SYMMETRY OF NONNEGATIVE SOLUTIONS OF A
SEMILINEAR ELLIPTIC EQUATION WITH SINGULAR
NONLINEARITY

ZONGMING GUO AND JUNCHENG WEI

ABSTRACT. We use the Method of Moving Plane (MMP) to obtain necessary and
sufficient conditions for the radial symmetry of positive solutions of the following
semilinear elliptic equation with singular nonlinearity:

1
Ay——=0inR",n >2
ul/

where v > 0. In order to apply MMP, it is crucial to obtain the asymptotic
expansion of u at co.

1. INTRODUCTION

In this paper we investigate the symmetry and local behavior of nonnegative
solutions of the equation
Au—%zo, reR*, n>2, v>0. (1)
We call u a nonnegative (positive) solution of (I) if u € C*(R*), u > 0 (u > 0),
u # 0 in R" and u satisfies (I) a.e. in R*. (Clearly u = 0 is not a solution of (I).)
Problem (I) arises in the study of steady states of thin films. Equations of the
type
u = -V - (f(u)VAu) = V - (g(u)Vu) (1.1)
have been used to model the dynamics of thin films of viscous fluids, where z =
u(z,t) is the height of the air/liquid interface. The zero set ¥, = {u = 0} is the
liquid/solid interface and is sometimes called set of ruptures. Ruptures play a
very important role in the study of thin films. The coefficient f(u) reflects surface
tension effects-a typical choice is f(u) = u®. The coefficient of the second-order term
3 van der Waals interactions
g(u) = u™, m < 0. For backgrounds of (1.1), we refer to [BP1, BP2, LP1, LP2,
LP3, WB] and the references therein.

can reflect additional forces such as gravity g(u) = u
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In general, let us assume that f(u) = u?, g(u) = u™, where p, m € R. Then if we

consider the steady-state of (1.1), we see that u satisfying
uPVAu 4+ u"Vu =C

is a steady state of (1.1). Where C = (C4,Cy,...,C,) is some constant vector. By

assuming C = 0 (which prevents linear term on z), we obtain

uq

Au+ ——-C=0 in , (1.2)
q

where ¢ = m —p+1 and C is some constant. (Here we have assumed that ¢ # 0. If
g = 0, we have to replace % by logu.) Note that solutions to (I) are steady-states
of (1.1) but the reverse is not true. For thin films under van der Waals forces,
we have f(u) = w3, g(u) = u™, ¢ = m — 2 < —2. The one-dimensional steady-
state problem of (1.1) has been studied thoroughly in [LP1, LP3] and the references
therein. It is found that ruptures never occur in one-dimensional case. On the other
hand, numerical works on van der Waals driven rupture for (1.1) in two-dimension
suggested that the rupture can occur in points [BBD, HLU] or rings [WB, YD, YH].

In this paper, we consider problem (1.2) in R” for n > 2 and assume that the
constant C' = 0. Problem (1.2) becomes (I) with a simple scale of u. It is easy to
see that if u € C) (R"\X,), then u € C2(R*\X,).

The structure of nonnegative solutions of (/) can be complicated since if u is a
nonnegative solution of (I), then the rupture set ¥, can be nonempty and with a
positive Hausdorff dimension (see [GW]). In this paper we are interested in symmetry
property of positive solutions u of (I), i.e., ¥, = (. Notice that ¥, can contain
at most one element if v is radially symmetric. Indeed, if ¥, contains more than
one element, then we claim that u can not be radially symmetric about some point
o € R”. In fact, suppose on the contrary, we have a radially symmetric nonnegative
solution u € C*(R") of (I) with zg, 21 € Xy (20 # 21). We assume that u is radially
symmetric about a point zy. Then there are three cases here: ¢y = zy; 9 = 2z; and
xo # 2z (1 = 0,1). Now, setting r = |z — x¢|, we easily know that u(z) := u(r)

satisfies the equation
(r" ) =", 0<r < oo (1.4)

This implies that u'(r) > 0 for r € (0,00). Now for the first case, we have that
u(ry) = 0 with 7 := |21 — x|, and hence u = 0 in B, (zo), which is impossible. We

can derive contradictions for other two cases similarly. This implies that our claim
2



holds. On the other hand, the same arguments imply that if ¥, = {a single point},
then u must be radially symmetric about this point.

Define
2

v+1

o= , A=[a(n—2+a)] VD, (1.5)

It is easy to see that

uo(z) = A|z|® (1.6)
is a nonnegative radially symmetric solution of (I). For this solution, it is clear that
3 = {0} and |z| *uo(z) = A. It will be seen that the limit

lim |z|™%u(z) = A (1.7)

|z|—+o00
plays an important role in the radially symmetric properties of nonnegative solutions
of (I).
Not all solutions of (I) with a single rupture point are radially symmetric: in fact,

let n =2 and v = 3, then the following solution

ue(z) = \/M(e(cos 2)2 + ¢ !(sin 2)2) ,e>0 (1.8)

satisfies (I) and has one single point rupture 0. But certainly u. is not radially
symmetric.

Our main goal of this paper is to find necessary and sufficient conditions for
which solutions of () are radially symmetric.

It is very interesting to see that symmetry properties of positive solutions of (I)
are related to those of positive solutions of the Lane-Emden equation with positive

supercritical exponent
Au+uP =0, z€R*, p>(n+2)/(n—2). (1.9)

The symmetry and local behavior of positive C?-solutions of (1.9) were studied by
H. Zou [Zou]. He showed that for n > 3 and (n + 2)/(n — 2) < p < m, where
00, n=3,
m= { (n+1)/(n=3), n>3,
a solution u of (1.9) is radially symmetric about some point, provided that v has
the following decay
u(z) = O(|z|"71) at + oo. (1.10)
In a more recent paper [Gu], the first author extended Zou’s result to the cases
m<p<ooifn=4and p > n/(n—4)if n > 5. More precisely, he showed

that for n > 5 and p > n/(n — 4), a nonnegative C? solution of (1.9) is radially
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symmetric about some point in R* if and only if limg 400 \:c|r%u(:v) = A for some
A > 0. Furthermore, for n > 4 and (n+1)/(n — 3) < p < n/(n —4), u is radially
symmetric about some point in R" if and only if limj; ;e |:v|p%1u(x) = )\ and
limz— 400 |x|1_(“+”)/2(|x|%u(:v) —A) =0 where y = zﬁ +4—2n.

Unlike those in [Zou| and [Gu], positive solutions of (I) do not decay as |z| — oo.
In fact, because of the negative power of u, u grows as |z| — +00. We will establish
strong asymptotic estimates for the positive solutions of (I) satisfying (1.7), which
are good enough to obtain their radially symmetric properties.

¥ can be considered as negative su-

We remark that the negative exponent u~
percritical in R*,n > 2. In [ACW], it is found that in R, u ¥ is subcritical if
v < 3, critical if v = 3, and supercritical if » > 3. Thus all v with v > 0 can be
considered supercritical in R*,n > 2.

In this paper, we will use the devices introduced in [Zou| and [Gu]. In partic-
ular, our arguments in the proofs below are closely related to those of [Gu]. The
key ingredient of our arguments in this paper is the powerful Alexandroff-Serrin
moving-plane method (MMP), which was first developed by Serrin in PDE theory,
later extended and generalized by Gidas, Ni and Nirenberg [GNN1-2] and used by
many authors. In contrast to the case of bounded domains or subcritical (critical)
nonlinearities, where Hopf boundary Lemma or the Kelvin transform is available
to start MMP, appropriately strong asymptotic estimates of solutions at infinity,
replacing boundary lemmas or Kelvin transform and providing a starting point for
the method, are crucial for the moving-plane procedure in the case of the entire
space with supercritical nonlinearities.

Define y = 2(a+n — 2). We will establish the strong asymptotic estimates for

positive solutions u(x) of (I) satisfying (1.7) at infinity for the two cases below:
(@) p—n>0, (b) —1<p—n<O0. (1.11)

It is easily seen that (a) holdsif n >4 and v >0;n =3 and 0 < v < 3; n =2 and
0<v<1,(b) holdsifn =3 and v > 3; n =2 and 1 < v < 3. For Case (a), the
asymptotic estimate (1.7) of u is good enough for us to obtain its symmetry by the
moving-plane method. For Case (b), the asymptotic estimate (1.7) of u is not good
enough to do so. We need to obtain better asymptotic estimates for it.

Our main global results read



Theorem 1.1. Let n > 2 be an integer, v > 0 and u(z) a positive C-solution of
(I). Suppose that

p—m>0, e. n>4dandv>0n=3 and0<v<3;,n=2and0<v <1
(1.12)
Then u is radially symmetric about some point xq € R™ if and only if
lim |z|"%u(z) = A. (1.13)
|z|—+o00
Theorem 1.2. Assume that n = 3 and v > 3 orn = 2 and v > 1 (note that
-2 < pu—n<0), u(z) is a positive C°-solution of (I). Then u is radially symmetric
about some point xo € R" if and only if

lim |z| %u(z) = A (1.14)
|z| —+o0
and
lim |z 2 (|~ u(z) — X) = 0. (1.15)

|z|—=+00

We remark that in [Zou], it is only assumed that
u(z) = O(|z|"77) at + oco.

Here in this paper we need the exact asymptotics. Example (1.8) shows that it is

not enough to just assume that
u(z) = O(|z|71) at + co.
Example (1.8) also implies that the assumption (1.15) is needed in Theorem 1.2 at
least for some v.
However, in the case n = 2, v # 3, we can show the following:

Theorem 1.3. If u(z) satisfies (I) and the following growth condition:

u(z) > Clz|* at + oo. (1.16)
Then (1.7) holds.

The radially symmetric solutions of (I) can be classified as follows:

Theorem 1.4. All radially symmetric solutions of (I) can be classified as follows
(a) the first solution is a solution with a single rupture: ug(r) = (”+1)v+1rv+1 :
(b) the other solutions form a one-parameter family {u,},>0 with “n( ), = |z,

strictly increasing in 7, u,(0) = n > 0, u,(r) = nuy(n~¥*+V/2r) and, as r — +o0,

r_u%lu,,(r) — A
As far as we know, our result is the first of its kind in dealing with radial symmetry

of nonnegative solutions for semilinear elliptic equations with negative power. This

paper is organized as follows:



Sections 2 and 3 provide some key inequalities for the difference v(y) = r~*u(z) —

Ay =5,

T

Section 4 and Section 5 study the Lipschitz and the Holder continuity of v near

Section 6 provides a key auxiliary lemma-Lemma 6.2, which is needed for using
MMP.

In Section 7, we prove the necessary part of Theorems 1.1, 1.2 and Theorems 1.3,
1.4.

Finally in Section 8, we use MMP to finish the proofs of sufficient part of Theorems
1.1 and 1.2.
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2. PRELIMINARIES

Let n > 2 be a positive integer and R” be the n-Euclidean space. For v > 0,

consider the equation
Au=u", zeR". (2.1)

We are interested in nonnegative C?-solutions u of (2.1) satisfying (1.7).

We begin with notation and definitions. Let

2
a=——, A=lala+n— . (2:2)
Throughout the paper, we shall assume that v > 0 and
lim |z| %u(z) = A (2.3)

|z| =00

In what follows, we denote M = M (- - -) positive constants, besides the arguments
inside the parenthesis, depending upon the structural numbers n and v, which may
vary line from line.

For any function u(z) on R", we introduce the following Kelvin type transform

o T
v(y) =r"ulz) = A y= 3, r=lz|>0. (2.4)
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Equation (2.1) is converted to an equation with singular coefficients at the origin

under (2.4). In particular, we turn to study the new equation near the origin.

Lemma 2.1. Let u be a nonnegative solution of (2.1), v given by (2.4). Suppose
that (2.3) holds. Then v satisfies the equation

py-Vu po o f(u n
AU—T-F?— 52):0, yER\{O}, (25)

where s = |y| and
p=2a+n-2), ft)=@E+N"" =2 +rA L
Note that f is real analytic at t = 0 and satisfies
f(0) = f'(0) =0, f"(0)=v(v+ 1))\_(“+2) > 0.

Moreover, for any integer T > 0 there exists a constant M = M (u) > 0, sg = so(u) >
0 such that

M
limv(y) =0, |Vo(y)| < —, fors=ly|l < so. (2.6)

s—0 ST’

Proof. Using (2.1) and (2.4), the equation (2.5) is obtained by direct calculations.
The estimates (2.6) can be obtained by arguments exactly same as those in the proof
of Lemma 2.1 of [Zou]. O

By Lemma 2.1, it amounts to studying solutions of (2.5) satisfying (2.6). There-
fore, in the sequel, we shall assume that (2.6) is satisfied.

We introduce the function

w(s, ) =wv(s,0) —7(s), (2.7)
where
B(s) = win /5 o(s,0)d9, wn = |S™.

Lemma 2.2. Let v be a solution of (2.5) and Ay the Laplace Beltrami operator on
S™L. Then v, and U and w satisfy the following equations respectively

A — 1
GU_/J' n+ U/_i_ﬂ_f(v)
52 s 52 52

V" + =0, (2.8)

_ 1 mn
o _pontly  pv f)
s 52 52

=0 (2.9)

and

A — 1 -

wll + 02w _ lu’ n+ wl + ﬂ _ f(v) (v) — O, (210)
S s S
where the prime is the derivative with respect to the radius s.
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Proof. Equation (2.8) follows directly from (2.5) and the formulas

A -1
Av:v”+$—92v+n v, Vuv-y=1's.

Integrating (2.8) over S"! yields (2.9) since

—_— 1
Agv = — Agu(s,0)df = 0.
wn Sn—1
Finally, subtracting (2.9) from (2.8) gives (2.10). O

3. A FUNDAMENTAL INEQUALITY

The Lipschitz continuity of w at the origin is crucial in proving the expansion of
u near oo, which can be used to obtain the symmetry of v by MMP. To this end,

we first obtain the Holder type estimate for v. The function

W(s) = (E/anqu(s,H)dG)JJQ, (3.1)

plays an important role in achieving our goal.

Theorem 3.1. Let W be given by (3.1). Then there exist so > 0 and a positive
constant K = K (v,v,n, so) such that

W(s) < Ks'™ ™ for0< s < s (3.2)

if —1<pu—n<0 and

W(s) < Ks for0<s< s (3.3)
if u—n>0.

The proof of this theorem is related to that of Theorem 3.1 of [Gu]. We first

obtain the following lemma.
Lemma 3.2. For any 0 < ¢ < min{(1+p—n)/2,1/2}, there exist 6 = 1+p—n—e > 0
for =1 <pu—n<0;6=1—¢€ for u—n>0; sy = so(€) >0 and a positive constant
K = K(v,0, s0) such that

W(s) < Ks®, 0<s< s. (3.4)
Proof. Let g(v) = f(v) — f(v). Then, it is known from (2.10) that w satisfies

A a4l
ow _pmntl o m 90 g (3.5)

n
w +
52 s 52 52

It is known from [Rey]| that the eigenvalues of the problem
—AgQ =0Q, He S

are
op=k(n+k—2), k>0

(n—3+k)(n—2+2k)
kY(n—2)!

0'0:0, m0:1, Q()El
8
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or=n—1, mi=n, Qi) =xz;, 1<i<n
o9 = 2n,

here Q;(0) denote the associate eigenvectors. Therefore, if u € L2(S™™1) is orthogo-
nal to @, i.e., u = 0, we have that

/ |Vwﬁ%2fn—n/‘ u2do.
Sn—1 Sn—1

Moreover, if u is orthogonal to Qg, @; (1 =1,2,...,n), we have that

/ \Vou|>do > 2n/ u?df.
Sn—1 Sn—1

Since w(s,-) € L?*(S™!) and w = 0, we have that w(s,0) = wi(s,0) + ws(s,H),
where w1 (s, 0) X wi(s)Qi(0), {Q1(0),...,Q,(0)} is the basis of the eigenspace
H; of —Agn-1 correspondlng to the eigenvalue n — 1, wy(s, ) € Hi-. Now, it follows
from (3.5) that w;(s) satisfies the equation

—n4t1 4l Z-
wl(s) — BT () ¢ A0 ) - 90 g (3.6)
forv=1,2,...,n, where
gi(s) = - f’(g(g,0))2;‘:1wj(s)Qj(0)Qi(0)d0+ - f'(&(s,0))wa(s,0)Q;(0)db

£(s,0) = nv(s,0) + (1 —n)v, n € (0,1) (see [Gu]).
Let t = —Ins, 2(t) = w;(s), £(t,0) = £(s,0) and 2(t,0) = wa(s,d). Then z(t)
satisfies the equation
7 (1) + (b= n+2)%(t) + (1 —n +1)z(t) — 5i() =0 (3.7)
where
W)= [ FOZL50QOQO®+ [ | F©u0Q )
We first study solutions of the equation

V') +(p—n+2)y @)+ (p—n+1y(t) =0. (3-8)

A simple calculation implies that (3.8) admits two linearly independent positive
solutions

yr(t) = e UHmi a(t) =e
Let 6 =1+ p—n, 6o = 1. Then if y —n > —1, we see 6; > 0 and J, > 0. By the
ordinary differential equation theory, we have that

sit ot 515 —d2t 6*51t67(525 _
()_mel+Mez+M/" (s (39)
where M; (j = 1,2) are constants depending upon ty, d; and &y, |M3| = \N%n\ is a

constant independent of ¢;. Now we only consider the case that y —n # 0, the case
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that u —n =0,i.e. n=3 and v =3 or n = 2 and v = 1 will be studied later. It
follows from (3.9) that, for ¢ sufficiently large,

t
zi(t)] < Ce % + Cle_‘st/ % |Gs(s)|ds (3.10)
to
where 6 = min{d;,d2} > 0, C} is independent of #,. This implies that
t
()| < Ce™® + Cre™ /t e[S 25 (5) [ Fy(5)] + |Gi()] | ds, (3.11)
where
|[Fj(s)| = | . F(€)Q:(0)Q;(6)d6),
Gi(s)| = | F'(€)z(t, 0)Qi(0)dd].
Sn—l
Thus,

t
S a0)] < Coe 4 Cae™ [ O[S 1) + S Glo) |ds, - (312

to

where Cj is independent of ¢5. Set F(t) = maxi<j<n |Fj(t)], G(t) = X7, |G;(t)| and
Z(t) =X ||2(t)|- Then

Z(t) < Coe™ + Cge™ /tt e [F(s)Z(s) + G(s)]ds. (3.13)

Denote d(ty) = max,s, F(t). Using the fact that f'(£(t,0)) — 0 as t — oo, we have
that d(ty) — 0 as ty — oo. Thus,

e Z(t) < Cy + Csd(ty) /t e Z(s)ds + C,4 /t F(5)Z5(s)e* ds, (3.14)

to to

where

Foy =z [ (roem) e
Z(t) = (/ 20 9)d0)1/2.

Let e Z(t) = h(t). Then

h(t) < Cs + Cadl(ts) / “h(s)ds + C, / F(5) Za(s)ePds.

to to
Set R(t) = [ h(s)ds and I(t) = Cy+ Cy [, F(s)Zs(s)e®ds. We have that
R'(t) < I(t) + Csd(to) R(t).
This implies that
t
R(t) < ec?’d(t(’)t/ e‘c3d(t°)sl(s)ds.

to
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It follows from the integration by parts that

h(t) < 1(t) + Csd(t Csdto)t/ ~Cadlto)s) (5

— Uft) — Ot / I(s)

= Csd(to)(t— to)l(to) +/ eCad(to)(t— S)Z( )ds.

to

d

—ng(to)s
PG )

Therefore,
] t _
Z(t) < Cse=* + C / F(s) Zo(s)e= =9, (3.15)
to
where § = § — ggd(to). Since d(ty) — 0 as to — oo, we can choose t, sufficiently
large such that 6 > 0.
On the other hand, we know that ws(s, 8) satisfies the equation

wy(s,0) + Agw;(s,O) Y ;H_ 1w;(s, 6) + %wz(s, 6) — gQ(;’ b _ 0, (3.16)
where
/ 92(s,0)wsy(s, 8)db
gn—1
= P fl(f(sa 0))’!1](8, 9)’(1]2(8, e)de
= gnot fl(g(sa 0))11]1(8, 0)11}2(8, 0)d0 + gn-1 fl(é-)wg(sa 0)d0
Therefore,
1/2 1/2
0 6)do ! 6))* 6))*
[ w00yl < [ (r@uitso)?] [ [ et 0)?]

+ H(s) / ws(s,0)do,
Sn—1
WhereH() maxaesnl\f(( 6))] and H(s) -0 as s — 0.

Let Wa(s (fgn-1 w3 (s, 9)d0) /2. By arguments similar to those in [Zou] and
[Gu], we obtaln that W, satisfies
p—mn+1 p—2n+ H(s [ i ( (s,0))%]'/?
W)~ T e 22 Joea 7O >0
(3.17)

for s € (0,5) and some S > 0. Here we use the inequality

/ |ng280\d0>2n/ w3 (s, 0)d
Sn—1 gn—1

Making the transformations ¢ = —Ins, ws(s,0) = 25(t,8) and Zy(t) = Wa(s), we
have that Z(t) satisfies the equation

Zy(t) + (p—n+2)25(t) + (n— 20+ H(1)) Z2(t) + Hi (1) Z(t) > 0, (3.18)
11



where H*(t) = H(s) and H*(t) — 0 as t — oco. To obtain H{(t), we notice that

/ wisO)Pd = [ (SLr©u=0) a

< CO(SL |wi(s)])*Hi(s),

where H7(s) = [q._1(f'(£))°21,Q7(0)df and Hi(s) — 0 as s — 0. Under the
transformation, we have that H; (¢) = H(s) and Z(t) = X, |w;(s)|. Thus, Hf(t) —
0 as t — oo. Using (3.18) and (3.15), we obtain that

Zy(t) + (b —n+2)Z5(t) + (u— 2n + H'(t)) Z2(t)
+CsH; ()e™ + CoH (1) / t F(8)Z,(s)e™ 9 ds > 0. (3.19)

¢
For any 0 < 6 < 6, choose ¢* > t; such that ;—2n+H*(t) = 2(1/%1—2)%—[-[*@) <0
for t > t*, and K = K (to,t*) > 1 such that
Zy(t) < Ke %, t € [ty, t].
Let ((¢) = Ke . We claim that
¢"(t) + (= n+2)¢"(t) + (1 — 2n + H*())¢(2)

. t .

+COsH (e O + CoH? (1) / Fs)C(s)e 3 9)ds < 0, (3.20)
to

for ¢t > t*. In fact, a simple calculation implies that

")+ (p=—n+2)¢"(1) + (p—2n+ H*(1))C(2)
- t -
+COs HE (e~ + CoH? (1) / F(s)¢(s)e5-9)ds
to
=K[6® — (u—n—+2)0+ (u—2n—+ H*()]e
+CsHy (t)e_st + CsH{ (1) /t ﬁ’(s)Ke_gse_s(t_s)ds
to

— [K(52 —(p—n—+2)6+ (u—2n+ Hi“(t)))

. t o
+CsH; (t)e= = 4 CsHf (1) / F(S)Ke—<5—5><t—8>ds].

to
Since § < 5, we easily know that

~ A t N o
CsHi(t)e= 0=t 4 CﬁHf(t)/ F(s)Ke~G-9t=9)gs5 5 0

to
as t — 00. On the other hand, since for v > 0,

p—2n=202/(v+1)—2) <0, d—p+n—2<—1,

we easily know that our claim holds.
Let X (t) = Za(t) — ((t). We know that

X"(8) + (=1 +2)X' () + (1 — 2n + H* (1)) X (¢)
12



t .

+CH (1) / F(s)X ()= ds > 0. (3.21)
to

Since X (t) — 0 as t — oo and X (¢*) < 0, the maximum principle implies that

X(t) <0 fort >t
This implies that

Zy(t) < Ke % for t > t,. (3.22)
It follows from (3.15) that
Z(t) < Ke™® for t > t,. (3.23)
This implies that
W(s) == (/s 1 w2(s,9)d0> v <Ks (3.24)

for s € (0, s9), where sy = e .

When n =3 and v =3 orn=2and v =1, i.e., p —n = 0, equation (3.8) has
only one characteristic value —1. By a different variation of constants formula and
the same steps as above, we also obtain that for any 0 < 6 < 1,

w(s) = ( /S (s, 0)0) ke (3.25)

for s € (0, s9), where sy = e~%.

It is clear that for any € > 0, we can choose to = to(€) sufficiently large such that
0<d:=0—€<d. Sinced=1+p—nfor—-1<puy—n<0andd=1foru—n >0,
we have obtained our conclusion. This completes the proof of Lemma 3.2. O

We fix the € in Lemma 3.2 for the proofs below.
Now we study the Holder estimate for . Let o € R and

p(s) = s~70(s).

Lemma 3.3. Forany 0 < o < 5, there ezists a positive constant M = M (v) such
that
p(s) <M, |p(s)| < M/s, 0<s<sy. (3.26)

Proof. Tt is easily obtained from the equation of 7 and a simple calculation that p(s)
satisfies the equation

11 20’—/1—{—77;—1 / I f v

p'(s) + - T 13(2 Lo = g(s), (327)
where

po=o(c+n—p=2)+pu fi(t)=[f({)/t, t#0
and

_TO) =) _ sy

( ) - g2to
The last identity can be obtained from Lemma 3.2 and the fact that for s small
fw) = f@) = o(jv —vl),

13



and so,

FOI = 10) < o [ 1#) = £G) = o) = ofs),

n
We first claim that there exist two positive constants 7' = T'(v) and M = M (v) such

that
T

[ s mfie 2+ wwpe s [ ] (3.28)

¢ t
for all 0 < ¢t < T. To see this, fix T" and multiply (3.27) by sp(s) and integrate from

ttoT),
i1 /tTp2/8=/thpg(8)+/tTf1(@)p2/8

T

~p)+ [ st - TR (3:29)
¢

Since iy = py(0) = 0% + (n — p — 2)o + 1, we have that iy > 1/2 for 0 < o < 6.

Indeed, we know that py(o) attains its minimum at ¢ = 1+ (z — n)/2. On the

other hand, § < 1+ (u —n)/2 for both —1 < p—n < 0 and g —n > 0. (Note that

b<l4p—n<l+(pu-n)/2if-1<p-n<0,6<1<1+(u—n)/2if p—n >0.)

These imply that u; (o) is decreasing in (0,1 + (x — n)/2) and

pr(0) > p(0) > +p—n)=n—1, for -1 < p—n <0, 0 € (0,9),

(o) > p(8) > m(1) =n—1 for y—n>0, 0 € (0,9).

Thus, to obtain (3.28), it suffices to bound the right-hand side of (3.29) in terms of
the right-hand side of (3.28). By the condition of f;, one has

Hence by fixing T small enough, we may bound
T T
[ r@ers| <5 [ s
¢ ¢
By the Schwartz inequality and the Young inequality, one has

g T 2 1/2 4 3 2 12w T 2 T 26—20—1
‘ 5,09(8)‘ < ( p /8) ( s°g (8)) Sq | st M s :
t t t t t

since

Therefore,

T T p . A
/ fl(E)PQ/S-i-/ spg(s) < 71/ P25+ MT? 20
t t '

since & > ¢. Inserting this into (3.29), we obtain (3.28) immediately since the last

three terms in (3.29) are bounded by the right-hand side of (3.28).
14



Notice that o < § < § implies that 20 < i —n+ 2 for both —1 <y —n <0 and
pw—n > 0. Indeed,

2u—n+1l)<p—n+2 f-1<p-n<0

20<25:{2§u—n+2 if u—n>0.

The remainder of the proof of this lemma is a little variant of the proof of Lemma
4.2 of [Zou]. O

As an immediate corollary of Lemma 3.3, we obtain the following Holder type

estimate of 7 and ?’ near s = 0.

Lemma 3.4. Let 6 be given in Lemma 3.2 and v a solution of (2.8). Then there
exists a constant M = M (v) > 0 such that

B(s)| < Ms®, ['(s)] < Ms*, (3.30)

and
/S 0%(s,6) < Ms*. (3.31)
Proof. We only show (3.30); and (3.31). The proof of (3.30), is left to the readers.
We first make the change of variables
t=—lns, wv(t) =9(s).

Then v satisfies the equation

vy (t) + (n—n—+2)vi(t) + pvr = g1(t), ¢t >0, (3.32)
where

a(t) = F(v) = F(v1) + (F(©) = f(21)) = O(J1|?) + 0o(W) = o(e~™)

for 20 > 6 (see Lemma 3.3). The two characteristic values of the equation (3.32)
are

_n—p=2  [(p—nP -4 -1
ki = 5 + 5 )
L T ((Tht) et e i

2 2

When (1 — n)? < 4(n — 1) (note that this covers the case —1 < p —n < 0), we
have that the equation (3.32) has two conjugate characteristic values

kl :—00+01’i, k2= —O'O—Uli
with o9 = 1+ (£ —n)/2, o1 > 0. It follows, by the variation of constants formula,
that there exists a positive constant M = M (v;) such that
¢ A
o (t)] < Me_”ot(l + / |gl(5)\e"°5>ds < Me™®.
to

(Note that 6 < 1+ (4 —n)/2 no matter g —n >0or =1 < p—n < 0.)
15



When (p —n)% > 4(n — 1), we have that z —n > 0 and 6 < 1. Moreover, the two

characteristic values of (3.32) satisfy
kl < —1 and li'g < —1.
Therefore, by arguments similar to the above, we obtain that

w1 ()| < Me ™t < Me ™.

Since v(s,0) = w(s, ) + v, it is easy to see that (3.31) follows from Lemma 3.2 and

(3.30). This completes the proof.

g

By arguments similar to those in the proof of Theorem 5.2 of [Zou|, we obtain the

following proposition from Lemmas 3.2 and 3.4.

Proposition 3.5. Let 7 > 0 be an integer and v a solution of (2.8). Then for the €
given in Lemma 3.2, there exists a constant M = M (v,e,7) > 0 (independent of s)

such that

max |ID™(y)| < Ms*™ "7 for 0 < s < sg
y|=s
if —1<pu—n<0 and

1‘n|ax |ID7v(y)| < Ms'™7 for 0 < s < sg
y|=s

if p—n>0.
Proof of Theorem 3.1
By Proposition 3.5, we know that
FEl < Me™
Let 6 and G be as in the proof of Lemma 3.2. We have that
G(t) < Me 20t = Me 20—t

Choose € sufficiently small, it follows from (3.13) that

t .
Z(t) < Me™% + Me_ét/ e®=) 7(s5)ds.

to
Let R(t) = €**Z(t). Then the Gronwall’s inequality implies that

R(t) < M.
Thus,
Z(t) < Me™.
Arguments similar to those in the proof of Lemma 3.2 imply that
Zy(t) < Me™.

This completes the proof.
16
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Corollary 3.6. Let v be a solution of (2.8). Then there exists a constant M =
M(v) > 0 such that

T(s) < MsTWm) 7 (s)] < Ms*™  for 0 < s < sg
if —1<pu—n<0 and
o(s)| < Ms, [v'(s)|<M for0<s<sg
ifu—mn>0.
Proof. Since 26 > § (by choosing € small), the proof is similar to Lemma 3.4. O

Now we can use the estimates obtained in Theorem 3.1; Corollary 3.6 and argu-
ments similar to those in the proof of Theorem 5.2 of [Zou] to obtain the following

theorem.

Theorem 3.7. Let 7 > 0 be an integer and v a solution of (2.8). Then there exist
so >0 and M = M(v,7) > 0 (independent of s) such that

I|n|ax ID™w(y)| < Ms™™H "7 for 0 < s < s (3.37)
yl=s
if —1<pu—n<0 and
I‘n|ax ID™u(y)| < Ms'™™ for0<s<sg (3.38)
yl=s

if p—n>0.

4. LocAL LipscHITZ TYPE ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR
u—n>0
In this section we will obtain the local Lipschitz type estimate for w. This yields a
desired expansion for the application of the moving-plane method. Our main result

in this section is the following theorem.

Theorem 4.1. Let 7 > 0 be an integer. Then there exist s > 0 and a constant
M = M(v,7) > 0 (independent of s) such that

I|n|ax |ID"w(y)] < Ms'™™ for 0 < s < s (4.1)
y|=s

where w s given by (2.7).

The proof of Theorem 4.1 is exactly the same as that of Theorem 3.7 and the local
maximal principle as Lemma 5.1 of [Zou| plays a role. As before, we first establish

a local L?-estimate for w near the origin and then the rest is routine.

Proof. We only show the case that 7 = 0, the rest is left to the readers. Define
w(s,0) = w(s,0)/s. Then w satisfies the equation
Mo p=n=1. n=1_ f()-F0)

52 s 52
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As in the proof of Lemma 3.2, we define
w(s,0) = w(s,0) + was,0)
and
w1 (s, 0) = iy wi(s)Qi(6).
Then w;(s) satisfies the equation

@ (s) — %ﬁ);(s) - gs(f) =0 (4.3)
for:=1,2,...,n, where
gi(s) = - f(€(s,0))57_ 1 (5)Q;Q: + . f1(&)ws(s, 0)Q,

6(55 0) = ,0?)(8, 0) + (1 o ,0)@, p e (05 1) Let ¢ = _lnSa Zz(t) = ?I)i(S), g(ta 0) = 6(8’ 0)
and z5(t,0) = wa(s,0). Then z;(t) satisfies the equation

7 (t) + (n = n)z(t) — Gi() = 0 (4.4)

where

3i(t) = FEEr12()Q,;Q; + F1(€)2(t,0)Q:.

Sn—1 Sn—1
The two characteristic values of the equation

y'() + (p—n)y'(t) =0

are \; = —(u —n), Ay = 0. Note that g —n > 0. Arguments similar to those in the
proof of Lemma 3.2 imply that

t
S1 2i(1)] < Cr + Ce / [S1u () Fy(s)| + SimaGats)|ds (45)

where Cy is independent of ¢y. Since |f'(§)| = O(e™?) and X, |z;(¢)| is bounded (see
Theorem 3.7 and Corollary 3.6), we have that

t
Z(t) < Cy+ 010/ e *Zy(s)ds,

to

where Z(t) and Z,(t) are the same as that in the proof of Lemma 3.2. On the other
hand, we know that Z, satisfies the equation

Zy@t)+ (u—n)Zyt) — (n+1—e ) Zy(t) + e *Z(t) > 0. (4.6)
By the same idea as in the proof of Lemma 3.2 we have that

Zy(t) < Me™" for t > t,.

This implies that Z(t) < M for t > t,. Thus, W(s) < M for s € (0,s0), where
W(s) =Wi(s)/s, sop = e ™.

By arguments same as those in the proof of Theorem 6.1 in [Zou], we obtain our

conclusion. This completes the proof of Theorem 4.1. O
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Let
(s, 0) = %w(s,@), (4.7)
where w is given by (2.7). We view s as a parameter and show that @ tends to one
of the first eigenfunctions or zero uniformly in C7(S"~!) as s — 0 for any 7 > 0. We
also obtain an expansion of v in terms of ¥ with good remainder of w. The following
lemma can be obtained from Theorem 4.1 and Lemma 7.1 of [Zou].
Lemma 4.2. Let v be a solution of (2.8), W be given by (4.7) and p—n > 0. Then

for any non-negative integers T and 11, there exists a constant M = M (v, 7,71) > 0
such that

DYDY < M, y€ By(0), y#0. (48)
Moreover, w satisfies the equation
5 Agw  p—n—=1_, n-1__ f(v)—[f(v)
w"(s,0) + i . o'+ 2 0= 3 : (4.9)
where
fw) — flv -
o)) = [P0 < g (1.10)
Now we show the following theorem.
Theorem 4.3. Let @ be a solution of (4.9). Then necessarily
limw(s,d) =V (0), (4.11)
s—0

where V is zero or one of the first eigenfunctions of —A on S™ 71, i.e.,
AV +(n—1)V =0, V=0. (4.12)

Proof. Let 1w(s, 0) = w,(s, 8)+wy(s, #) be as in the proof of Theorem 4.1. It is easily
known from the proof of Theorem 4.1 that wy(s,#) — 0 as s — 0. (We know that
Zy(t) — 0 as t — 400.) On the other hand, we know from the proof of Theorem
4.1 that
w(s,0) = Ty wi(s)Qi(0)

and w;(s) satisfies the equation (4.3). Let t = —Ins, z;(t) = w;(s) and §;(t) = g;(s).
Then z; satisfies the equation (4.4). We easily know that g;(t) < Me™" and z(t) is
bounded for ¢ sufficiently large. Then 2!, z!' and 2] remain also bounded when ¢ is
sufficiently large.

If 4 —n =0, we easily obtain that
zi(t) =0, z'(t) =0 ast— 4oo. (4.13)

2

If w —n >0, it follows from (4.4) that

(1= )(40)* = G)0) — (541)?) (4.14)
This implies that

/t " (2(s))2ds < oo, (4.15)



which implies that (4.13) still holds. Therefore, it follows easily from the equation
that

zi(t) = 2z ast— oo, (4.16)
for i = 1,2,...,n. Where zy = (2},23,...,2}) is a point in R", z; may equals to
0 € R*. This also implies our conclusion. O

Combining Theorems 4.1 and 4.3, we establish the following asymptotic expansion
at the origin for solutions of (2.8).

Theorem 4.4. (Asymptotic Expansion) Let p —n > 0 and v a solution of (2.8).
Then

v(y) = 0(s) + sw(s, ), (4.17)
where
v(s) = 0(s), v(s)=0(1).
Moreover, for any integer 7 > 0, we have
w(s,0) > V(0) ass—0 (4.18)

uniformly in C™(S™'), where V is zero or one of the first eigenfunction of (—A)
on S, namely,
AgV+(n—1)V =0, V=0. (4.19)

5. LocAL HOLDER TYPE ESTIMATES AND ASYMPTOTIC EXPANSIONS FOR
“1<p—mn<0

In this section we study the local Holder type estimates and asymptotic expansions
for the solutions v of (2.8) when —1 < p—n < 0. We will see that we can not obtain
local Lipschitz type estimates in this case without extra conditions on v. Our main
ideas in all the proofs in this section are similar to those in Section 4. We first show
the following theorem which is similar to Theorem 4.1.
Theorem 5.1. Let 7 > 0 be an integer, =1 < p—n < 0 and v a solution of (2.8).

Then there exist sy > 0 and a constant M = M(v,7) > 0 (independent of s) such
that

max |ID™w(y)| < Ms™ ™7 for0 < s< s (5.1)
Yyl=s

where w is given by (2.7).
Proof. The proof is similar to that of Theorem 4.1. Define

W= ——— and w(s,0) = S ;(s)Qs(0) + ws(s, 0), (5.2)

gltp—mn

which are similar to that in the proof of Theorem 4.1. We have that w(s) satisfies
the equation

_ Agw 14+p—mn_, n—1_
W'+ =5+ L+ b = g(y) (5.3)
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JORIC)

where |g(y)| = | rrw | and w;(s) satisfies the equation
- 1+pu—n _ (s
w; (s) + +w;(s) - g;) =0, (5.4)
where
G($)= | SOt ()@ + s, 0)Qi] o (5.5)
Let t = —Ins, z;(t) = w;(s) and g;(t) = g;(s). Then
7z — (p—n)z — §i(t) = 0. (5.6)
The two characteristic values of the equation
y'(t) = (p—n)y'(t) =0 (5.7)

are A\ = 4 —n and Ay = 0. We know that \y < 0if —1 < g —n < 0. Therefore, the
exactly same arguments as those in the proof of Theorem 4.1 imply that

Zo(t) < Me~(HH=mt for ¢ > ¢, (5.8)
and
Z(t) < M fort > to. (5.9)
These also imply that 5
W(s) < M for s € (0,s0) (5.10)
where W (s) = s~(+#~"W(s). The rest of the proof is exactly same as that of
Theorem 4.1. 4

The following lemma which is similar to Lemma 4.2 can be obtained by Theorem
5.1 and Lemma 7.1 of [Zou].

Lemma 5.2. Let v be a solution of (2.8), w be given by (5.2). Then for any
nonnegative integers T and 11, there ezists a constant M = M (v, T,7) > 0 such that

STDPDIH| < M, y € By(0), y 0. (5.11)

Moreover, W satisfies the equation

. Agw  14+p—mn -1
@+ =27 i "w'+”s2 @ = g(y) (5.12)
where
fw) = fv) e
lg( NZ‘W‘SMSN h (5.13)

Now we claim the following theorem.

Theorem 5.3. Let W be a solution of (5.12). Then necessarily
ll_r)r(l) w(s,0) =V (0), (5.14)

where V is zero or one of the first eigenfunctions of —A on S™ 1 (with eigenvalue
(n—1)), i.e.,
AgV+(n—1)V =0, V=0. (5.15)
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Proof. This theorem can be obtained by the same arguments as those in the proof
of Theorem 4.3 or Theorem 7.1 of [Zou]. O

Combining Theorems 5.1 and 5.3, we establish the following asymptotic expansion

at the origin for solutions of (2.8).

Theorem 5.4. (Asymptotic Expansion) Let —1 < y—n < 0 and v a solution of
(2.8). Then

v(y) =v(s) + s" T (s, ), (5.16)
where

u(s) = O(s%), '(s) =0(s"7),
here 6 = min{l + (u —n)/2, 2(1 + pu — n)}. Moreover, for any integer T > 0, we
have
w(s,0) > V() ass—0 (5.17)

uniformly in C™(S™"™1), where V is zero or one of the first eigenfunctions of —A on
S™=1 namely,

AV +(n—-1)V =0,V =0. (5.18)

Remark 5.5. When y —n = —1, i.e. n = 2 and v = 3, we easily obtain the
expansion of v of (2.8) as

v(y) =o(s) + w(s,0), (5.19)

where w(s, ) is defined in (2.7) and w(s,#) — 0 as s — 0. Moreover, since w(s, 6)
satisfies the equation

Agw n—-1 — f(v)—f({v)

n —
w4+ 2 + v = =0, (5.20)
it follows by the same arguments as those in the proof of Lemma 7.3 of [Zou]| that
lim sw'(s,0) =0, lims*w”(s,0) =0 (5.21)
s—0 s—0

in C™(S™ ') uniformly for any integer 7 > 0.
6. AN AUXILIARY LEMMA FOR p—n >0

In this section we will obtain an auxiliary lemma for the moving-plane procedure.
The main idea is similar to that of Section 8 of [Zou].

Using the transform (2.4), we immediately obtain an asymptotic expansion for
nonnegative solutions of (I) at infinity by combining Theorem 4.4 and Lemma 8.1

of [Zou] under assumptions g —n > 0 and (2.3).

Theorem 6.1. Let p—n > 0 and u be a nonnegative solution of (I). Suppose that
the assumption (2.3) holds. Then we have the expansion

u(z) =r® ()\ +&(r) + 77(7; 0)>, (6.1)

where (r,0) is the spherical coordinates with v = |x|. Furthermore the following
properties are satisfied.
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1. &(r) = r~®u(r) — X, and there exist Ry (= s,') > 0 and a constant M =
M (u) > 0 such that

E(r) < Mr Y, |€(r)| < Mr? forr > Ry. (6.2)

2. Let 7 and 11 be two nonnegative integers. Then there exists a positive constant
M = M(u,T,7) such that

F" DDyl < M, r > Ry. (6.3)

3. Let T be a nonnegative integer. Then n(r,0) tends to V(0) uniformly in
C™(S"') as r — oo, where
for some zy € R" fired and = x/r € S™1.

The theorem enables us to establish the precise limit property below (Lemma 6.2)
for nonnegative solutions of (I), which we need to begin the moving-plane procedure.
We first introduce some notation.

For v € R, let X, be the hyperplane
o ={r=(z1,...,2,) e R": 2y =~}
For z € R", denote 2”7 the reflection point of x about X,, that is,
=2y -z, 29y, Tp)-
As a corollary of the expansions (6.1)-(6.4), we have the following result.

Lemma 6.2. Let p —n > 0 and u be a nonnegative solution of (I). Suppose that
(2.3) holds. Then '
1. If ¥ € R — v and {27} — oo, with x] < 9, then
u(2?) — u(a?")

7200 (yf — a7) |29~

= —2@)\’)/ — 2(33'0)1, (65)

where (xq)1 s the first component of xy in (6.4).

2. Denote
Yo = —(x0)1/(aN). (6.6)
Then there exists a constant M = M (u) > 0 such that
u(z) >0, ifxy >y +1 and |z| > M. (6.7)

Proof. To prove (6.5), without loss of generality, we assume that
A
lim — =0¢€ S"".
300 |27]
For simplicity, we also assume that
Y=y, j=12...,

since the following arguments work equally well for the sequence {7’}.
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Using the expansion (6.1), we have

u(z?) —u(z?”) A . -
(v = a)|aije—> (y—x{)\xqa—g('x” — |2 \)
1 o I
e et Ll Lo A (G
1
1 . . o
e (71 ) = T (e 6)).
1

By the mean value theorem, one has

4oy BH (y — af)
7] + |77

2~ la7"|" =

where £3; is a number between |27| and |z7"|. Therefore,
A . .
S (= )
(v — 1) 27|
_ 4)\cwyﬁ]°-‘71
|27 o2 (|27] + |277])
= —4aXy(1/2 + 0o(1)) = —2a\y as j — oo,

since |27]/|27"| — 1. Similarly, we have for some 3; between |27| and |z7"| that

NP 1 (3 sl ety o =4 (Y — ]
€127 I’ | — €067 Dl | = [agp (o)) + 107" 2€/ (8]~ 1)

27| + [a77]
and in turn,
(Dl D) = O
|z7[*=2(y — 29) jz7[e2(|27] + |277])

= O(27™") =0 asj— oo.

Here we have used the estimate (6.2). We write

1 o o — SR
ey (60 = 17 (i 67)
(la”"],0")

jla=1 _ 1,77 |a—1
27| |27

[@7]02(y — 1)

2L (221, 07) = (7|0
1
il i| i i| i
4= (071,00 = (i’ 07).
As before, by (6.3) we bound
n(l=?"],6"")

, - xj“’l—acﬁ“’l):O 2™ =0 as j — oo.
|W_2(7_$]1)(\ ot~ | |24 (27| 1)



We can obtain the estimates

J o : : .
Lyn 270,077) —n(|277],6°)] = O(|2?| ™) = 0 as j — oo
V-
2] il pi il pi?
W[n(\x ,67) = n(|27],6")] = —2(zo)1
-
by the same idea as that in [Zou]. Thus,

1

"2y = l)

(1o 1" (2], 0) = 27" "~ n(1a”"],67) ) — =2(a0)s, as j = oo

(6.8)
These imply that (6.5) holds.
To prove (6.7), we may argue similarly as in proving (6.5). Indeed, suppose that
(6.7) is false. Then there exists a sequence {z?} — oo such that
ur(a) <0, o >y+1, j=1,2,....
It follows that there exists a sequence of bounded positive numbers {d;} such that
u(z?) > u(zg;), g = 2/ +(2d;,0,...,0), j=1,2,....
Denote
v =l +d; > 2.
By assumption, one has
1

— [u(z?) —u(x?")] > 0,5 =1,2,... (6.9)
(v — =) 27|

There are two possibilities, that is,

lim infy’ < 0o, or lim v’ = occ.
j—oo j—o0

If the first case occurs, we choose a convergent subsequence of {7/} (with limit
v > 70 + 1, still denoted by {7’}) and apply (6.5)-(6.6), we obtain
1

(v — ai)[ad|*~2

[u(z?) — u(z?")] = —2a\y — 2(z)1 < —2aA < 0.

This contradicts (6.9). We can derive a contradiction for the second case similarly.
The proof is a little variant of the proof of Lemma 8.2 of [Zou]|. Thus, neither the
first and the second case can occur and (6.7) is shown. O

7. NECESSARY CONDITIONS

In this section we will prove that, if u is a nonnegative radially symmetric solution
of (I), then the limits (1.13) and (1.14)-(1.15) hold respectively for y —n > 0 and
—2 < p—n < 0. Furthermore, we classify all radially symmetric solutions and prove

Theorem 1.3 and Theorem 1.4.
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Theorem 7.1. Let n > 2, v > 0 and u be a nonnegative solution of (I). If u is
radially symmetric about some point ry € R*, then

lim |z|"%u(x) = A (7.1)

|z|—00
where o and X are as in (1.5). If =2 < y—n < 0, then
lim |z E=2(|z|=%(z) — X) = 0. (7.2)

|z|—o00

Proof. Without loss of generality, we assume xy = 0. First define a new independent
variable t = —In|z|, r = |z| and set

v(=In(|z)) = |z Du(z). (7.3)
Then the new function v(t) satisfies
V"(t) — (n+ 20— 2)V'(t) + a(n + a = 2)v(t) =v™". (7.4)

Now look at the phase-plane portrait for this equation in the (v,v;) plane. The only
equilibrium point is (v*,0) with (v*)~¥*) = a(n + « — 2); which is an unstable
equilibrium. This implies that v(t) — v* as t = —oo and thus

lim |z| %u(z) = A
|z| =00

To prove (7.2), we define
v(s) = |z|"%u(z) = A, s=1/|z|, v(s) = s v(s),

where 0g = 1+ (p —n)/2 with —2 < y —n < 0. Then, by (3.27), 9(s) satisfies the
equation

1 )2 —4dn+4)/4
i+ ((p=m) 5 n+4)/ ﬁ—sj;(jfr)o — 0. (7.5)

Since v(s) — 0 as s — 0 (see (7.1)), by arguments similar to those in the proofs
of Lemmas 3.3 and 3.4, we have that o(s) < M for s sufficiently small. Indeed,
if we use the notation in the proof of Lemmas 3.3 and 3.4, we claim that for any
0 < 0 < 0y, v(s) =0(s?). In fact, noticing that g(s) in the proof of Lemma 3.3 is
0 here and 20 < 4y —n+ 2 if 0 < 0 < gy, this claim can be obtained from a variant
of the proof of Lemma 3.3 (since y1(0¢) > 0 for —2 < p—n < 0). This implies that
the g1 (t) in the proof of Lemma 3.4 satisfies

g1(t) = O(|n]*) = O(e™*")

here. Choose 0 < 0 < gy and 20 > gy. The proof of Lemma 3.4 shows that
t
or ()] < Me=!(1 + / (5) e ) ds < Me~ "
to

This implies 9(s) < M. Let t = —Ins, v(t) = 9(s). Then 9(¢) satisfies the equation

' — ((/J’ B n)2 — 4TL+4)

I D4+ 075 =0 (7.6)

26



and v is bounded for ¢ is sufficiently large. Arguments same as those in the proof of
Theorem 4.3 imply
lim ¢'(¢) = 0 = lim 9" (¢).

t—00 t—00
This implies that
o =0
(note that (v —n)? —4n+4 < 0for =2 < p—n < 0, v > 0 and n > 2). This
completes the proof. O

Proof of Theorem 1.3:

This follows from results in [CW].

Suppose that u(z) > C’|:1:|vi+1 for |z| large. We now consider the function v
defined at (7.3) which satisfies (7.4). As t — —o0, v(¢,6) > C and v~ < C. Hence
by Harnack inequality, v(¢,0) < C as t — —oo. By the results of L. Simon [Si],
v(t,0) — v(#), where v(0) satisfies

+ ! ! 0 is 2 iodi

— v — — = is 2m-periodic.

Voo (v+ 1)21) w0 P

By Theorem 2.1 of [CW], v(f) = constant. This proves Theorem 1.3. O

Proof of Theorem 1.4.
Let u = u(r) be a radially symmetric solution of (I). If u(0) = 0, then we have

n—1

which implies that u, > 0 and 7" ‘u, — 0 as r — 0. Hence
T on—1
s 1
"y, = / ds > r"
o u”(s) nu”(r)

u(r) > Cr® for all >0 (7.7)
We now consider the function v defined at (7.3) which satisfies (7.4). As we know,

v(t) = v* as t - —oo. Next we consider the case when ¢ — +o00. From (7.7), we
see that v(t) > C for all ¢. Since efv%ltv(t) —0ast— +oo and v < C, a simple
ODE theory shows that v(t) is bounded as ¢ — +o0 and v(t) — v* as t = +o0

which implies that

(since v* is the only positive equilibrium point).
Now multiplying the equation for v(t) by v'(#) and integrating over (—oo,+00),

we see that
—+o0

—(n+2a—2)/ (W' (t))2dt = 0

—0o0

which implies that v(¢) = v*. Thus, u = ug(r) = (”*1)u+1ru#1.
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If u(0) = n > 0, by Theorems 1.1 and 1.2, we have that

lim |z|™%u(z) = A
|z| =400

Then by scaling invariance, all solutions of (I) form a one-parameter family of

solutions. O

8. THE MOVING-PLANE METHOD: PROOF OF THE MAIN RESULTS

In this section we use the moving-plane method to give the proofs of Theorems
1.1 and 1.2.

The following special form of maximum principles is useful.
Lemma 8.1. Let v € R! and u be a positive solution of (I). Suppose that

u(z) <u(z?), u(z) #u(z?), ifz <.
Then
u(z) <u(x?), ifry <v (8.1)
and
up >0 onzy =7, (8.2)
where x7 is the reflection point of x with respect to Y.
Proof. Consider the function
v(z) =u(x) —u(x?) <0, =z <n.
Then v satisfies
Av = —vh(z)v(x), x1 <7,

where h(z) = fol & dpand £, = pu(z)+(1—p)u(z?). Since u(z?) > 0 and u(z) >
0 for z; < 7, we have that h(z) > 0 for z; < . Hence by the strong maximum
principle, v assumes nonnegative maximal values only on the boundary z; = v,
which implies (8.1), while (8.2) is a direct consequence of the Hopf’s boundary
lemma since v = 0 on x; = 7. 0

Proof of Theorem 1.1
We only need to prove the sufficiency. We first claim that there exists 4’ > 0 such
that

u(z) < u(z?), ifz; <vyand~y>~. (8.3)
Suppose for contradiction that (8.3) is not true. Then there exist two sequence

{+*} = oo and {z'} with 2% < 7* such that

u(@’) > uly), y'=2", i=12,... (8.4)
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Obviously %* tends to infinity, so u(y*) tends to infinity. In turn |2| — oco. By

Lemma 6.2, we must have
1t <y +1, forilarge.
It follows that for any v, > 79 + 1,

u(z’) > u(y®) > u(z™), for i large

. o v
since z} >> z'"

for ¢ large and u(z) — oo as |z| — oco. On the other hand, by
Lemma 6.2 again, we conclude that
1 ) Y1
0< ——— u(z') —u(z' )] = —2a1 A —2(xy); < 0.
= (,}/1 _le)|xz‘a,2[ ( ) ( )] git ( 0)1
This is a contradiction and (8.3) follows.

Now let I' be a subset of R defined by

' ={v € (7,00) : (8.3) holds}.
We shall prove that
I' = (9, 00). (8.5)
We first show that I' is open. On the contrary, for some v € I, there exist two
sequences {7'} — v and {z'} with 2! < +* such that (8.4) holds. Obviously there
is a subsequence of {z'} tending to either infinity or # € R® as i — oo. If the first

case occurs, we simply use Lemma 6.2 and derive a contradiction, since v > 7,. If

the second case occurs, we infer, from the definition of ~, that
.’]?'1 =7.
It follows that
ul(i‘) S 05 i‘l == fy

This simply cannot happen because of (8.2), that is, I" is open.
Put

7 =inf{y € (v0,00) : (7,00) CT'}.
We want to show that
¥ = o (8.6)
Suppose for contradiction this is not true, i.e., ¥ > vy. By continuity, one has
u(z) < u(z?) for x; < 7.
Thanks to Lemma 8.1, one sees that either

u(z) = u(z?) forz; <7
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or
u(z) < u(z?) for z; <7, ie., 7 el.

The latter cannot occur because (7,00) is maximal and I' is open. The former
cannot occur either because it contradicts Lemma 6.2 since ¥ > . Thus 7 = 7,
and (8.5) is proved.

By continuity again, we have
u(z) <wu(z™) for z; < .
Reversing the z;-axis, we conclude that
u(z) < wu(z™) for zy > .

That is, u is symmetric about the plane x; = ~y. Since this argument applies for
any direction, we finally obtain the radial symmetry of u about some point z, € R".
The proof of Theorem 1.1 is complete. 0

Proof of Theorem 1.2

It is enough to prove the sufficiency. First, we notice that the asymptotic expan-
sion obtained in Theorem 5.4 is not good enough to use the moving-plane method.
This implies that the assumption (1.7) is not enough to guarantee the symmetry of
u, we need stronger assumptions.

The following lemma implies our conclusion.

Lemma 8.2. Let —2 < u—n <0, v(s,0), w(s,8) be defined as in (2.4) and (2.7).
Assume that v(s, ) satisfies that

s v(s,0) -0 as s =0 (8.7)

where o9 = 14+ (u—n)/2. Then v has local Lipschitz type estimate and the asymptotic
expansion similar to (4.17).

Proof. Let w(s,0) = s~ w(s, ). We have that @ satisfies the equation

Q" n 1’(2'], i AQQ’(IJ _ ((/L — n)2 _2471, -+ 4)/4)@ _ f(’l})zzaf(v)
S S S S 0

= 0. (8.8)

Define
W(s) = (/Sn_lms, 0yis) "

Arguments similar to those in the proof of Theorem 3.1 of [Zou] imply that W (s)
satisfies the inequality

(n—n)*/4— F(s)
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and W(s) — 0 as s — 0, where
F(s) = max [f'(v(s,0))|.

gesn—1

Using the comparison principle as in [Zou], we obtain the following fundamental
inequality similar to that in Theorem 3.1 of this paper or Theorem 3.2 of [Zou],

Wi(s)< Ms’, 0<s<1 (8.10)

for any 0 < 6 < [p—n|/2—F(s). (We know that F'(s) — 0 as s — 0.) This implies
that for any 0 < § < |p — n[/2, there exist sy = s9(J) > 0 sufficiently small and a
positive constant M = M (d,v) > 0 such that

W(s) < Ms’, 0<s< s. (8.11)

Let W(s) be the same as that in Theorem 3.1. Note that 0 < —(u —n)/2 < 1
form =3 and v > 3; n =2 and v > 1. Then we can obtain the same conclusion
as Theorem 3.2 of [Zou| (note W (s) = s°°W (s)). That is, for any 0 < max{—(u —
n)/2,(1+pu—n)} < § < 1, there exist §o = $9(0) > 0 and a positive constant
M = M(6,v) such that

W(s) < Ms®, 0<s< 5.

We can also obtain the same conclusion as Lemma 6.1 of [Zou]. Indeed, define
W (s) = W(s)/s. We infer by a same argument as that in the proof of Lemma 6.1 of
[Zou] that there exists a constant M = M(v) > 0 such that W satisfies the equation

1—(p—n)

W" + W'+ Ms®™ 2W >0, 0<s< 3. (8.12)

We also have
W< Ms W< Ms*2. (8.13)

For any T > 0 (T < 4;), multiply (8.12) by s'~(#*~™) and integrate from T > ¢ > 0
to 1" to obtain

T
st T 4 M/ W sro—=m=1gg > 0. (8.14)
¢
By (8.13), one sees that
T
lim (= e=mY (1)) = 0, / Wsoo—(b=n=1gg < ppo+oo=(u—n)=1, (8.15)
- t

since 6 >1+p—nand og— (p—n)—1=—(g—n)/2 > 0. Thus letting ¢ tend to
0 in (8.14) yields

W'(T) + MT?+0=2 > .
For any s < T, integrate from s to 7" to obtain

A A

T
W(T) - W(s) + M/ toto0=2 >

that is,
W(s) < W(T) 4+ MT?*o0~1,
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since 0 + 09 — 1 > 0 (note that 6 > —(u — n)/2). Now we obtain
Wi(s) < Ms, 0<s< .

This implies that the conclusion similar to Theorem 4.1 holds for our case here.
By the same procedure as in the proofs of Lemma 4.2, Theorem 4.3 and Theorem

4.4, we obtain the local Lipschitz estimate for v and the asymptotic expansion of v

similar to that in (4.17). O

From Lemma 8.2 we obtain the conclusions similar to those in Theorem 6.1 for
u. The proof of sufficiency is then obtained by moving-plane method as we did in

Sections 6 and 8. This completes the proof of Theorem 1.2. O
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