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Abstract

We consider the sub- or supercritical Neumann elliptic problem —Au + uu = >, u>0 in
Q; g—z =0 on 9Q, Q being a smooth bounded domain in R*, >0 and £¢#£0 a small number. H,
denoting the regular part of the Green’s function of the operator —4 + p in Q@ with Neumann

boundary conditions, and ¢, (x) = ,u% + H,(x, x), we show that a nontrivial relative homology
between the level sets ¢}, and (pz, b< <0, induces the existence, for ¢>0 small enough, of
a solution to the problem, which blows up as ¢ goes to zero at a point ae such that
b<¢,(a)<c. The same result holds, for ¢<0, assuming that 0<b<c. It is shown that,
M, =sup,.o ¢,(x)<0 (resp. >0) for u small (resp. large) enough, providing us with cases
where the above assumptions are satisfied.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the nonlinear Neumann elliptic problem
—Au+puu=u? u>0 in Q,
(Po) @ =0 on 0Q,
On
where 1 <¢g< + o0, u>0 and Q is a smooth and bounded domain in R*.
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Equation (P,,) arises in many branches of the applied sciences. For example, it
can be viewed as a steady-state equation for the shadow system of the Gierer—
Meinhardt system in biological pattern formation [13,26] or of parabolic equations
in chemotaxis, e.g. Keller—Segel model [24].

When ¢ is subcritical, i.e. ¢ <5, Lin, Ni and Takagi proved that the only solution,
for small u, is the constant one, whereas nonconstant solutions appear for large u
[24] which blow up, as u goes to infinity, at one or several points. The least energy
solution blows up at a boundary point which maximizes the mean curvature of the
frontier [28,29]. Higher-energy solutions exist which blow up at one or several points,
located on the boundary [8,14,18,22,38], in the interior of the domain
[5,7,11,12,16,21,37,40], or some of them on the boundary and others in the interior
[17]. (A good review can be found in [26].) In the critical case, i.e. ¢ =5, Zhu [41]
proved that, for convex domains, the only solution is the constant one for small u
(see also [39]). For large u, nonconstant solutions exist [1,33]. As in the subcritical
case the least energy solution blows up, as u goes to infinity, at a unique point which
maximizes the mean curvature of the boundary [3,27]. Higher-energy solutions have
also been exhibited, blowing up at one [2,15,31,34] or several boundary points
[19,25,35,36]. The question of interior blow-up is still open. However, in contrast
with the subcritical situation, at least one blow-up point has to lic on the boundary
[32]. Very few is known about the supercritical case, save the uniqueness of the radial
solution on a ball for small u [23].

Our aim, in this paper, is to study the problem for fixed p, when the exponent g is
close to the critical one, i.e. ¢ = 5 + ¢ and ¢ is a small nonzero number. Whereas the
previous results, concerned with peaked solutions, always assume that p goes to
infinity, we are going to prove that a single peak solution may exist for finite ,
provided that ¢ is close enough to the critical exponent. Such a solution blows up, as
¢ goes to 5, at one point which may be characterized.

In order to state a precise result, some notations have to be introduced. Let
Gu(x,y) denote the Green’s function of the operator —4 + u in  with Neumann
boundary conditions. Namely, for any yeQ, x+— G,(x,y) is the unique solution of

oG,
—AG, + uG, = 4nd,, xeQ, 8—;:07 XeoQ. (L.1)
G, writes as
eful/z‘xfy‘
Gu(x,y) = W — Hyu(x,y),

where H,(x,y), regular part of the Green’s function, satisfies

OH, 1 (et
“AH, + uH, =0, xeQ, Lo [T xeoq. 1.2
l+lu Iz X€ on an< |X—y| XE€ ( )

We set

1
Pu(x) = 12 + Hy(x, x).
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It is to be noticed that
H,(x,x)—> — oo as d(x,0Q2)—0 (1.3)

implying that

M, = sup ¢,(x)
xeQ

is achieved in Q. (See (A.10) in Proposition 5.2 for the proof of (1.3).) Denoting
fr=A{xeQ,f(x)<a}

the level sets of a function f defined in 2, we have

Theorem 1.1. Assume that there exist b and ¢, b<c<0, such that c is not a critical
value of ¢, and the relative homology H. (¢, (pz) #0. (Psy. ) has a nontrivial solution,
for >0 close enough to zero, which blows up as ¢ goes to zero at a point a€Q, such
that b<¢,(a)<c.

The same result holds, for ¢<0, assuming that 0<b<c.

We notice that, M, <0 (resp. >0) when u is small (resp. large) enough
(see (A.12) and (A.13) of Proposition 5.2). Consequently, we deduce from the
previous result:

Theorem 1.2. There exist u, and p,, 0<uy<u,, such that:

(1) If 0<u<pg, (Psieyn) has a nontrivial solution, for ¢ >0 close enough to zero, which
blows up as & goes to zero at a maximum point a of Hy(a,a).

(2) If u>py, (Psyeyn) has a nontrivial solution, for ¢<0 close enough to zero, which
blows up as ¢ goes to zero at a maximum point a of H,(a,a).

Remarks. (1) In the critical case, i.e. ¢ =0, further computations suggest that a
nontrivial solution should exist for u> p, close enough to y, such that M, >0 and
M,, = 0. This solution would blow up, as previously, at a maximum point of
H, (a,a) as p goes to . (This contrasts to previous results for (Psg) on the
nonexistence of solutions for p small [39,41] and nonexistence of interior bubble
solutions for u large [10,31].)

(2) In a forthcoming paper, we shall treat the case N >4, which appears to be
qualitatively different.

The scheme of the proof is the following. In the next section, we define a two-
parameter set of approximate solutions to the problem, and we look for a true
solution in a neighborhood of this set. Considering in Section 3 the linearized
problem at an approximate solution, and inverting it in suitable functional spaces,
the problem reduces to a finite-dimensional one, which is solved in Section 4. Some
useful facts and computations are collected in Appendix.
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2. Approximate solutions and rescaling

For sake of simplicity, we consider in the following the supercritical case, i.c. we
assume that £>0. The subcritical case may be treated exactly in the same way.
For normalization reasons, we consider throughout the paper the equation

—Au+ pu =3t u>0 (2.1)

instead of the original one. The solutions are identical, up to the multiplicative

1
constant 3 4+:. We recall that, according to [6], the functions

D=

U/l,a(x) :/L—“ l>0, ae R3 (22)
(14 2x - aP)?

are the only solutions to the problem
—Au=3u’, u>0 in R>.

As aeQ and A goes to infinity, these functions provide us with approximate solutions
to the problem that we are interested in. However, in view of the additional linear
term pu which occurs in (Ps.., ), the approximation needs to be improved. Actually,
we define in 2 the following functions:

1
- 1[1—er2had
Usau(x) = Upa(x) = = T + H,(a, x)
23 x —a

which satisfy

~ ~ 1
—4 U/ﬁ,a,y + ,uUA,u,u = 3U5 +u Ui,u -

Aa

1 (2.3)

22|x — a|

We are going to seek for solutions in a neighborhood of such functions, with the a
priori assumption that ¢ remains far from the boundary of the domain, that is there
exists some number 0 >0 such that

d(a,00)> . (2.4)

Moreover, integral estimates (see Appendix) suggest to make the additional a priori
assumption that 4 behaves as 1/¢ as ¢ goes to zero. Namely, we set

11 .
/I_E, §<A<5 (2.5)

with &' some strictly positive number.
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In fact, in order to avoid the singularity which appears in the right-hand side of
(2.3), and to cancel the normal derivative on the boundary, we modify slightly the
definition of U;__,a,u, setting

82

~ 1 _
Viaus(x) = UL (x) = g(/leﬁlx —al(l—e W) 4 0,0,0(x)  (2:6)
A&

04,4 = 0 being the unique solution to the problem

—A40+ub =0 in Q,
1 2
00 0 (Ae)2 1 —t
L = L 2|x — — e |x—d|
= on Uﬁa(x) vl + 7 (Ae)2|x —al(l —e ) on 0Q.

From the above assumption (2.4) we know that
5
Hy(a,x)=0(1), 04, = 0(£2) (2.7)
in C?(Q). We note that V., = V satisfies

&2

o=

Ae -
—AV +uV =303 +ul U,y —&e x—al®
g 1w |x—a
15 2
uA2e2 4 2¢2 7‘1'7‘2
— e X—a s
Ix —af? Ix — al? (2.8)
2.2 1 &
— - (elx —al(1 — e ) in 0,
ov
% =0 on 0Q.

The V4 4,,’s are the suitable approximate solutions in the neighborhood of which we
shall find a true solution to the problem. In order to make further computations
easier, we proceed to a rescaling. We set
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which write as
1
1 1 — efl'lzﬁ‘xfgv‘

W/l,g"ﬁy?g(.xf‘) = U%f(x) — A2 W + Hﬂ,g(ﬁ,x)

pe? 1 -— 5
= A =l = e P 4 O 600 (%) (2.10)

where H,,; denotes the regular part of the Green’s function of the operator —4 + e’

~ 1
with Neumann boundary conditions in Q,, and 0,4 ¢ . .(x) = €20 14 ,..(¢x). We notice
that, taking account of (2.7)

Hyo(8,%) = 0(e),  Oagpa(x) = O) (2.11)

in C?(Q,). We notice also that assumption (2.4) is equivalent to

d(§,898)>§ (2.12)

and that Wy ,. = W satisfies the uniform estimate |W ¢, .| < CUy , in Q,. More-
A=

over, we have

—AW + W =3U; +upe’ | Up — e =&
s 4 x—¢&
1
u/ﬁaz 2 - ,192
— 1+ e Ix=¢|
|x_£|3< |X—é|2 (213)
2.4 1 __1
~ (el — €l(1 - e T5F) in 0,
ow
WZO on aQ(;.

Finding a solution to (Ps;.,) in a neighborhood of the functions V., is
equivalent, through the rescaling, to solving the problem

—Au+ petu =3’ u>0 in Q,,

P 2.14
() Jou_, on 00, (.14
on

in a neighborhood of the functions W, ¢, .. For that purpose, we have to use some

) . . . ,
local inversion procedure. Namely, we are going to look for a solution to (Psﬁu)
writing as

W= Waepe +
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with o small and orthogonal at Wy ¢ ., in a suitable sense, to the manifold
M ={Wieue (A4,&) satisfying (2.5) (2.12)}. (2.15)

The general strategy consists in finding first, using an inversion procedure, a smooth
map (4,8 w(A4,&) such that Wye, .+ o(A4,& pu,¢) solves the problem in an
orthogonal space to M. Then, we are left with a finite-dimensional problem, for
which a solution may be found using the topological assumption of the theorem. In
the subcritical or critical case, the first step may be performed in H' (see e.g.
[4,30,31]). However, this approach is not valid any more in the supercritical case, for
H' does not inject into L? as ¢>6. Following [9], we use instead weighted Hélder
spaces to reduce the problem to a finite-dimensional one.

3. The finite-dimensional reduction
3.1. Inversion of the linearized problem
We first consider the linearized problem at a function Wy, ., and we invert it in

an orthogonal space to M. From now on, we omit for sake of simplicity the indices
in the writing of Wy ,.. Equipping H'(Q,) with the scalar product

(u,v), = / (Vu - Vv + peuv)
Q,

orthogonality to the functions

ow ow
Yo=—+ Yi=—— 1<i<3 3.1
0 6/17 i 86,’7 1 ( )
in that space is equivalent, setting
ow ow ow ow
Zy= At =, Zi=—-A—p+ut =, 1<i<3 3.2
0 a1 T G L g, THE e 1S (3.2)

to the orthogonality in L?(€,), equipped with the usual scalar product <-,-)>, to the
functions Z;, 0<i<3. Then, we consider the following problem : e L™ (Q,) being
given, find a function ¢ which satisfies

—Ap+pefPp —3(5+e)WHip =h+3,¢:Z; in Q,

% =0 on 0Q,, (3.3)
on
{Zi,$p> =0 0<ig3

for some numbers c;.
Existence and uniqueness of ¢ will follow from an inversion procedure in
suitable functional spaces. Namely, for f a function in Q,, we define the following
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weighted L*-norms:

171, = sup [ L4 x— P2 )l

xeQ,
and

[1/1], = sup |(1+|x — &)/ (x)].

xeQ,

Writing U instead of U o the first norm is equivalent to ||U~"f]| , and the second
e

one to ||U*f]|,,, uniformly with respect to ¢ and A.
We have the following result:

Proposition 3.1. There exists ¢y>0 and a constant C >0, independent of ¢ and £, A
satisfying (2.12) (2.15), such that for all 0<e<ey and all he L* (Q,), problem (3.5) has
a unique solution ¢ = L.(h). Besides,

LM < CIAll.., el < 1Al (3.4)

Moreover, the map L(h) is C? with respect to A, & and the L -norm, and

1D L), < CllAlL., (1D Le(M)]] < ClIA,.. (3:5)

#k)

Proof. The argument follows closely the ideas in [9]. We repeat it for convenience of
the reader. The proof relies on the following result:

Lemma 3.1. Assume that ¢, solves (3.3) for h = h,. If ||h.||,, goes to zero as € goes to
zero, so does ||,
Proof. For 0<p< 1, we define

L

171, = sup [(1+[x — ¢RI ()

xeQ,

and we first prove that [|,]|, goes to zero. Arguing by contradiction, we may assume
that |[¢,||, = 1. Multiplying the first equation in (3.3) by Y; and integrating in €,
we find

Y ek Zn Yy = =AY+ p Y, =35+ o)WY, b, — (e, Y

On one hand we check, in view of the definition of Z;, ¥;

(Zo, Yoy = |Yolf =70 +0(1), <Z,Yi> =Y} =7 +o(l), 1<i<3, (3.6
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where 7, 7, are strictly positive constants, and
{Z,Y;y =0(l), i#j. (3.7)
On the other hand, in view of the definition of Y; and W, straightforward
computations yield
=AY+ Y =35+ e) WY ¢, = o(llg.ll,)

and
<h127 Y}> = O(th”**)

Consequently, inverting the quasi-diagonal linear system solved by the ¢;’s, we find

ci = O([hell..) + o(llll,)- (3-8)

In particular, ¢; = o(1) as ¢ goes to zero. The first equation in (3.3) may be written as

@Qj:36+w)/

i (Wisens S az) G
Q, ;
for all xe Q,, G, denoting the Green’s function of the operator (—4 + ue?) in Q, with
Neumann boundary conditions.
We notice that by scaling and (A.11) of Proposition 5.2,

Xy C
Gg(X,)/) = SGN (E, E) SH (310)
and hence we obtain
4+e 1 1
G (x, )W, dy| < Cll,]], 7 dy
Q, Q, |x — | (1+|x— §|2)§(3+8+p)

1
< Cllo |1, (1 + 1x = &) 2,

1 1
G, (x,y)h, dy| < C||hg||.. / dy
‘/ (x,7) e A I

1
< CHhFH**(l + |x - £|2)72a

1 1
‘/ Gg(x7y)Zidy<C/ T sdy
o & A+ x-¢n

<C(+|x—¢P) (3.11)

from which we deduce

(1 + v — P () < €1+ |x — &) 2.
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|l¢.l, =1 implies the existence of R>0, y>0 independent of & such that
|[#:]12 (By(z))>7- Then, elliptic theory shows that along some subsequence, $,(x) =

¢, (x — &) converges uniformly in any compact subset of R? to a nontrivial solution of
—Ad = 15U% /¢
for some A>0. Moreover, |¢(x)|<C/|x|. As a consequence, ¢ writes as
: 3
b 00 D
=1
(see e.g. [30]). On the other hand, equalities < Z;, ¢, > = 0 provide us with the equalities
8U 10 7 Uiy »
/Rs “n 0 /R UA v o1 9=
8 - oU, -
- Ut G —0, 1<i<3.
fo 2% = [, v gt =0 1<

As we have also
2

/ \Y = y0>07 /
R3 RB

/ vaU;L’O VE)U;L()/ vaUm vaU;w
R3 (9;1 ' 8ai R3 8aj~ ' 8a,~

8UA0

l

Uy,
oA

;o
v 0

(7%

and

=0, i#j

the o;’s solve a homogeneous quasi-diagonal linear system, yielding o; = 0, 0<o;; <3,
and ¢ = 0, hence a contradiction. This proves that ||¢,]| , = o(1) as ¢ goes to zero.
Furthermore, (3.9), (3.11) and (3.8) show that

|all. < CUell. + llpll,)

whence also ||¢,||, = o(1) as ¢ goes to zero. [

Proof of Proposition 3.1 (Conclusion). We set
H={$peH"(Q),{Zi,$p)> =0, 0<i<3}

equipped with the scalar product (-, -),. Problem (3.3) is equivalent to finding ¢ H
such that

(¢,0),= B(5+e)Wi p+h0)y VoeH
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that is

¢ =T,(p)+h (3.12)

h depending linearly on /, and T, being a compact operator in H. Fredholm’s
alternative ensures the existence of a unique solution, provided that the kernel of
Id — T, is reduced to 0. We notice that ¢, € Ker(Id — T,) solves (3.3) with & = 0.
Thus, we deduce from Lemma 3.1 that ||¢,||, = o(1) as & goes to zero. As Ker(Ild —
T,) is a vector space, Ker(Id — T,) = {0}. Inequalities (3.4) follow from Lemma 3.1
and (3.8). This completes the proof of the first part of Proposition 3.1.

The smoothness of L, with respect to A and & is a consequence of the smoothness
of T, and /, which occur in the implicit definition (3.12) of ¢ = L,(h), with respect to
these variables. Inequalities (3.5) are obtained differentiating (3.3), writing the
derivatives of ¢ with respect A and £ as a linear combination of the Z;” and an
orthogonal part, and estimating each term using the first part of the proposition—
see [9,20] for detailed computations. [

3.2. The reduction

In view of (2.13), a first correction between the approximate solution W and a true
solution to (P; ,) writes as

Y* = L(R%) (3.13)
with

R =3WT — (=AW + pu® W)
5 pLp—— er: 1 —
=3W"-3U] —p | Uy — e =) + S 1+ 5 |e

I 0 x—¢ x = ¢ e —¢]
2.4 1 1

+ 5 (el - ¢|<1 ~e w)_ (3.14)

We have:

Lemma 3.2. There exists C, independent of £, A satisfying (2.12) (2.5), such that
Proof. According to (2.10), W = U + O(¢) uniformly in Q,. Consequently, noticing
that U> Ce in Q,, C independent of ¢

U — Wt = 0(eU°|In U| + eU*)
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uniformly in Q,, whence

1US = w3, <ClIU™(U° = W), = O(e).
On the other hand
(1+|x =& u? | UL — A ewxfef _ “A%gz <1+ ! )exlgz
A =g =P\ -

2.4 I
B e (1 - )| = 0f

uniformly for xeQ,, since

1

U A
-
o x = ¢

1
e P = 0(x— ¢

as |x — €| goes to infinity, and |x — &| = O(1/¢) in Q.. The first estimate of the lemma
follows. The others are obtained in the same way, differentiating (3.14) and
estimating each term as previously. [

Lemma 3.2 and Proposition 3.1 yield:
Lemma 3.3. There exists C, independent of &, A satisfying (2.12) (2.5), such that
1W< Ce,  |IDuae¥’ll.<Ce |IDYy ¥l < Ce.

We consider now the following nonlinear problem: finding ¢ such that, for some
numbers ¢;

— AW+ + ) + ut (W + 4 + ¢)

“S3W Y+ ) =36z in Q,
(3.15)
@ =0 on 09,
on
{Zi,p> =0 0<i<3.
Setting
No(n) = (W + )37 = WP — (S+eywin (3.16)

the first equation in (3.15) writes as

—Ad+ P —3(5+e) WP =3N,(y + )+ > _ ¢iZ; (3.17)
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for some numbers ¢;. Assuming that |||, is bounded, say ||n||,<M for some
constant M, we have

[Nl < Clinll2
whence, assuming that ||¢||, <1 and using Lemma 3.3
NG + D)l < QI + &), (3.18)
We state the following result:

Proposition 3.2. There exists C, independent of ¢ and &, A satisfying (2.12) (2.5), such
that for small ¢ problem (3.15) has a unique solution ¢ = ¢(A, &, p, &) with

19l <Ce?. (3.19)
Moreover, (A, &) d(A, &, w,¢) is C* with respect to the L* -norm, and

I1Dugdll.<Ce,  ||DY, 49l < Ce™. (3.20)

Proof. Following [9], we consider the map A4, from # = {peH'NnL*(Q,):
o], <&} to H'n L™ (Q,) defined as

Al:((f)) = Lr:(3Nc(¢ + lﬁ))

and we remark that finding a solution ¢ to problem (3.15) is equivalent to finding a
fixed point of A4,. One the one hand we have, for ¢ F

14:()I], <L BNo(d + ) CIL < IN(d + )] < Ce*<e

for ¢ small enough, implying that A4, sends & into itself. On the other hand 4, is a
contraction. Indeed, for ¢; and ¢, in &, we write

14:(b1) = Ac( @I < IN.(W + b1) = NoW + ).
<NUHN( + 61) = No( + 62))].-
In view of (3.16) we have
AN:(n) = (5+e) (W + )} = wi)) (3.21)
whence

IN(W + d1) = No(W + ¢o)| SCUP W + 1) + (1 — 1) s | — 5]
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for some 7€ (0,1). Then
U N + §1) = No(h + d2))ll < CHUT (W + 1hy + (1= 0)2)(d1 — $2)l].
< CUWL + (1@l + llpall)NIer = ¢all.
<ellg) — ..

This implies that 4, has a unique fixed point in &, that is problem (3.15) has a
unique solution ¢ such that ||¢||, <e. Furthermore, the definition of ¢ as a fixed
point of A4, yields

1], = [|L:(3N.(¢p + V)], < ClINs( + W), < C&?

using (3.18), whence (3.19).
In order to prove that (A, &) ¢ (A, &) is C?, we remark that setting for ne #

B(A4,¢n) =n — L:(3N:(n + )
¢ is defined as
B(A, &, ¢) =0. (3.22)
We have
Oy B(A4,&,m)[0] = 0 — 3Ly(6 (9yN,)(n + )
and, using (3.21)
[IL(0(0yN:) (n + ))Il. < Cl10(0,Ne) (n + W)l...

< CHUT (8N (n + )l 10,

< Clln + L. 1l01],

< Cel|0]],.

Consequently, 9,B(A4,&,¢) is invertible in L with uniformly bounded inverse.
Then, the fact that (A,&)>¢(A4,&) is C?> follows from the fact that
(A, &) Lo(N:(n+)) is C* and the implicit functions theorem.

Finally, let us show how estimates (3.20) may be obtained. Derivating (3.22) with
respect to A, we have

0ap = 3(0,B(A,&,$)) ™ ((DaLs) (N + W) + Li((O4N)(d + %)) + La((9,N.) (¢ + ¥)0a))

whence, according to Proposition 3.1

1049, < C(INe(d + )]l + 14N (D + )]s + [[(OyNe) (D + ) Oath]...)-
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From (3.18) and (3.19) we know that
INo(¢ + W)l < Ce.
Concerning the next term, we notice that according to definition (3.16) of N,
OANY (& + )| =S +)[(W + ¢+ )T = WES — 4+ )W (¢ + )[04 W]

< CU*|¢ +yII2

< CU%?
using again (3.18) and (3.19), whence

124N (¢ + )], < Ce.
Lastly, from (3.21) we deduce
(8, N) (& + ¥)Oa | < Ul + L I10aw ],

yielding

Finally we obtain

104l < C&?.
The other first and second derivatives of ¢ with respect to 4 and ¢ may be estimated
in the same way (see [20] for detailed computations concerning the second
derivatives). This concludes the proof of Proposition 3.2. O

3.3. Coming back to the original problem

We introduce the following functional defined in H'(Q)n L+(Q):

| s a3 o
: _1 _ £ b
T N e (3.23)

whose nontrivial critical points are solutions to (Psy;,) (up to the multiplicative

constant 34+¢). We consider also the rescaled functions defined in Q

WA, a)(x) = & Wae(e'x) = @V aa() (3.24)

with
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We define also

V(A4,a)(x) = YA, Y), f(Aa)(x) = p(A,9(Ex)  (3.25)

and we set

A A

L(A,a) = J(W+ + §)(4,a)). (3.26)
We have:
|
Proposition 3.3. The function u = 3%:(W +  + ¢) is a solution to problem (Ps., ) if

and only if (A, a) is a critical point of I.

Proof. For v in H'(Q,)nL%(Q,), we set

1 3 ,
Kg(u)zz/g (Vo] + pe*?) — 6+8/Q o5t (3.27)

whose nontrivial critical points are solutions to (P%,, ,). According to the definition
I, we have

L(A,a) = K (W + 4+ 9)(4,8)). (3.28)

Lo

We notice that u = 34+(U+  + ¢) being a solution to (Ps;,) is equivalent to
W+ + ¢ being a solution to (P’SH.H), that is a critical point of K. It is also
equivalent to the cancellation of the ¢;’s in (3.15) or, in view of (3.6) (3.7)

KW+ +¢)[¥i] =0, 0<i<3. (3.29)

On the other hand, we deduce from (3.28) that I/(A4,a) = 0 is equivalent to the
cancellation of K](W +  + ¢) applied to the derivatives of W +  + ¢ with respect
to A and &. According to definition (3.1) of the Y;’s, Lemma 3.3 and Proposition 3.2
we have

oW +y+9)
oA

oW+ +¢)

= YO + Yo, 85
]

with [[yi[|; = o(1), 0<i<3. Writing
y1+zal/ /7 <y17Z> (yn v')gi()? 0<17J<3

and

KW+ + ¢)[Yi] = o
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it turns out that (A, a) = 0 is equivalent, since K, (W + + p)[0] =0 for <0,Z;) =
(0, 7)), =0, 0<j<3, to

(1d + lay))[eu] = 0.

As a; = O(||yill,) = o(1), we see that I'(A,a) =0 means exactly that (3.29) is
satisfied. O

4. Proof of Theorem 1.1

In view of Proposition 3.3 we have, for proving the theorem, to find critical points
of I,. We establish first a C?>-expansion of ;.

4.1. Expansion of I,
Proposition 4.1. There exist A, B, C, strictly positive constants such that

A

L(A,a) = A4 +§8h’1(8/1) + %<C+g>g +¥ (W? + Hy(a,a))e + eo.(A, a)

with 6, D(4,4)0; and D(zA’a)ag going to zero as € goes to zero, uniformly with respect to
a, A satisfying (2.4) and (2.5).

Proof. In view of definition (3.26) of I, we first estimate JS(W). We have

. . 1,
L, (W) =20 Y)

_ 178(5 6+¢
—JS(V)+36+8/QV+

:JS(V)+%<—§1ns+o(8)>/Q yote

from which we deduce, using the integral estimates (A.8), (A.9) and Proposition 5.1
in Appendix, that

J(W) =4 -I-%sln(e/l) +%<C+%)8 —&—% (W2 + Hy(a,a))e +o(e).  (4.1)

Then, we prove that

L(A,a) — J,(W+ ) = o(e). (4.2)
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Indeed, from a Taylor expansion and the fact that J/(W + / + ¢)[¢] = 0, we have
I(A,a) — J,(W+ )

=T, W+ + ) — (W + )
1
:/0 T/ W+ + 1) [, Pl dt
; 1
:,glfze/ KW+ + ¢)[¢, dle dt
0
1
:81—2:/ (/ (¢2—|—,u82¢2—3(5+8)(W+w+¢)i+8¢2)>tdl
0 Q

1
_ J1=2C e 4+ dteq 12
—¢ /0 (/Q (No(p + W) +3(5+¢) W — (W +y + 1)) )>tdt'

The desired result follows from (3.18), Lemma 3.3 and (3.19). Similar computations
show that estimate (4.2) is also valid for the first and second derivatives of I(A,a) —
J.(W+ ) with respect to A and a. Then, the proposition will follow from an
estimate of J,(W + 1) — J,(W). We have

J;;(W—Q— ‘&) - JS(Vf/) :Slizg(Ks(W"‘ lﬁ) - K(W))
1
— XKW + /0 (1= K (W + ) [y, 0.

By definition of ¢ and R*

and we have

KSII(W+IW)[W7w] :/ (‘vv/|2+ﬂ?2l//2) —3(5-|—g) / (W‘Fll//)itﬂl//z

QI, Qn‘?

Then, integration by parts and y = L.(R®) yield
KOVl = [ Ry =3(540) [ (07 4t - we,
Q, Q.

Consequently

J(W+4) = 1,07)

281%<_% /Q Rﬂ¢-3(5+e)/01 (1 —1)</Qx[(W+np)1+s— Wfﬂ]lpz) dt)
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and Lemmas 3.2 and 3.3 yield
J(W ) = J.(W) = ole).

The same estimate holds for the first and second derivatives with respect to A and a,
obtained similarly with more delicate computations—see Proposition 3.4 in [20].
This concludes the proof of Proposition 4.1. [

4.2. Proof of Theorem 1.1 ( Conclusion)

According to the statement of Theorem 1.1, we assume the existence of b and c,

1
b<c<0, such that c is not a critical value of ¢,(x) = 2 + H,(x, x) and the relative
homology H*(q):;, q)ﬁ) #0. In view of Proposition 3.3, we have to prove the existence
of a critical point of 7,(A4, a). According to Proposition 4.1, we have

ol, As 3B

ﬁ (Aa [l) = H + 7 (Pu(a)g + 0(8)
and
0°I, Ae
EYe (4,a) = —m+0(8)

uniformly with respect to @ and A satisfying (2.4) (2.5). For >0, n>0, we define
Qs, ={aeQ st d(a,00)>6, ¢,(a)< —7}.

The implicit functions theorem provides us, for ¢ small enough, with a C'-map
aeQ;,— A(a) such that

oI, A

o1 A@)a) =0, Ala) = - (@u(@) ™" +o(1).

Then, finding a critical point of (A, a) I.(A, a) reduces to finding a critical point of
av I,(a), with

We deduce from Proposition 4.1 the C!-expansion

. A 1 A A, A A
1 =A+—¢lne+= — —+—=In—)e— —¢l .
() + ¢ n€+2<C 3 + 3 n6B>s i n|o,(a)| + o(e)

Therefore, up to an additive and to a multiplicative constant, we have to look for
critical points in Q5. of

(@) = ~Inlp, (@)] +.(a) (4.3)

with 7,(a) = o(1), V1,(a) = o(1) as ¢ goes to zero, uniformly with respect to aeQ; .
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Arguing by contradiction, we assume

(H) 7. has no critical point aeQ;, such that b<g,(a)<c.

We are going to use the gradient of .#, to build a continuous deformation of ¢} onto
¢}, a contradiction with the assumption H.(¢5, ¢})#0.

We first remark that ¢, has isolated critical values, since ¢, is analytic in € and
¢, = —oo on the boundary of Q. Therefore, the assumption that ¢ is not a critical
value of ¢, implies the existence of #>0 such that ¢, has no critical value in
(b,b +nlu(c —n,c|. Moreover, ¢ retracts by deformation onto ¢; ", (pﬁ*” retracts
by deformation onto qoz, and H. (o, ", (pzw) #0.

Secondly, we choose 6>0 such that ¢,(x)<b for d(x,0Q)<d. We choose also
y>0 such that —y>¢. Then, a point x in the complementary of ;. in Q is either in
q)z, or not in ¢;. Consequently, deforming ¢;,~" onto (pZ*” is equivalent to deforming
@5 "N Q;, onto (pff". To this end we set, for qge (qoff” NQs.)

%a(l) = =VJ.(a(1)), a(0) = ap.

a(t) is defined as long as the boundary of €5, is not achieved. .#,(a(f)) being
decreasing, (4.3) shows that for ¢ small enough, a(f) remains in @, Then, the
boundary of Q5. may only be achieved by a(¢) in (pz. This means that a(z) is well
defined as long as b<¢,(a(t))<c, and according to assumption (H), .Z.(a(t)) is
strictly decreasing in that region. Therefore (4.3) proves, for ¢ small enough, the

existence of #>0 such that ¢, (a(?)) = b+ n. Composing the flow with a retraction

b+n

of ¢, onto ¢, ", we obtain a continuous deformation of ¢, onto ¢,

n

contradiction with H. (¢, i) #0.

The previous arguments prove the existence, for ¢ small enough, of a nontrivial
solution u, to the problem

a

. 0
—Au+ pu=ul in Q, 8_u:0 on 0Q.
n

Then, the strong maximum principle shows that u, >0 in Q. The fact that u, blows
up, as ¢ goes to zero, at a point a such that b<qo#(a) <c, quu(a) = 0, follows from
the construction of u,. In particular, V¢, (a) = 0 is a straightforward consequence of
(4.3) as ¢ goes to zero. This concludes the proof of the theorem.

Appendix A

A.1. Integral estimates

In this subsection, we collect the integral estimates which are needed
in the previous section. We recall that according to the definitions of Section 2,
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we have

1
1[ 1 — e r?lx—dl
VA,a,u,s(x) = Ul (X) — (AF)z _—

H X A.l
T |X _ a| + H(a7 X) + p/l.,u,,u,z,(x) ( )

with

3
p/l‘u,[t,ﬁ = 0(|8|2) (Az)

uniformly in Q and with respect to @ and A satisfying (2.4) (2.5), and the same
estimate holds for the derivatives of p, . with respect to @ and A. We recall also
that V4, satisfies

1
(Ag)2 .
-4 VA.u,u,s + :uVA.a,,u,s = 3Uia +u (Ut’a - |X — a| + p//lﬁa,y,a in Q,

Ag” (A3)
aVA.a,,u,s -0 on 89
on
with
L (1 ;uif) T ST 0(ef?)
Paape = Hi | g x—da  |x—af
(A.4)

and such an expansion holds for the derivatives of p/; , . with respect to @ and 4.
Omitting, for sake of simplicity, the indices A4, a, u, ¢, we state:

Proposition 5.1. Assuming that a and A satisfy (2.4) (2.5), we have the uniform
expansions as & goes to zero

A 1 A 3BA
J(V)=4 +Zeln(|s|/1) + z(C+ >a + 22 (W2 + Hya,a))|e| + O (In Je])?),

6 2
o, _Ae 3B i, ‘ 5 .
oA - 4A+ 2 (:u +H,u(a7a))|b| + 0(6 (11’1 |6|) )7
dJ, 3BA D , )
0= 2 ga Hu(@a)ld + 0@ (In [2])7),
82']8 AS

a2 *WJF O(¢*(In |8D2)a

PJ, 3B O

5100 = 5 o Hul@:@)lel + O (Ine])?)
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with

2
_ 6 _T 5 s _4n _ 1 6
Af/R} Ul =", Bf/R} Uiy=73 C= 2/@ USy In Uy o>0.

Proof. For sake of simplicity, we assume that ¢ >0 (the computations are equivalent
as ¢<0), and we set r = |x — ¢|. In view of (A.3), we write

1
Ae)2
/(|VV|2+uV2):/(—AV+uV)V:/ 3U° 4+ u U—% s
Q Q Q

(A.5)
From (A.1), (A.2) we deduce
1
5 6 1 s[1—er 2
/ U V:/ US — (Ae)? / o e | + 0@
Q Q Q r
noticing that
1
/ U’ = 0(2) (A.6)
Q

One one hand

[oe] 2d 2
/UG:A+0(33) withA:/ U6:4n/ _rrar 1T
Q R3 0 (
On the other hand, since d(a,0Q)>06>0

1

| — et
/ U’ L%—Hﬂ(a,x)
Q r

1

1 | — e 5

5 5 5

= 1/ U 4dx+/ U’H,(a,x) + O(e2)
(Ag)2 /(@-a)/(4e) r B(a,R)

1
4x R/(Ag) 1 — e—;ﬂ/lsr

5
= T / ———rdr+ Hy(a,a) / U’ +0 / UK + &2
(Ae)2 0 (14 r2)2 B(a,R) B(a,R)

— 4nB(Ae)2(12 + H,(a,a)) + O()
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24 4
B:/ U15‘0:47t/ LA
R O (14pp 3

Concerning the second term in the right-hand side of (A.5), denoting by R’ the
diameter of Q and using (2.6), we have

1 1
_ (e ()2
LM<U ) 0(/QU : )U
_ (02 R'/(Ae) l_ 1 },.2 dr
(/0 (’ (1+r2>5)(1+r2>%>

Lastly, noticing that V' = O(U) uniformly in Q and with respect to the parameters
a, A satisfying (2.4) and (2.5), we have, using (A.4)

1 )
- o emyrd (et U e
/QpVO(/Q(r(l er?)+e r3+r5 e U+e¢
£ 1 I 1 d
=0 SZ/L(r(ler_Z)+<+2)>r]+84
0 rer (1+r2)2

with

whence finally

/ (IVV)* + uV?) =34 — 3BA(u'? + H,(a,a))e + O(e?). (A7)
Q

In the same way we have

/ Ve = A4 —6BA(W? + Hy(a,a))e + O(e?). (A.8)
Q

Namely, from (A.1) (A.2) and V = O(U) we derive
1

1 1 — e 3
/ Vﬁ:/ U6—6(/18)2/ U° L+Hﬂ(a,x) +0<sz/ U5+e/ U4>
Q Q Q r Q Q
and the conclusion follows from the previous computations, noticing that

/Q U* = 0(e).
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6+¢ 6 6 £
/QV++ =/Q V++/Q vewe —1).

1
Noticing that 0< V<2672
Vi —1=¢lnVy + O(£(In ¢)?)

Then, we write

1
and using the fact that V., = U + O(e2) we have

|

6 6 Ters o A
VInV,=U"InU+ 02U’ 4+ 2U”| In U|).

S| 2=

1
Ve =U®+ 0(2U°), InV,=In U+0(

1
(note that U 2%2, in Q) whence

We find casily
A
/ Ullh U = —Eln (Ae) — C + O(e%| Ine|)
Q

1
and noticing that [, U*|In U| = O(2|In¢|), we obtain
, A
/ yore — / Ve — S ein(el) - Ca+ O(e>(In|e])?). (A.9)
Q Q

The first expansion of Proposition 5.1 follows from (A.7)—(A.9) and definition (3.23)
of J,.
The expansions for the derivatives of J, are obtained exactly in the same way. [

A.2. Green's function

We study the properties of Green’s function G,(x,y) and its regular part H,(x, ).
We summarize their properties in the following proposition.

Proposition 5.2. Let G,(x,y) and H,(x,y) be defined in (1.1) and (1.2), respectively.
Then we have

H,(x,x)—»> — o0 as d(x,0Q)—0, (A.10)

|Gu(x, )| < (A.11)

Ix =yl

1
,uiera!))( H,(x,x)—»> — o0, as u—0, (A.12)
xXe
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1
,u5+mag)z( Hy(x,x)—> 4+ o0, asu— + . (A.13)
Xe

Proof. Eq. (A.10) follows from standard argument. Let xeQ be such that d =
d(x,0Q) is small. So there exists a unique point ¥€0Q such that d = |x — X|.
Without loss of generality, we may assume X =0 and the outer normal at X is
pointing toward xy-direction. Let x* be the reflection point x* = (0, ...,0,—d) and
consider the following auxiliary function:

1
e M2 ly—x|

H*(y,x) =Tl

Then H* satisfies 4,H* — uH* = 0 in Q and on 0Q

1
) 9 | e—#2ly=xl
— (H* = ——— o(1).
5 (1 0) = =5 | T | o)
Hence we derive that
H(y,x)=—H"(y,x) + O(1) (A.14)
which implies that
1
H =—————+0(1 A.15
(v:3) = = greag + O0) (A15)

hence (A.10).
From (A.14), we see that as d(x,0Q)—0, we have

1
37/12 [y—x

+H () + 0(1) < ——. (A.16)

Gu(y,x) = S
ﬂ( ) |X—y‘

ly — x|

On the other hand, if d(x, 0Q)>d, >0, then |H,(y,x)|<C and (A.11) also holds.
We now prove (A.12). For u small, we can decompose H,, as follows:

H#(x,y):c+H0(x,y)+ﬁ(x,y), (A17)

where

1
1 9 [ e 2yl 4dr

),
c=— H (x,y) =—— —|— | =———=+ 0O(1 A.18
@] Jo D = ar e an| o e oW (AE)
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and H, satisfies

0 0 1
—AHy = Hy = —Hy=—(——— o0

o=iar f, Ho=0. gt an(y—x|) o

and H is the remainder term. By simple computations, H satisfies

. . : . 0

AH — pH + O(uHy(x,y)) + O(1) =0 in Q, / H=0, %H: O(1) on 0Q
Q
which shows that H = O(1). Thus
1 47
ﬂ2—|—1’)1;1€aé( Hu(x,x)é — m-f- 0(1) — 0

as £—0. (A.12) is thus proved.
To prove (A.13), we choose a point x € Q such that d(xy, Q) = max,cq d(x,0Q).
1

iy
Then, since 2 (%) =0(e”

'\’|’§a|~

d(’“”dQ)) on 02, for u large enough we see that

1

Y(),@Q))

,u2+maxH(x x)>,u2+H(x0,xo)>,u2+0( - 4+

as u— + oo, which proves (A.13). O
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