Math 101-951 Quiz \#3 (July 30, 2014)

Show all your work. Use back of page if necessary. Calculators are not allowed.

1. (4 marks) Find the solution of the differential equation $\frac{d y}{d x}=e^{x-y}$ that satisfies $y(0)=1$. Express your final answer in the form $y=f(x)$.

Solution: We write $e^{y} d y=e^{x} d x$ (1) and integrate both sides:

$$
e^{y}=e^{x}+C .(1)
$$

Putting in the initial condition gives us $e=1+C$ and thus $C=e-1$. (1) Finally the solution can be written as

$$
y=\ln \left(e^{x}+e-1\right) .(1)
$$

2. (4 marks) Determine if the sequence $\left\{a_{n}\right\}$, with $a_{n}=\frac{\sin \sqrt{n}}{\sqrt{n}}$, converges. Justify your answer. If it does, compute the limit.

Solution: Note that $-1<\sin \sqrt{n}<1$ for all integer n (1). Therefore

$$
\frac{-1}{\sqrt{n}}<\frac{\sin \sqrt{n}}{\sqrt{n}}<\frac{1}{\sqrt{n}}(1)
$$

Both $\frac{-1}{\sqrt{n}}$ and $\frac{1}{\sqrt{n}}$ converge to 0 (1). By the Squeeze Theorem, our sequence $\left\{a_{n}\right\}$ converges to 0 as well (1).
Alternatively, one can consider the function $f(x)=\frac{\sin \sqrt{x}}{\sqrt{x}}(1)$, and note that as $x \rightarrow \infty$, the numerator is bounded between -1 and 1 , while the denominator tends to ∞ (1). Thus, $\lim _{x \rightarrow \infty} f(x)=0$ (1). By Theorem 3 of $\S 11.1$, we know that $\lim _{n \rightarrow \infty} a_{n}=0(1)$.
3. (2 marks) Prove that the series $\sum_{n=1}^{\infty} \sin ^{2}\left(\frac{n \pi}{2 n+1}\right)$ diverges.

Solution: Theorem 6 of $\S 11.2$ says that if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$. In this case,

$$
\lim _{n \rightarrow \infty} \sin ^{2}\left(\frac{n \pi}{2 n+1}\right)=\sin ^{2}(\pi / 2)=1 \neq 0 .(1)
$$

Using the theorem, the series must diverge (1). [Note that we are using the "converse-negative" of Theorem 6. This has been written out as Theorem 7 on p. 709 of the textbook. Full credit for citing Theorem 7 directly.]

