Math 101-951 Quiz \#2 (July 16, 2014)

Show all your work. Use back of page if necessary. Calculators are not allowed.
Last Name:
First Name:
Student No.:

1. (6 marks, 3 for each part below) Evaluate the following integrals:
(a) $\int 2 t(\ln t)^{2} d t$

Solution: Integrate by parts by identifying $f(t)=(\ln t)^{2}, g^{\prime}(t)=2 t, f^{\prime}(t)=\frac{2}{t} \ln t, g(t)=t^{2}$:

$$
\int 2 t(\ln t)^{2} d t=t^{2}(\ln t)^{2}-\int 2 t \ln t d t .(1)
$$

Integrate by parts again, with $f(t)=\ln t, g^{\prime}(t)=2 t, f^{\prime}(t)=1 / t, g(t)=t^{2}$:

$$
\int 2 t(\ln t)^{2} d t=t^{2}(\ln t)^{2}-t^{2} \ln t+\int t d t(1)=t^{2}(\ln t)^{2}-t^{2} \ln t+\frac{t^{2}}{2}+C .(1)
$$

(No need to penalize omission of $+C$.)
(b) $\int_{0}^{\frac{\pi}{2}}(\cos x)^{\frac{7}{3}} \sin ^{3} x d x$

Solution: Since $\sin x$ appears in odd power, we can make the substitution $u=\cos x, d u=$ $-\sin x d x$ (note the change of the lower and upper bounds into those for u):
$\int_{0}^{\frac{\pi}{2}}(\cos x)^{\frac{7}{3}} \sin ^{3} x d x=-\int_{1}^{0} u^{\frac{7}{3}}\left(1-u^{2}\right) d u(1)=\int_{0}^{1}\left(u^{\frac{7}{3}}-u^{\frac{13}{3}}\right) d u=\left[\frac{3}{10} u^{\frac{10}{3}}-\frac{3}{16} u^{\frac{16}{3}}\right]_{0}^{1}(1)=\frac{9}{80}$. (1)
Deduct (1) for incorrect bounds.
2. (4 marks) Find the volume of the solid obtained by rotating the region enclosed by the curves $y=1-x^{2}$ and $y=|x|-1$ about the line $y=-1$.

Solution: A sketch shows that we have an upside-down parabola $y=1-x^{2}$ over a corner formed by two straight lines $y= \pm x-1$ emanating from $(0,-1)$. They intersect at $(-1,0)$ and $(1,0)$, and are symmetric about the y axis. The volume is thus twice that computed from the right half of the graph alone (award (1) for sketch and correct bounds):

$$
V=2 \pi \int_{0}^{1}\left[\left(1-x^{2}+1\right)^{2}-(x-1+1)^{2}\right] d x(1)=2 \pi \int_{0}^{1}\left(x^{4}-5 x^{2}+4\right) d x=2 \pi\left[\frac{x^{5}}{5}-\frac{5 x^{3}}{3}+4 x\right]_{0}^{1}(1)=\frac{36 \pi}{5} .(1)
$$

