{0} \rho_{\sigma}$ for any face σ_{1} of the singular cone σ. Then $\tilde{\sigma}=\rho_{\sigma}$ whenever σ is singular. Finally we let \prec be any refinement of \prec_{0} to a total order.

Let $\sigma \in \Delta_{X}$ be a cone, and let a maximal cone $\sigma^{\prime} \in \operatorname{MBS}\left(\Delta_{X}\right)$ be given by a maximal chain of faces of $\sigma: \sigma_{1} \leq \cdots \leq \sigma_{n}$. We have to show that $m\left(\sigma^{\prime}, N_{\sigma^{\prime}}\right) \leq m\left(\sigma, N_{\sigma}\right)$, and if σ is singular, then the inequality is strict.

We can order the primitive points v_{1}, \ldots, v_{n} of σ so that $\sigma_{1}=\left\langle v_{1}\right\rangle, \sigma_{2}=\left\langle v_{1}, v_{2}\right\rangle, \ldots$, $\sigma_{n}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Since $b_{\tilde{\sigma}_{i}} \in \sigma_{i}$, the primitive points of $\sigma^{\prime}=\left\langle b_{\tilde{\sigma}_{1}}, \ldots, b_{\tilde{\sigma}_{n}}\right\rangle$ can be written as

$$
\begin{aligned}
v_{1}^{\prime} & =\frac{1}{\mu_{1}} b_{\tilde{\sigma}_{1}}=a_{11} v_{1}, \\
v_{2}^{\prime} & =\frac{1}{\mu_{2}} b_{\tilde{\sigma}_{2}}=a_{21} v_{1}+a_{22} v_{2}, \\
& \cdots \\
v_{n}^{\prime} & =\frac{1}{\mu_{n}} b_{\tilde{\sigma}_{n}}=a_{n 1} v_{1}+\cdots+a_{n n} v_{n}
\end{aligned}
$$

for some $a_{i j} \geq 0$ and integers $\mu_{i} \geq 1$. The multiplicity of σ^{\prime} is $a_{11} \cdot a_{22} \cdots a_{n n}$ times the multiplicity of σ. By the choice of b_{ρ} above, all $a_{i i} \leq 1$, hence $m\left(\sigma^{\prime}, N_{\sigma^{\prime}}\right) \leq m\left(\sigma, N_{\sigma}\right)$. If σ is singular, let i be the smallest index such that the face σ_{i} is singular. Then, with notation as above, $b_{\tilde{\sigma}_{i}}=w+\hat{\sigma}_{0}$ for some $w \in W\left(\sigma_{i}\right) \backslash\{0\}$, and $\sigma_{0} \leq \sigma_{i}$. Now if $a_{i i}=1$, then $w \in\left\langle v_{1}, \ldots, v_{i-1}\right\rangle$, and this gives a contradiction with the choice of i. Hence $a_{i i}<1$ and $m\left(\sigma^{\prime}, N_{\sigma^{\prime}}\right)<m\left(\sigma, N_{\sigma}\right)$.

5. Families of Surfaces and Threefolds

Proof of Theorem 1.6. Let $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ be a surjective morphism of polyhedral complexes such that $f_{\Delta}^{-1}(0)=\{0\}$. It is shown in [AK] that there exist projective simplicial subdivisions Δ_{X}^{\prime} of Δ_{X} and Δ_{B}^{\prime} of Δ_{B} such that Δ_{B} is nonsingular and f_{Δ} induces a simplicial morphism $f_{\Delta}^{\prime}: \Delta_{X}^{\prime} \rightarrow \Delta_{B}^{\prime}$. To obtain these subdivisions, one first subdivides Δ_{B} such that the image of every cone in Δ_{X} is a union of cones in Δ_{B}^{\prime}. The convex piecewise linear function defining the subdivision Δ_{B}^{\prime} can then be composed with f_{Δ} to give a subdivision of Δ_{X}. A sequence of star subdivisions centered at the onedimensional edges yields the required simplicial subdivision Δ_{X}^{\prime}. Thus, we may assume that Δ_{X} is simplicial, Δ_{B} is nonsingular, and $f_{\Delta}: \Delta_{X} \rightarrow \Delta_{B}$ is a simplicial map.

Applying the construction of [KKMS] over the edges of Δ_{B} (Section 2.2), we can make $\left.f_{\Delta}\right|_{\Delta_{X, i}}$ semistable without increasing the multiplicity of Δ_{X}. We show below that every singular simplex $\sigma \in \Delta_{X}$ contains a point $w \in W(\sigma) \backslash\{0\}$ mapping to a barycenter of Δ_{B}. By Proposition 4.1, there exists a modified barycentric subdivision such that f_{Δ} induces a simplicial morphism $f_{\Delta}^{\prime}: \operatorname{MBS}\left(\Delta_{X}\right) \rightarrow B S\left(\Delta_{B}\right)$, with multiplicity of
$\operatorname{MBS}\left(\Delta_{X}\right)$ strictly less than the multiplicity of Δ_{X}. Since f_{Δ}^{\prime} is simplicial and $B S\left(\Delta_{B}\right)$ nonsingular, the proof is completed by induction on the multiplicity of Δ_{X}.

Consider the restriction of f_{Δ} to a singular simplex $f_{\Delta}: \sigma \rightarrow \tau$, where τ has primitive points $u_{1}, \ldots, u_{m}, \sigma$ has primitive points $v_{i j}, i=1, \ldots, m, j=1, \ldots, J_{i}$, and $f_{\Delta}\left(v_{i j}\right)=u_{i}$. Since σ is singular, it contains a point $w \in W(\sigma) \backslash\{0\}$:

$$
w=\sum_{i, j} \alpha_{i j} v_{i j}, \quad 0 \leq \alpha_{i j}<1, \quad \sum \alpha_{i j}>0
$$

Considering a face of σ if necessary, we may assume that w lies in the interior of σ, hence $0<\alpha_{i j}$. Since $f_{\Delta}(w) \in N_{\tau}$, it follows that $\sum_{j} \alpha_{i j} \in \mathbb{Z}$ for all i. In particular, if $J_{i_{0}}=1$ for some i_{0}, then $\alpha_{i_{0} 1}=0$, and w lies in a face of σ. So we may assume that $J_{i}>1$ for all i. Since the relative dimension of f_{Δ} is $\sum_{i}\left(J_{i}-1\right)$, we have to consider all possible decompositions $\sum_{i}\left(J_{i}-1\right) \leq 3$, where $J_{i}>1$ for all i.

The cases when the relative dimension of f_{Δ} is 0 or 1 are trivial and left to the reader.
If the relative dimension of f_{Δ} is 2 , then either $J_{1}=3$ or $J_{1}=J_{2}=2$. In the first case we have that $\left\langle v_{11}, v_{12}, v_{13}\right\rangle$ is singular, contradicting the semistability of $\left.f_{\Delta}\right|_{\Delta_{X, 1}}$. In the second case, $\alpha_{11}+\alpha_{12}, \alpha_{21}+\alpha_{22} \in \mathbb{Z}$ and $0<\alpha_{i j}<1$ imply that $\alpha_{11}+\alpha_{12}=$ $\alpha_{21}+\alpha_{22}=1$. Hence $f_{\Delta}(w)=u_{1}+u_{2}$ is a barycenter.

In relative dimension 3, either $J_{1}=4$, or $J_{1}=3, J_{2}=2$, or $J_{1}=J_{2}=J_{3}=2$. In the first case we get a contradiction with the semistability of $\left.f_{\Delta}\right|_{\Delta_{X, 1}}$; the third case gives $\alpha_{11}+\alpha_{12}=\alpha_{21}+\alpha_{22}=\alpha_{31}+\alpha_{32}=1$ as for relative dimension 2. In the second case, either $\alpha_{11}+\alpha_{12}+\alpha_{13}=\alpha_{21}+\alpha_{22}=1$ and w maps to a barycenter, or $\alpha_{11}+\alpha_{12}+\alpha_{13}=2, \alpha_{21}+\alpha_{22}=1$ and $\left(\sum v_{i j}\right)-w$ maps to a barycenter.

Example 5.1. We show by an example that the previous construction of modified barycentric subdivisions does not work in relative dimension ≥ 4. Let $\tau=\left\langle u_{1}, u_{2}\right\rangle$ and $\sigma=\left\langle v_{11}, v_{12}, v_{13}, v_{14}, v_{21}, v_{22}\right\rangle$, with lattices $N_{\tau}=\mathbb{Z}\left\{u_{1}, u_{2}\right\}$ and $N_{\sigma}=\mathbb{Z}\left\{v_{11}, \ldots, v_{22}\right.$, $\left.\frac{1}{2}\left(v_{11}+\cdots+v_{22}\right)\right\}$. Then $W(\sigma) \backslash\{0\}$ consists of a single point $w=\frac{1}{2}\left(v_{11}+\cdots+v_{22}\right)$, and if f_{Δ} maps $v_{i j}$ to u_{i}, then w is mapped to $2 u_{1}+u_{2}$, which is not a barycenter.

Acknowledgments

The suggestion to write up the proof of semistable reduction for low relative dimensions came from Dan Abramovich. I also wish to thank the anonymous reviewers for useful suggestions.

References

[AK] D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, preprint. alggeom/9707012.
[dJ] A. J. de Jong, Smoothness, semistability, and alterations, Publ. Math. I.H.E.S. 83 (1996), 51-93.
[F] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NJ, 1993.
[KKMS] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings I, LNM 339, Springer-Verlag, Berlin, 1973.

