18.100B Problem Set 11

Due Thursday May 5 by 2:30pm. When solving homework problems, you may cite the theorems proved in class. However, you may not cite theorems from Apostol that were not discussed / proved in class unless noted in the problem description.

Part A

1 (5 points). Prove that every uniformly convergent sequence of bounded functions is uniformly bounded. I.e. if $\{f_n\} \subset C([a,b])$ converges uniformly to f, then there is a constant A so that $|f_n(x)| \leq A$ for each $x \in [a,b]$ and each n.

2 (5 points). Let $\{f_n\}$ and $\{g_n\}$ be sequences of functions that converge uniformly on a set $M \subset \mathbb{R}$. Define $h_n = f_n + g_n$. Prove that $\{h_n\}$ converges uniformly on M.

3. (5 points) (Apostol 9.15). Prove or disprove the following statement: Let $\{f_n\}$ be a sequence of continuous functions on [0,1], and suppose that that $f_n \to f$ uniformly on [0,1]. Then

$$\lim_{n \to \infty} \int_0^{1-1/n} f_n(x) dx = \int_0^1 f(x) dx.$$

Part B

4. (5 points). Let $\{f_n\}$ be a sequence of functions that are Riemann integrable on [a,b]. Suppose that $f_n \to f$ uniformly on [a,b]. Prove that f is Riemann integrable on [a,b], and that $\lim_{n\to\infty} \int_a^b f_n(x)dx = \int_a^b f(x)dx$.

Remark: This is Lemma 1 from lecture (we used this lemma but did not prove it).

5. (5 points). Let $f: [0,1] \times [-a,a] \to \mathbb{R}$ be continuous. Let $\{g_n\}$ be a sequence of functions from [0,1] to [-a,a], and define $h_n(x) = f(x,g_n(x))$ for $x \in [0,1]$. Prove that if $g_n \to g$ uniformly on [0,1], then $\{h_n\}$ converges uniformly to h, with h(x) = f(x,g(x)).

Remark: This is Lemma 2 from lecture (we used this lemma but did not prove it).

6. (5 points) Let $f: [-1,1] \to \mathbb{R}$. Suppose that f is continuous on [-1,1], and that for each $k=1,\ldots,f^{(k)}$ exists and is continuous on (-1,1). For $n=1,2,\ldots$, define

$$f_n(x) = f(0) + \sum_{k=1}^n \frac{f^{(k)}(0)}{k!} x^k.$$

This is the sum of the first k terms of the Taylor expansion of f around the point 0.

Is it always true that $f_n \to f$ pointwise on (-1,1)? What about $f_n \to f$ uniformly? Prove that the answer is yes, or provide a counter-example.