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Abstract. We consider the problem of extending the semistable reduction theorem of
[KKMS] from the case of one-parameter families of varieties to families over a base of
arbitrary dimension. Following [KKMS], semistable reduction of such families can be
reduced to a problem in the combinatorics of polyhedral complexes [AK]. In this paper we
solve it in the case when the relative dimension of the morphism is at most three, i.e., for
families of surfaces and threefolds.

1. Introduction

One of the milestones in algebraic geometry is the semistable reduction theorem proved
in [KKMS]:

Theorem 1.1[KKMS]. Let f: X — C be a flat morphism from a variety X onto a
nonsingular curve Cdefined over an algebraically closed field k of characteristic zero
Assume thad e C is a point and the restriction:f X\ f ~1(0) — C\{0} is smoothThen
there exist a finite morphism: C’ — C, with 7 ~1(0) = {0'}, and a proper birational
morphism(in fact, a blowup with center lying in the special figp: X' — X x¢ C/,

X B XxcC - X
J 2

T

C’ - C
so that the induced morphisni: X’ — C’ is semistablgi.e.,

(i) both X and C are nonsingularand
(i) the special fiber £1(0') is a reduced divisor with nonsingular components
crossing normally
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To prove the theorem, Kempf et al. [KKMS] invented the theory of toroidal embed-
dings and reduced the geometric problem to the following purely combinatorial problem:

Theorem 1.2[KKMS]. Let P C R" be an n-dimensional polytope with vertices lying
in the integral pointZ" c R". Then there exists an integer M and a projective subdi-
vision{P,}, of P such that every Phas vertices if1/M)Z" and the volume of P(in

the usual metrigis the minimal possiblevol (P,) = 1/M"n!.

Here a subdivision is called projective (or coherent) if it is defined by a continuous
piecewise linear convex function.

The main goal of [AK] was to extend the semistable reduction theorem to the case
where the base variety has arbitrary dimension. The problem can then be formulated as
follows:

Conjecture 1.3. Let f: X — B be a surjective morphism of projective varieties
with geometrically integral generic fibedefined over an algebraically closed field of
characteristic zeroThere exist a proper surjective generically finite morphism-B B
and a proper birational morphism X— X xg B’ such that X — B’ is semistablg
i.e., for any closed pointxe X’ and b = f’(x’) € B’ one can find formal coordinates

X1, ..., Xpatx andt, ..., ty at b so that the morphism f is given by
li
ti = 1_[ X;
j=l-1+1

forsomed=1lp<l1 < --- <l <n.

Using the theory of toroidal embeddings, the geometric problem of semistable re-
duction can again be reduced to a combinatorial problem involving conical polyhedral
complexes. The aim of this paper is to solve the combinatorial problem for the case when
f has low relative dimension. First, we recall the definition of polyhedral complexes and
morphisms.

1.1. Polyhedral Complexes

We consider (rational, conical) polyhedral complexes= (|A[, ({0, N,}) consisting
of a finite collection of latticedN, = Z" and rational full cones ¢ N, ® R with a
vertex. The cones are glued together to form the spgeg so that the usual axioms of
polyhedral complexes hold:

1. If o € Ais acone, then every fae€ of o is also inA, andN,» = N |spare)-
2. The intersection of two cones N o3 is a face of both of them.

A morphism fo: Ax — Ag of polyhedral complexea\x = (|Ax|, {o, N,}) and
Ag = (|Agl, {r, N;}) is a compatible collection of linear mags: (o, N,) — (t, N;);
i.e., if o’ is a face ofo, then f, is the restriction off,. We only consider morphisms
f: Ax — Agsuchthatf,1(0) No = {0} forall o € Ax.
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Polyhedral complexes arise naturally in the theory of toroidal embeddings [KKMS].
They generalize the notion of fans of toric varieties. An open embedding of varieties
Ux C X is said to be toroidal if it is locally formally isomorphic to a torus embedding
T C X,; a morphism of toroidal embeddings is a morphism of varieties that locally
formally comes from a toric morphism. To a toroidal embedding one associates a poly-
hedral complex, and a morphism of toroidal embeddings gives rise to a morphism of
polyhedral complexes. The condition of semistability, when applied to a toroidal embed-
ding, translates into the following condition on the associated morphism of polyhedral
complexes.

Definition 1.4. A surjective morphismf,: Ax — Ag such thatf~%(0) = {0} is
semistableif:

1. Ax andAg are nonsingular.
2. Forany cone € Ax, we havef (o) € Ag and f (N,) = Ni (-

We say thatf is weakly semistabldf it satisfies the two conditions except thak may
be singular.

The following two operations are allowed aryx andAg:

1. Projective subdivisiona’, of Ax andA’z of Ag such thatf induces a morphism
f'r ALY — Ag.

2. Lattice alterations: lehy = (|Ax|, {o, N.}), Ay = (JAgl, {r, N.}), for some
compatible collection of sublattice, c N,, N, = f=1(N.) N N,, and let
f': Ay — A% be the morphism induced biy.

Conjecture 1.5(Combinatorial Semistable Reduction)Given a surjective morphism
f: Ax — Ag, suchthat f1(0) = {0}, there exists a projective subdivisior: Ay —
Aj followed by a lattice alteration f: A}y — A so that f’ is semistable

A X" — Axr — AX

R Lt ot

AB” —> AB/ — AB

The importance of Conjecture 1.5 lies in the fact that it implies Conjecture 1.3 [AK].
Although we are concerned with the combinatorial version of semistable reduction in this
paper, we indicate briefly how the two conjectures are related. It is shown in [AK] that a
morphismf: X — Basin Conjecture 1.3 can be modified to a toroidal morphism, and so
we getamorphism of polyhedral complexas Ax — Ag. Thenone checksthatff, is
semistable according to Definition 1.4, théis semistable as defined in Conjecture 1.3.

It remains to show that the two combinatorial operationsfgn Ax — Ag have
geometric analogues fdr. X — B. Indeed, subdivisions atx andAg correspond to
birational morphisms (see [KKMS]), and a lattice alteration corresponds to a finite base
change (see [AK]).

In the case when ditlhg) = 1, Conjecture 1.5 reduces to the combinatorial version
of the semistable reduction theorem proved in [KKMS]. In [AK] the conjecture was
proved with semistable replaced by weakly semistable. The main result of this paper is
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Theorem 1.6. Conjecturel.5is true if f5 has relative dimensior: 3. Hence Con-
jecturel.3is true if f has relative dimension 3.

The relative dimension of a linear mafg: ¢ — t of coneso, 7 is dim(o) —
dim(f (o)). The relative dimension of,: Ax — Ag is by definition the maximum of
the relative dimensions df,: o — Tt overallo € Ax. Toseethatthe second statement of
the theorem follows from the first, consider a surjective morphism of affine toric varieties
f: Xo — X, defined by a linear map of cones and lattidgs (o, N,) — (7, N;).

A general fiber of this morphism has dimension equal to the rank of the kernel of
fa: N, — N, and this is at least the relative dimensionfaf ¢ — t. Therefore,

if a toroidal morphismf: X — B has relative dimensiog d, then the associated
morphism of polyhedral complexds: Ax — Apg also has relative dimension d.

We remark that semistable reduction for families of curves over a base of an arbitrary
dimension was proved by de Jong [dJ]. Thus, the new result of Theorem 1.6 is semistable
reduction for families of surfaces and threefolds.

The rest of the paper is organized as follows. In Section 2 we use the construction of
[KKMS]to make f semistable over the edges®g withoutincreasing the multiplicity of
Ax. In Section 3 we modify the barycentric subdivisiorof so that we get a morphism
to the barycentric subdivision @g. Itis shown in Section 4 that in certain situations we
can choose a modified barycentric subdivision that decreases the multipligity. dhe
conditions when this happens are then verified for relative dimensi8iin Section 5.

2. Notation and Preliminaries

2.1. Notation
We use notation from [KKMS] and [F]. For a coarec N®R we writec = (v1, ..., vn)
if the pointsvy, ..., vy lie on the one-dimensional edges®fand generate the cone.

If v; are the first lattice points along the edges we call them primitive points 8fn
n-dimensional cone is simplicial if it has exactiyrimitive points. For a simplicial cone
o with primitive pointsuvy, . .., vy, the multiplicity ofo is

m(o, Ny) = [Ny: Zvi & - - - @ Zvy).

A polyhedral complexA is nonsingular if and only im(o, N,) = 1 forallo € A. To
compute the multiplicity ob we can count the representativese N, of classes of
Ny /Zvi @ ... ® Zvy of the form

w:Zaivi, O0<a <1
i

The set of all such points is denoted W{(o). For conesr, 0, € A we writeo; < o3
if o1 is a face ofo,. Notice that ifo; < o, then the multiplicity ofo; is at most the
multiplicity of o,. Hence, to compute the multiplicity of a polyhedral complexit
suffices to consider maximal cones only.

Let fo: Ax — Ag be a morphism of polyhedral complexes, and assume/ARat
is simplicial. Letuy, ..., uy be the primitive points ofAg, and letMy, ..., My, be
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positive integers. By taking théMy, ..., Mp)-sublattice atuy, ..., u, we mean the
lattice alteratiorN, = Z{mj,u;,, ..., m; u;, } for all conesr € Ag with primitive points
Ui, ..., Uj.

A subdivisionA’ of A is called projective if there exists a homogeneous continuous
piecewise linear functiofy: |A| — R, convex on each cone € A, and taking rational
values on the lattice pointd, such that the maximal conesAf are exactly the maximal
pieces in whichy is linear.

2.2. Applying the Result gKKMY

Leto; ¢ R™ ando, C R™ be two cones. We considei x o> as a cone ilR™*"2, |f
{o1a}e IS @ subdivision obq, and{oz g} is a subdivision obr, then{o1, x 02}ap
gives us a subdivision af; x o>.

If Ax andAg are simplicial, we say thdt: Ax — Agissimplicialif f (o) € Ag for
allo € Ax.Assumethaf,: Ax — Agisasimplicial map of simplicial complexes. Let

u,i =1,..., m,bethe primitive points oAg, andlet; ,i =1,..., m, j =1,..., J,
be the primitive points oA x such that; is mapped to an integer multiple af. For each
i =1,...,mwe denote byAx ; the subcomplex oA x lying over the conéu;) of Ag:

Axi = o)),

Note that if we forget the lattices & x, then by the assumption thaﬁgl(O) = {0} we
getthatAx = Ax 1 x -+ X Axm. If A/X,i are subdivisions oA x ;, we get a subdivison
A’ of Ax by taking the product

ro_ A ’
AX_AX,lx"'XAX,m'

Lemma2.1. If A} ; are projective subdivisions afy ;, thenAY is a projective sub-
division of A x.

Proof. Let v be a convex piecewise linear function defining the subdivigoy, |.
Extendy; linearly to the entirg Ax| by settingy; (|Ax jl) = 0 for j # i. Clearly,
¥ =) ¥ is a convex piecewise linear function defining the subdivigign O

Consider the restrictiofis [a,;: Ax; — R u;. By the Main Theorem of Chapter 2
in [KKMS] there exist a subdivisiom\y ; of Ax; and a positive integel; such that
after taking theM; -sublattice at; the induced morphisrrﬁUArxj is semistable. We let
A’y be the product of the subdivisions, ;, and we take théMy, ..., Mm)-sublattice
at(ug, ..., un). Thenfi: A% — Afjis a simplicial map and, |4, is semistable for
alli.

Lemma 2.2. The multiplicity ofA% is not greater than the multiplicity af .

Proof. Leto € Ax have primitive pointsy; and letc’ C o be a maximal cone in the
subdivision with primitive points){j. The multiplicity of o’ is the number of points in
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W(o"). We show thaiV (o) can be mapped injectively W (o), hence the multiplicity
of o’ is not greater than the multiplicity af.
If w € W(os’), we write

w/=2(,3ij + bij)vij, 0<pBj <1l byeZ,.
i
Thenw = Zij Bijvij € Ny isin W(o). If two pointsw;, w, € W(c') give the same
w, then their differencev] — wj is an integral linear combination of;. However, then
w) — w; is also an integral linear combinationwf becaus&{vy; }i,j = Z{vij }i,j N Ny
Hencew] — w), = 0. O

3. Modified Barycentric Subdivisions

Let fo: Ax — Ag be a simplicial morphism. Consider the barycentric subdivision
BSAg) of Ag. The one-dimensional cones BSAg) are of the formR, 7 where

T = ) u; is the barycenter of a conee Ag with primitive pointsuy, ..., uy. A cone
7’ € B Ag) is spanned byy, ..., 7k, wherer; < 1, < --- < 1¢ is a chain of cones in
Ag.

In general,f, does not induce a morphisBSAx) — BSApg). For example, if
o = (v11, V12, V21), T = (Ug, Uz), andf,: vjj — u;, thenf, does notinduce a morphism
of barycentric subdivisions. To get a morphism we need to modify the barycéntdrs
coness € Ay so that they map to (multiples of) barycentersigf.

Definition 3.1. The data omodified barycentersconsists of:

1. Asubset of coneAx C Ax.
2. For each cone € Ay a lattice pointh, € int(c) N N, such thatf,(b,) € R, 7
for somer € Ag.

Recall that for any total ordet on the set of cones inx refining the partial ordex,
the barycentric subdivisioBS(Ax) can be realized as a sequence of star subdivisions
at the barycenters for all coness € Ax in the descending ordex.

Definition 3.2. Given modified barycenteré\y, {b,}) and a total orde< on Ax
refining the partial ordex, the modified barycentric subdivision MBSy, | _(Ax)

is the sequence of star subdivisiondator all o € Ay in the descending orde.

Example 3.3. Let fa: (v11, v12, v21) — (Ug, Up) be the morphism defined by
fal vij = Uu;. Let Ax consist of the two conedx = {(vi1, v21), (v12, v21)}, and

let the modified barycenters Bb,} = {v11 + vo1, v12 + v21}. Depending on whether
(v11, v21) < (v12, V21) OF Vice versa, we get two modified barycentric subdivisions as
shown in Fig. 1.

To simplify notation, we writeMBS;, (Ax) or simply MBSAx) instead of
MBS;, 1,.<(Ax). By definition, MBS(Ax) is a projective simplicial subdivision of

o
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1

Fig. 1. Two modified barycentric subdivisions from Example 3.3

Ax. Next, we show that, as in the case of the ordinary barycentric subdivision, the cones
of MBS(Ax) can be characterized by chains of coneaip We may assume that the
zero- and one-dimensional cones/f are all inAx, and they precede all other cones

in the order<. For a coner € Ax leté be the maximal face of (with respect to<) in

Ax. Given a chain of cones; < --- < o in Ay, the congbs,, ..., bs,) is a subcone

of ox. Let C(Ax) be the set of all such cones corresponding to ch&ins --- < oy

in Ax.

Proposition 3.4. C(Ax) = MBS Ax).

Proof We do induction on the number of conesAr of dimension at least 2. I& x
contains only zero- or one-dimensional cones, then the statement is trivial. So, assume
thatAx = Ax oU{oo}, Wheres < op foranys € Ax o, and assume that the proposition
is proved forAy o.
Without loss of generality we may assume thgt consists of cones containirag
and their faces only. We gMBS;  (Ax) from A if we first subdivide ab,, and then at
b, for o € Ay o in the descending ordet. If Ay o is the subcomplex oAy consisting
of conesnot containingoy, then the star subdivision @ x atb,, is Ax o x (bs,). Since
oo is greater than any < Ax,o with respect to<, all b, € Ax o, and we see that

MBS;, (Ax) = MBSAXVO(AX,O) X {05,)-

A cone inMBSAXYO(AX,O) x (by,) is of the formo x p, wherep is a face of(b,,), i.e.
either{0} or (b,,) itself, and wherer is a cone INMBS;  (Ax o). Applying induction
hypothesis t(MBSAX.O(Ax,o), we get thav = (bs,, ..., bs) for a chain of cones; <

- <oain Ax,o. Now if p = {0}, theno x p = (b[,l, ey b(,|> e C(Ax). If p = (bgo>,
we leto| 1 be a cone im x that contains bothy andog. Theng; 1 = g, ando x p =
(b&l, e, b&l, b5|+1> e C(Ax).

Conversely, letbs,, ..., bs) be a cone irC(Ax) for some chairr; < --- < ¢y in
Ax. Then for somé < | we have thaby, ..., 6k € Axo, andéy,q = --- = &, = op.
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By induction hypothesis, the corfbs,, ..., bs ) coming from the chaia; < --- < ok
in Axoisin MBSAX.O(AX,O). Hence the coné;,, .. ., b ) is of the formo x p, where
o= (bs,...,b5) € MBS;, ,(Ax,0), andp = (b,,) if k <l,andp = {0} if k=1. O

Corollary 3.5. Assume that 2 Ax — Ag is a simplicial morphismif fA(5) =
fa(o) for all o € Ay, then fy induces a simplicial morphism,f MBSAx) —

BS(Ag).

Proof. Leto’ € MBSAx) correspond to a chaity < --- < ok in Ax. Sincef, is
simplicial, we have a chain of conds (o1) < --- < fa(ok) in Ag. Recall that;, is
mapped to a multiple of a barycentdr (bs, ) = R, for somer € Ag. The assumption
that fo (i) = fa(oi) implies thatf(bs) € ]R+K(E), hence the coné;,, ..., bs,)
is mapped onto the cor(m), e @)) € BSAp). O

Example 3.6. Assume thatf,: Ax — Ag is a simplicial morphism taking primitive
points of Ax to primitive points ofAg. Then for a cone € Ax such thatf,: o St
for somer € Ag, we havefa(6) = 7.

LetAx = {0 € Ax: fal, isinjectivg, b, = 6. Clearly, the hypothesis of the lemma
is satisfied, and we have a simplicial morphi$g MBSz, (Ax) — BSAp).

Conversely, if(Ax, {b,}) is the data of modified barycenters such thainduces a
morphismf;: MBS;  (Ax) — BS(Ag), thenAyx C Ax. Thus, we may always assume
thatAx C Ax.

4. Reducing the Multiplicity of Ax

Proposition 4.1. Let fo: Ax — Apg be a simplicial morphism taking primitive points
to primitive points Assume that\g is nonsingularAx is singular and every singular
coneo € Ax contains a pointw € W(o)\{0} mapping to a barycenter ihg. Then
there exists a modified barycentric subdivision MBg) of Ax having multiplicity
strictly less than the multiplicity oA x such that £ induces a simplicial morphism
fi: MBS Ax) - BSAg).

Proof. For every singular cone € Ax we choose a poinb,, as follows. By assump-
tion, there exists a point € W(o)\{0} mapping to a barycenter &fg: fa(w) = .
Then for a unique coney € Ag we havefs (o) = © x 9. We choose a facgy < o
such thatf,: op — 0. Setw, = w + 69; then

fa(wo) = fa(w) + fa(60) =7 + 2 = Ta(0).

Having chosen the s¢tv,, }, we may remove some of the points if necessary so that
every simpley € Ay contains at most one, inits interior. WithA x as in Example 3.6,
let Ax = Ax U {p € Ax|w, € int(p) for some singulas}, b, = 5 if p € Ax, and
b, = w, if w, € int(p).
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Next we specify the ordek. We refine the partial ordet as follows: for two faces
o1 andoy of a cones € Ayx we seto; <qg oz if dim fo(o1) < dim fa(o2). Since
Ax C Ay, this ensures that the conditidn () = fa (o) of Corollary 3.5 is satisfied
for any refinement oky. Now if o is singular, then the point, constructed above lies
in the interior of a facep, such thatfa(p,) = fa(o). We further refine the ordegg
by settingo1 <¢ p, for any faces; of the singular cone. Thens = p, whenevew is
singular. Finally we let< be any refinement ok, to a total order.

Leto € Ax be acone, and let a maximal conee MBS A x) be given by a maximal
chain of faces 06: o1 < --- < on. We have to show thaih(c’, N,») < m(o, N,), and
if o is singular, then the inequality is strict.

We can order the primitive points, . . ., v, of o sothatr; = (v1), o2 = (v1, v2), ...,
on = (v1,..., vn). Sinceb;, € o, the primitive points ob’ = (bs,, ..., bs,) can be
written as

1

v = —bsy = anv,

1 w1 1

, 1

v, = —bs;, = auvi + apuv,
M2

, 1

v, = —bs, = aumvi + -+ 4+ @nnun
Mn

for somea;; > 0 and integerg,; > 1. The multiplicity ofo”’ isay1 - @z - - - ann times the
multiplicity of . By the choice ob, above, allg; < 1, hencan(s’, Ny) < m(o, Ny).
If o is singular, let be the smallest index such that the fagés singular. Then, with
notation as abovdy;, = w + ¢ for somew € W(oi)\{0}, andop < o;. Now if g; = 1,
thenw € (vq,...,vi_1), and this gives a contradiction with the choiceioHence
ai < landm(o’, N,») < m(o, N,). O

5. Families of Surfaces and Threefolds

Proof of Theoreni.6. Let fy: Ax — Ag be a surjective morphism of polyhedral
complexes such that;*(0) = {0}. It is shown in [AK] that there exist projective
simplicial subdivisionsA’, of Ax and A of Ag such thatAg is nonsingular and 5
induces a simplicial morphisnfi,: Ay — Aj. To obtain these subdivisions, one first
subdividesA g such that the image of every coneAr is a union of cones i . The
convex piecewise linear function defining the subdivisibg can then be composed
with f, to give a subdivision oA x. A sequence of star subdivisions centered at the one-
dimensional edges yields the required simplicial subdivigign Thus, we may assume
that Ay is simplicial, Ag is honsingular, and,: Ax — Ag is a simplicial map.
Applying the construction of [KKMS] over the edges afs (Section 2.2), we can
make fa|a,, Semistable without increasing the multiplicity af. We show below that
every singular simplex € Ay contains a pointy € W(o)\ {0} mapping to a barycenter
of Ag. By Proposition 4.1, there exists a modified barycentric subdivision such that
fa induces a simplicial morphisni,: MBSAx) — BSAg), with multiplicity of
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MBS(Ax) strictly less than the multiplicity oA x. Since f, is simplicial andBS(Ag)
nonsingular, the proof is completed by induction on the multiplicitAgf.

Consider the restriction of, to a singular simplex,: ¢ — 1, wherer has prim-
itive pointsuy, ..., Uym, o has primitive pointsy;;,i = 1,...,m, j =1,..., J, and
fa(vij) = u;. Sinceo is singular, it contains a poink € W(o)\{0}:

w:Zaijvij, Ofozij <1, Zaij > 0.
i

Considering a face of if necessary, we may assume thaties in the interior ofo,
hence O< «;;. Sincefa(w) € N, it follows thath aijj € Zforalli. In particular, if
Ji, = 1 for someig, thena;,;1 = 0, andw lies in a face obb. So we may assume that
J > 1foralli. Since the relative dimension d# is ) ; (J — 1), we have to consider
all possible decompositior)s); (J — 1) < 3, whereJ; > 1 for alli.

The cases when the relative dimensiorf gfis 0 or 1 are trivial and left to the reader.

If the relative dimension of, is 2, then eithed; = 3 or J; = J, = 2. In the first
case we have thgvs1, v12, v13) is singular, contradicting the semistability 6£|a,, .
In the second caseys + a2, 01 + a2 € Z and O< «; < 1 imply thateq; + a1p =
a1+ az = 1. Hencef, (w) = uy + Uy is a barycenter.

In relative dimension 3, eithely = 4,0orJ; =3, L =2,0rJy = o = J3 = 2.
In the first case we get a contradiction with the semistabilitf of, ,; the third case
givesai; + a1p = ap1 + agp = a3y + azgx = 1 as for relative dimension 2. In the
second case, eithefiy + a12 + @13 = 21 + a2 = 1 andw maps to a barycenter, or
o114+ 012 + 013 = 2, a1 + azp = 1 and(}_ vij) — w maps to a barycenter. O

Example 5.1. We show by an example that the previous construction of modified
barycentric subdivisions does not work in relative dimenstof. Lett = (u,, uy) and

o = {(v11, V12, V13, V14, V21, U22), With latticesN, = Z{uq, u,} andN, = Z{v1s, ..., v,
%(vn + -+ 4 v22)}. ThenW(o)\{0} consists of a single point = %(vn + -+ v20),

and if fo mapsu;; to u;, thenw is mapped to @; + u,, which is not a barycenter.
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