Math 101-951 Quiz \#4 (August 6, 2014)
Show all your work. Use back of page if necessary. Calculators are not allowed.
Last Name:
First Name:
Student No.:

1. (4 marks each) Determine if the following series are convergent or divergent:
(a) $\sum_{n=1}^{\infty} \frac{n!}{n^{68}}$

Solution: Using the Ratio Test: $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!}{(n+1)^{68}} \cdot \frac{n^{68}}{n!}(1)=\left(\frac{n}{n+1}\right)^{68}(n+1) \rightarrow \infty$.(2) And the series diverges.(1)
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}-\sqrt{n}}$

Solution: Using the Limit Comparison Test, we can compare this series with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ (1). Noting that $\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-\sqrt{n}}=1$, (1) and that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (1), so the series converges (1) (absolutely, since all terms are positive). [Alternatively, we can use the Comparison Test. Note that for $n>2, \sqrt{n}<\frac{n^{2}}{2}$ (1) and $n^{2}-\sqrt{n}>n^{2}-\frac{n^{2}}{2}=\frac{n^{2}}{2}$. Thus $\frac{1}{n^{2}-\sqrt{n}}<\frac{1}{\frac{n^{2}}{2}}=\frac{2}{n^{2}}$.(1) But $\sum_{n=1}^{\infty} \frac{2}{n^{2}}$ converges. (1) Thus $\sum_{n=1}^{\infty} \frac{1}{n^{2}-\sqrt{n}}$ converges as well.(1)]
2. (2 mark) For what values of p is the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{(n-1)^{p}}$ convergent? Justify your answer.

Solution: This is an alternating series. Denoting $b_{n}=\frac{n}{(n-1)^{p}}$, we check if b_{n} satisfies the following two conditions:
(i) $b_{n+1}<b_{n}$ for sufficiently large n. This can be checked by differentiating $f(x)=x(x-1)^{-p}$: $f^{\prime}(x)=(x-1)^{-p}+x(-p)(x-1)^{-p-1}=(x-1)^{-p-1}[(1-p) x-1]<0$ is satisfied for large x if $p \geq 1$. (1)
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$ if the exponent p in the denominator is greater than that in the numerator $p>1$. (1)

Based on the Alternative Series Test, this series converges for $p>1$. [Deduct (1) if the correct conclusion is reached but no detailed check of the 2 conditions are given.]
[To be rigorous, one might want to show that the series converges only for $p>1$. But this is not required. If $p=1, b_{n} \rightarrow 1$. If $p<1, b_{n} \rightarrow \infty$. In either case $a_{n}=(-1)^{n-1} b_{n}$ does not tend to zero, and the series diverges.]

