Math 101 - 951 Quiz #4 (August 6, 2014)

Show all your work. Use back of page if necessary. Calculators are not allowed.

Last Name:	First Name:	Student No.:
------------	-------------	--------------

- 1. (4 marks each) Determine if the following series are convergent or divergent:
 - (a) ∑_{n=1}[∞] n!/n⁶⁸
 Solution: Using the Ratio Test: |a_{n+1}/a_n| = (n+1)!/(n+1)⁶⁸ · n⁶⁸/n! ① = (n/n+1)⁶⁸ (n+1) → ∞.②
 (b) ∑_{n=1}[∞] 1/n² √n
 Solution: Using the Limit Comparison Test, we can compare this series with ∑_{n=1}[∞] 1/n² ①. Noting that lim_{n→∞} n²/n² √n = 1, ① and that ∑_{n=1}[∞] 1/n² converges ①, so the series converges ① (absolutely, since all terms are positive). [Alternatively, we can use the Comparison Test. Note that for n > 2, √n < n²/2 ① and n² √n > n² n²/2 = n²/2. Thus 1/n² √n < 1/n²/2 = n²/2. ① But ∑_{n=1}[∞] 1/n²/n²
 converges. ① Thus ∑_{n=1}[∞] 1/n² √n converges as well.①]
- 2. (2 mark) For what values of p is the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{(n-1)^p}$ convergent? Justify your answer.

Solution: This is an alternating series. Denoting $b_n = \frac{n}{(n-1)^p}$, we check if b_n satisfies the following two conditions:

(i) $b_{n+1} < b_n$ for sufficiently large *n*. This can be checked by differentiating $f(x) = x(x-1)^{-p}$: $f'(x) = (x-1)^{-p} + x(-p)(x-1)^{-p-1} = (x-1)^{-p-1}[(1-p)x-1] < 0$ is satisfied for large *x* if $p \ge 1$.

(ii) $\lim_{n \to \infty} b_n = 0$ if the exponent p in the denominator is greater than that in the numerator p > 1. (1)

Based on the Alternative Series Test, this series converges for p > 1. [Deduct ① if the correct conclusion is reached but no detailed check of the 2 conditions are given.]

[To be rigorous, one might want to show that the series converges only for p > 1. But this is not required. If $p = 1, b_n \to 1$. If $p < 1, b_n \to \infty$. In either case $a_n = (-1)^{n-1}b_n$ does not tend to zero, and the series diverges.]