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Abstract

We consider the sub- or supercritical Neumann elliptic problem �Du þ mu ¼ u5þe; u40 in

O; @u
@n

¼ 0 on @O; O being a smooth bounded domain in R3; m40 and ea0 a small number. Hm

denoting the regular part of the Green’s function of the operator �Dþ m in O with Neumann

boundary conditions, and jmðxÞ ¼ m
1
2 þ Hmðx; xÞ; we show that a nontrivial relative homology

between the level sets jc
m and jb

m; boco0; induces the existence, for e40 small enough, of

a solution to the problem, which blows up as e goes to zero at a point aAO such that

bpjmðaÞpc: The same result holds, for eo0; assuming that 0oboc: It is shown that,

Mm ¼ supxAO jmðxÞo0 (resp. 40) for m small (resp. large) enough, providing us with cases

where the above assumptions are satisfied.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the nonlinear Neumann elliptic problem

ðPq;mÞ
�Du þ mu ¼ uq u40 in O;
@u

@n
¼ 0 on @O;

8<
:

where 1oqoþN; m40 and O is a smooth and bounded domain in R3:
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Equation ðPq;mÞ arises in many branches of the applied sciences. For example, it

can be viewed as a steady-state equation for the shadow system of the Gierer–
Meinhardt system in biological pattern formation [13,26] or of parabolic equations
in chemotaxis, e.g. Keller–Segel model [24].
When q is subcritical, i.e. qo5; Lin, Ni and Takagi proved that the only solution,

for small m; is the constant one, whereas nonconstant solutions appear for large m
[24] which blow up, as m goes to infinity, at one or several points. The least energy
solution blows up at a boundary point which maximizes the mean curvature of the
frontier [28,29]. Higher-energy solutions exist which blow up at one or several points,
located on the boundary [8,14,18,22,38], in the interior of the domain
[5,7,11,12,16,21,37,40], or some of them on the boundary and others in the interior
[17]. (A good review can be found in [26].) In the critical case, i.e. q ¼ 5; Zhu [41]
proved that, for convex domains, the only solution is the constant one for small m
(see also [39]). For large m; nonconstant solutions exist [1,33]. As in the subcritical
case the least energy solution blows up, as m goes to infinity, at a unique point which
maximizes the mean curvature of the boundary [3,27]. Higher-energy solutions have
also been exhibited, blowing up at one [2,15,31,34] or several boundary points
[19,25,35,36]. The question of interior blow-up is still open. However, in contrast
with the subcritical situation, at least one blow-up point has to lie on the boundary
[32]. Very few is known about the supercritical case, save the uniqueness of the radial
solution on a ball for small m [23].
Our aim, in this paper, is to study the problem for fixed m; when the exponent q is

close to the critical one, i.e. q ¼ 5þ e and e is a small nonzero number. Whereas the
previous results, concerned with peaked solutions, always assume that m goes to
infinity, we are going to prove that a single peak solution may exist for finite m;
provided that q is close enough to the critical exponent. Such a solution blows up, as
q goes to 5, at one point which may be characterized.
In order to state a precise result, some notations have to be introduced. Let

Gmðx; yÞ denote the Green’s function of the operator �Dþ m in O with Neumann

boundary conditions. Namely, for any yAO; x/Gmðx; yÞ is the unique solution of

�DGm þ mGm ¼ 4pdy; xAO;
@Gm

@n
¼ 0; xA@O: ð1:1Þ

Gm writes as

Gmðx; yÞ ¼ e�m1=2jx�yj

jx � yj � Hmðx; yÞ;

where Hmðx; yÞ; regular part of the Green’s function, satisfies

�DHm þ mHm ¼ 0; xAO;
@Hm

@n
¼ 1

@n

e�m1=2jx�yj

jx � yj

 !
; xA@O: ð1:2Þ

We set

jmðxÞ ¼ m
1
2 þ Hmðx; xÞ:
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It is to be noticed that

Hmðx; xÞ-�N as dðx; @OÞ-0 ð1:3Þ

implying that

Mm ¼ sup
xAO

jmðxÞ

is achieved in O: (See (A.10) in Proposition 5.2 for the proof of (1.3).) Denoting

f a ¼ fxAO; f ðxÞpag

the level sets of a function f defined in O; we have

Theorem 1.1. Assume that there exist b and c; boco0; such that c is not a critical

value of jm and the relative homology H�ðjc
m;j

b
mÞa0: ðP5þe;mÞ has a nontrivial solution,

for e40 close enough to zero, which blows up as e goes to zero at a point aAO; such

that bojmðaÞoc:

The same result holds, for eo0; assuming that 0oboc:

We notice that, Mmo0 (resp. 40) when m is small (resp. large) enough

(see (A.12) and (A.13) of Proposition 5.2). Consequently, we deduce from the
previous result:

Theorem 1.2. There exist m0 and m1; 0om0pm1; such that:

(1) If 0omom0; ðP5þe;mÞ has a nontrivial solution, for e40 close enough to zero, which

blows up as e goes to zero at a maximum point a of Hmða; aÞ:
(2) If m4m1; ðP5þe;mÞ has a nontrivial solution, for eo0 close enough to zero, which

blows up as e goes to zero at a maximum point a of Hmða; aÞ:

Remarks. (1) In the critical case, i.e. e ¼ 0; further computations suggest that a
nontrivial solution should exist for m4m0 close enough to m0; such that Mm40 and

Mm0 ¼ 0: This solution would blow up, as previously, at a maximum point of

Hm0ða; aÞ as m goes to m0: (This contrasts to previous results for ðP5;0Þ on the

nonexistence of solutions for m small [39,41] and nonexistence of interior bubble
solutions for m large [10,31].)
(2) In a forthcoming paper, we shall treat the case NX4; which appears to be

qualitatively different.

The scheme of the proof is the following. In the next section, we define a two-
parameter set of approximate solutions to the problem, and we look for a true
solution in a neighborhood of this set. Considering in Section 3 the linearized
problem at an approximate solution, and inverting it in suitable functional spaces,
the problem reduces to a finite-dimensional one, which is solved in Section 4. Some
useful facts and computations are collected in Appendix.
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2. Approximate solutions and rescaling

For sake of simplicity, we consider in the following the supercritical case, i.e. we
assume that e40: The subcritical case may be treated exactly in the same way.
For normalization reasons, we consider throughout the paper the equation

�Du þ mu ¼ 3u5þe; u40 ð2:1Þ

instead of the original one. The solutions are identical, up to the multiplicative

constant 3
� 1
4þe: We recall that, according to [6], the functions

Ul;aðxÞ ¼
l
1
2

ð1þ l2jx � aj2Þ
1
2

; l40; aAR3 ð2:2Þ

are the only solutions to the problem

�Du ¼ 3u5; u40 in R3:

As aAO and l goes to infinity, these functions provide us with approximate solutions
to the problem that we are interested in. However, in view of the additional linear
term mu which occurs in ðP5þe;mÞ; the approximation needs to be improved. Actually,

we define in O the following functions:

Ũl;a;mðxÞ ¼ Ul;aðxÞ �
1

l
1
2

1� e�m
1
2jx�aj

jx � aj þ Hmða; xÞ

0
B@

1
CA

which satisfy

�DŨl;a;m þ mŨl;a;m ¼ 3U5
l;a þ m Ul;a �

1

l
1
2jx � aj

0
@

1
A: ð2:3Þ

We are going to seek for solutions in a neighborhood of such functions, with the a
priori assumption that a remains far from the boundary of the domain, that is there
exists some number d40 such that

dða; @OÞ4d: ð2:4Þ

Moreover, integral estimates (see Appendix) suggest to make the additional a priori
assumption that l behaves as 1=e as e goes to zero. Namely, we set

l ¼ 1

Le
;

1

d0
oLod0 ð2:5Þ

with d0 some strictly positive number.
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In fact, in order to avoid the singularity which appears in the right-hand side of
(2.3), and to cancel the normal derivative on the boundary, we modify slightly the

definition of Ũl;a;m; setting

VL;a;m;eðxÞ ¼ Ũ 1
Le;a;m

ðxÞ � m
2
ðLeÞ

1
2jx � ajð1� e

� e2

jx�aj2Þ þ yL;a;m;eðxÞ ð2:6Þ

yL;a;m;e ¼ y being the unique solution to the problem

�Dyþ my ¼ 0 in O;

@y
@n

¼ @

@n
�U 1

Le;a
ðxÞ þ ðLeÞ

1
2

jx � aj þ
m
2
ðLeÞ

1
2jx � ajð1� e

� e2

jx�aj2Þ

0
@

1
A on @O:

8>><
>>:

From the above assumption (2.4) we know that

Hmða; xÞ ¼ Oð1Þ; yl;a;m;e ¼ Oðe
5
2Þ ð2:7Þ

in C2ðOÞ: We note that VL;a;m;e ¼ V satisfies

�DV þ mV ¼ 3U5
1
Le;a

þ m U 1
Le;a

� ðLeÞ
1
2

jx � aj e
� e2

jx�aj2

0
@

1
A

� mL
1
2e

5
2

jx � aj3
1þ 2e2

jx � aj2

 !
e
� e2

jx�aj2 ;

� m2e2

2
ðLeÞ

1
2jx � ajð1� e

� e2

jx�aj2Þ in O;

@V

@n
¼ 0 on @O:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð2:8Þ

The VL;a;m;e’s are the suitable approximate solutions in the neighborhood of which we

shall find a true solution to the problem. In order to make further computations
easier, we proceed to a rescaling. We set

Oe ¼
O
e

and we define in Oe the functions

WL;x;m;eðxÞ ¼ e
1
2VL;a;m;eðexÞ; x ¼ a

e
ð2:9Þ
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which write as

WL;x;m;eðxÞ ¼U1
L;x

ðxÞ � L
1
2

1� e�m
1
2ejx�xj

jx � xj þ Hm;eðx;xÞ

0
B@

1
CA

� me2

2
L
1
2jx � xjð1� e

� 1

jx�xj2Þ þ *yL;x;m;eðxÞ ð2:10Þ

where Hm;e denotes the regular part of the Green’s function of the operator �Dþ me2

with Neumann boundary conditions in Oe; and *yL;x;m;eðxÞ ¼ e
1
2yL;a;m;eðexÞ: We notice

that, taking account of (2.7)

Hm;eðx; xÞ ¼ OðeÞ; *yL;x;m;eðxÞ ¼ Oðe3Þ ð2:11Þ

in C2ðOeÞ: We notice also that assumption (2.4) is equivalent to

dðx; @OeÞ4
d
e

ð2:12Þ

and that WL;x;m;e ¼ W satisfies the uniform estimate jWL;x;m;ejpCU1
L;x

in Oe: More-

over, we have

�DW þ me2W ¼ 3U5
1
L;x

þ me2 U1
L;a

� L
1
2

jx � xje
� 1

jx�xj2

0
@

1
A

� mL
1
2e2

jx � xj3
1þ 2

jx � xj2

 !
e
� 1

jx�xj2

� m2e4

2
ðLeÞ

1
2jx � xjð1� e

� 1

jx�xj2Þ in Oe;

@W

@n
¼ 0 on @Oe:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð2:13Þ

Finding a solution to ðP5þe;mÞ in a neighborhood of the functions VL;a;m;e is

equivalent, through the rescaling, to solving the problem

ðP0
5þe;mÞ

�Du þ me2u ¼ 3u5þe u40 in Oe;

@u

@n
¼ 0 on @Oe

8<
: ð2:14Þ

in a neighborhood of the functions WL;x;m;e: For that purpose, we have to use some

local inversion procedure. Namely, we are going to look for a solution to ðP0
e;mÞ

writing as

w ¼ WL;x;m;e þ o
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with o small and orthogonal at WL;x;m;e; in a suitable sense, to the manifold

M ¼ fWL;x;m;e; ðL; xÞ satisfying ð2:5Þ ð2:12Þg: ð2:15Þ

The general strategy consists in finding first, using an inversion procedure, a smooth
map ðL; xÞ/oðL; xÞ such that WL;x;m;e þ oðL; x; m; eÞ solves the problem in an

orthogonal space to M: Then, we are left with a finite-dimensional problem, for
which a solution may be found using the topological assumption of the theorem. In

the subcritical or critical case, the first step may be performed in H1 (see e.g.
[4,30,31]). However, this approach is not valid any more in the supercritical case, for

H1 does not inject into Lq as q46: Following [9], we use instead weighted Hölder
spaces to reduce the problem to a finite-dimensional one.

3. The finite-dimensional reduction

3.1. Inversion of the linearized problem

We first consider the linearized problem at a function WL;x;m;e; and we invert it in

an orthogonal space to M: From now on, we omit for sake of simplicity the indices

in the writing of WL;x;m;e: Equipping H1ðOeÞ with the scalar product

ðu; vÞe ¼
Z
Oe

ðru � rv þ me2uvÞ

orthogonality to the functions

Y0 ¼
@W

@L
; Yi ¼

@W

@xi

; 1pip3 ð3:1Þ

in that space is equivalent, setting

Z0 ¼ �D
@W

@L
þ me2

@W

@L
; Zi ¼ �D

@W

@xi

þ me2
@W

@xi

; 1pip3 ð3:2Þ

to the orthogonality in L2ðOeÞ; equipped with the usual scalar product /�; �S; to the
functions Zi; 0pip3: Then, we consider the following problem : hALNðOeÞ being
given, find a function f which satisfies

�Dfþ me2f� 3ð5þ eÞW 4þe
þ f ¼ h þ

P
iciZi in Oe;

@f
@n

¼ 0 on @Oe;

/Zi;fS ¼ 0 0pip3

8>><
>>: ð3:3Þ

for some numbers ci:
Existence and uniqueness of f will follow from an inversion procedure in

suitable functional spaces. Namely, for f a function in Oe; we define the following
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weighted LN-norms:

jj f jj� ¼ sup
xAOe

jð1þ jx � xj2Þ
1
2f ðxÞj

and

jj f jj�� ¼ sup
xAOe

jð1þ jx � xj2Þ2f ðxÞj:

Writing U instead of U1
L;x

; the first norm is equivalent to jjU�1f jj
N

and the second

one to jjU�4f jj
N
; uniformly with respect to x and L:

We have the following result:

Proposition 3.1. There exists e040 and a constant C40; independent of e and x; L
satisfying (2.12) (2.15), such that for all 0oeoe0 and all hALNðOeÞ; problem (3.5) has

a unique solution f 
 LeðhÞ: Besides,

jjLeðhÞjj�pCjjhjj��; jcijpCjjhjj��: ð3:4Þ

Moreover, the map LeðhÞ is C2 with respect to L; x and the LN

� -norm, and

jjDðL;xÞLeðhÞjj�pCjjhjj��; jjD2
ðL;xÞ LeðhÞjj�pCjjhjj��: ð3:5Þ

Proof. The argument follows closely the ideas in [9]. We repeat it for convenience of
the reader. The proof relies on the following result:

Lemma 3.1. Assume that fe solves (3.3) for h ¼ he: If jjhejj�� goes to zero as e goes to

zero, so does jjfejj�:

Proof. For 0oro1; we define

jj f jjr ¼ sup
xAOe

jð1þ jx � xj2Þ
1
2
ð1�rÞ

f ðxÞj

and we first prove that jjfejjr goes to zero. Arguing by contradiction, we may assume

that jjfejjr ¼ 1: Multiplying the first equation in (3.3) by Yj and integrating in Oe

we findX
i

ci/Zi;YjS ¼ /� DYj þ me2Yj � 3ð5þ eÞW 4þe
þ Yj;feS�/he;YjS:

On one hand we check, in view of the definition of Zi; Yj

/Z0;Y0S ¼ jjY0jj2e ¼ g0 þ oð1Þ; /Zi;YiS ¼ jjYijj2e ¼ g1 þ oð1Þ; 1pip3; ð3:6Þ
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where g0; g1 are strictly positive constants, and

/Zi;YjS ¼ oð1Þ; iaj: ð3:7Þ

On the other hand, in view of the definition of Yj and W ; straightforward

computations yield

/� DYj þ me2Yj � 3ð5þ eÞW 4þe
þ Yj;feS ¼ oðjjfejjrÞ

and
/he;YjS ¼ Oðjjhejj��Þ:

Consequently, inverting the quasi-diagonal linear system solved by the ci’s, we find

ci ¼ Oðjjhejj��Þ þ oðjjfejjrÞ: ð3:8Þ

In particular, ci ¼ oð1Þ as e goes to zero. The first equation in (3.3) may be written as

feðxÞ ¼ 3ð5þ eÞ
Z
Oe

Geðx; yÞ W 4þe
þ fe þ he þ

X
i

ciZi

 !
dy ð3:9Þ

for all xAOe; Ge denoting the Green’s function of the operator ð�Dþ me2Þ in Oe with
Neumann boundary conditions.
We notice that by scaling and (A.11) of Proposition 5.2,

Geðx; yÞ ¼ eGm
x

e
;
y

e

� �
p

C

jx � yj ð3:10Þ

and hence we obtainZ
Oe

Geðx; yÞW 4þe
þ fe dy

����
����pCjjfejjr

Z
Oe

1

jx � yj
1

ð1þ jx � xj2Þ
1
2ð3þeþrÞ

dy

pCjjfejjrð1þ jx � xj2Þ�
1
2;Z

Oe

Geðx; yÞhe dy

����
����pCjjhejj��

Z
Oe

1

jx � yj
1

ð1þ jx � xj2Þ2
dy

pCjjhejj��ð1þ jx � xj2Þ�
1
2;Z

Oe

Geðx; yÞZi dy

����
����pC

Z
Oe

1

jx � yj
1

ð1þ jx � xj2Þ
5
2

dy

pCð1þ jx � xj2Þ�
1
2 ð3:11Þ

from which we deduce

ð1þ jx � xj2Þ
1
2ð1�rÞjfeðxÞjpCð1þ jx � xj2Þ�

r
2:
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jjfejjr ¼ 1 implies the existence of R40; g40 independent of e such that

jjfejjLNðBRðxÞÞ4g: Then, elliptic theory shows that along some subsequence, *feðxÞ ¼
feðx � xÞ converges uniformly in any compact subset of R3 to a nontrivial solution of

�D *f ¼ 15U4
*L;0

*f

for some *L40: Moreover, j *fðxÞjpC=jxj: As a consequence, *f writes as

*f ¼ a0
@U *L;0

@ *L
þ
X3
i¼1

ai

@U *L;0

@ai

(see e.g. [30]). On the other hand, equalities /Zi;feS ¼ 0 provide us with the equalitiesZ
R3

� D
@U *L;0

@ *L
*f ¼

Z
R3

U4
*L;0

@U *L;0

@ *L
*f ¼ 0;

Z
R3

� D
@U *L;0

@ai

*f ¼
Z
R3

U4
*L;0

@U *L;0

@ai

*f ¼ 0; 1pip3:

As we have also

Z
R3

r
@U *L;0

@ *L

����
����
2

¼ g040;

Z
R3

r
@U *L;0

@ai

����
����
2

¼ g140; 1pip3

and Z
R3

r
@U *L;0

@ *L
:r

@U *L;0

@ai

¼
Z
R3

r
@U *L;0

@aj

:r
@U *L;0

@ai

¼ 0; iaj

the aj ’s solve a homogeneous quasi-diagonal linear system, yielding aj ¼ 0; 0pajp3;

and *f ¼ 0; hence a contradiction. This proves that jjfejjr ¼ oð1Þ as e goes to zero.

Furthermore, (3.9), (3.11) and (3.8) show that

jjfejj�pCðjjhejj�� þ jjfejjrÞ

whence also jjfejj� ¼ oð1Þ as e goes to zero. &

Proof of Proposition 3.1 (Conclusion). We set

H ¼ ffAH1ðOeÞ;/Zi;fS ¼ 0; 0pip3g

equipped with the scalar product ð�; �Þe: Problem (3.3) is equivalent to finding fAH

such that

ðf; yÞe ¼ /3ð5þ eÞW 4þe
þ fþ h; yS 8yAH
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that is

f ¼ TeðfÞ þ h̃ ð3:12Þ

h̃ depending linearly on h; and Te being a compact operator in H: Fredholm’s
alternative ensures the existence of a unique solution, provided that the kernel of
Id � Te is reduced to 0. We notice that feAKerðId � TeÞ solves (3.3) with h ¼ 0:
Thus, we deduce from Lemma 3.1 that jjfejj� ¼ oð1Þ as e goes to zero. As KerðId �
TeÞ is a vector space, KerðId � TeÞ ¼ f0g: Inequalities (3.4) follow from Lemma 3.1
and (3.8). This completes the proof of the first part of Proposition 3.1.
The smoothness of Le with respect to L and x is a consequence of the smoothness

of Te and h̃; which occur in the implicit definition (3.12) of f 
 LeðhÞ; with respect to
these variables. Inequalities (3.5) are obtained differentiating (3.3), writing the
derivatives of f with respect L and x as a linear combination of the Zi’ and an
orthogonal part, and estimating each term using the first part of the proposition—
see [9,20] for detailed computations. &

3.2. The reduction

In view of (2.13), a first correction between the approximate solution W and a true

solution to ðP0
e;mÞ writes as

ce ¼ LeðReÞ ð3:13Þ

with

Re ¼ 3W 5þe
þ � ð�DW þ me2WÞ

¼ 3W 5þe
þ � 3U5

1
L;x

� me2 U1
L;a

� L
1
2

jx � xj e
� 1

jx�xj2

0
@

1
Aþ mL

1
2e2

jx � xj3
1þ 1

jx � xj2

 !
e
� 1

jx�xj2

þ m2e4

2
ðLeÞ

1
2jx � xj 1� e

� 1

jx�xj2
 !

: ð3:14Þ

We have:

Lemma 3.2. There exists C; independent of x; L satisfying (2.12) (2.5), such that

jjRejj��pCe; jjDðL;xÞR
ejj��pCe; jjD2

ðL;xÞR
ejj��pCe:

Proof. According to (2.10), W ¼ U þ OðeÞ uniformly in Oe: Consequently, noticing
that UXCe in Oe; C independent of e

U5 � W 5þe
þ ¼ OðeU5jln U j þ eU4Þ
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uniformly in Oe; whence

jjU5 � W 5þe
þ jj��pCjjU�4ðU5 � W 5þe

þ Þjj
N

¼ OðeÞ:

On the other hand

ð1þ jx � xj2Þ2 me2 U1
L;a

� L
1
2

jx � xje
� 1

jx�xj2

0
@

1
A� mL

1
2e2

jx � xj3
1þ 1

jx � xj2

 !
e
� 1

jx�xj2

2
4

� m2e4

2
ðLeÞ

1
2jx � xjð1� e

� 1

jx�xj2Þ

3
5 ¼ OðeÞ

uniformly for xAOe; since

U1
L;a

� L
1
2

jx � xj e
� 1

jx�xj2 ¼ Oðjx � xj�3Þ

as jx � xj goes to infinity, and jx � xj ¼ Oð1=eÞ in Oe: The first estimate of the lemma
follows. The others are obtained in the same way, differentiating (3.14) and
estimating each term as previously. &

Lemma 3.2 and Proposition 3.1 yield:

Lemma 3.3. There exists C; independent of x; L satisfying (2.12) (2.5), such that

jjcejj�pCe; jjDðL;xÞc
ejj�pCe; jjD2

ðL;xÞc
ejj�pCe:

We consider now the following nonlinear problem: finding f such that, for some
numbers ci

�DðW þ cþ fÞ þ me2ðW þ cþ fÞ
�3ðW þ cþ fÞ5þe

þ ¼
P

i ciZi in Oe;

@f
@n

¼ 0 on @Oe;

/Zi;fS ¼ 0 0pip3:

8>>>>><
>>>>>:

ð3:15Þ

Setting

NeðZÞ ¼ ðW þ ZÞ5þe
þ � W 5þe

þ � ð5þ eÞW 4þe
þ Z ð3:16Þ

the first equation in (3.15) writes as

�Dfþ me2f� 3ð5þ eÞW 4þe
þ f ¼ 3Neðcþ fÞ þ

X
i

ciZi ð3:17Þ
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for some numbers ci: Assuming that jjZjj� is bounded, say jjZjj�pM for some

constant M; we have

jjNeðZÞjj��pCjjZjj2�

whence, assuming that jjfjj�p1 and using Lemma 3.3

jjNeðcþ fÞjj��pCðjjfjj2� þ e2Þ: ð3:18Þ

We state the following result:

Proposition 3.2. There exists C; independent of e and x; L satisfying (2.12) (2.5), such

that for small e problem (3.15) has a unique solution f ¼ fðL; x; m; eÞ with

jjfjj�pCe2: ð3:19Þ

Moreover, ðL; xÞ/fðL; x; m; eÞ is C2 with respect to the LN

� -norm, and

jjDðL;xÞfjj�pCe2; jjD2
ðL;xÞfjj�pCe2: ð3:20Þ

Proof. Following [9], we consider the map Ae from F ¼ ffAH1-LNðOeÞ :
jjfjj�peg to H1-LNðOeÞ defined as

AeðfÞ ¼ Leð3Neðfþ cÞÞ

and we remark that finding a solution f to problem (3.15) is equivalent to finding a
fixed point of Ae: One the one hand we have, for fAF

jjAeðfÞjj�pjjLeð3Neðfþ cÞÞCjj�pjjNeðfþ cÞjj��pCe2pe

for e small enough, implying that Ae sends F into itself. On the other hand Ae is a
contraction. Indeed, for f1 and f2 in F; we write

jjAeðf1Þ � Aeðf2Þjj�p jjNeðcþ f1Þ � Neðcþ f2Þjj��

p jjU�4ðNeðcþ f1Þ � Neðcþ f2ÞÞjjN:

In view of (3.16) we have

@ZNeðZÞ ¼ ð5þ eÞ ððW þ ZÞ4þe
þ � W 4þe

þ ÞÞ ð3:21Þ

whence

jNeðcþ f1Þ � Neðcþ f2ÞjpCU3jcþ tf1 þ ð1� tÞf2j jf1 � f2j
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for some tAð0; 1Þ: Then

jjU�4ðNeðcþ f1Þ � Neðcþ f2ÞÞjjNpCjjU�1ðcþ tf1 þ ð1� tÞf2Þðf1 � f2ÞjjN

pCðjjcjj� þ jjf1jj� þ jjf2jj�Þjjf1 � f2jj�

p ejjf1 � f2jj�:

This implies that Ae has a unique fixed point in F; that is problem (3.15) has a
unique solution f such that jjfjj�pe: Furthermore, the definition of f as a fixed

point of Ae yields

jjfjj� ¼ jjLeð3Neðfþ cÞÞjj�pCjjNeðfþ cÞjj��pCe2

using (3.18), whence (3.19).

In order to prove that ðL; xÞ/fðL; xÞ is C2; we remark that setting for ZAF

BðL; x; ZÞ 
 Z� Leð3NeðZþ cÞÞ

f is defined as

BðL; x;fÞ ¼ 0: ð3:22Þ

We have

@ZBðL; x; ZÞ½y� ¼ y� 3Leðy ð@ZNeÞðZþ cÞÞ

and, using (3.21)

jjLeðyð@ZNeÞðZþ cÞÞjj�pCjjyð@ZNeÞðZþ cÞjj��

pCjjU�3ð@ZNeÞðZþ cÞjj
N
jjyjj�

pCjjZþ cjj�jjyjj�

pCejjyjj�:

Consequently, @ZBðL; x;fÞ is invertible in LN

� with uniformly bounded inverse.

Then, the fact that ðL; xÞ/fðL; xÞ is C2 follows from the fact that

ðL; x; ZÞ/LeðNeðZþ cÞÞ is C2 and the implicit functions theorem.
Finally, let us show how estimates (3.20) may be obtained. Derivating (3.22) with

respect to L; we have

@Lf ¼ 3ð@ZBðL; x;fÞÞ�1ðð@LLeÞ ðNeðfþ cÞÞ þ Leðð@LNeÞðfþ cÞÞ þ Leðð@ZNeÞðfþ cÞ@LcÞÞ

whence, according to Proposition 3.1

jj@Lfjj�pCðjjNeðfþ cÞjj�� þ jjð@LNeÞðfþ cÞjj�� þ jjð@ZNeÞðfþ cÞ@Lcjj��Þ:
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From (3.18) and (3.19) we know that

jjNeðfþ cÞjj��pCe2:

Concerning the next term, we notice that according to definition (3.16) of Ne

jð@LNeÞðfþ cÞj ¼ ð5þ eÞjðW þ fþ cÞ4þe
þ � W 4þe

þ � ð4þ eÞW 3þe
þ ðfþ cÞjj@LW j

pCU5jjfþ cjj2�

pCU5e2

using again (3.18) and (3.19), whence

jjð@LNeÞðfþ cÞjj��pCe2:

Lastly, from (3.21) we deduce

jð@ZNeÞðfþ cÞ@LcjpU5jjfþ cjj�jj@Lcjj�

yielding

jjð@ZNeÞðfþ cÞ@Lcjj��pCe2:

Finally we obtain

jj@Lfjj�pCe2:

The other first and second derivatives of f with respect to L and x may be estimated
in the same way (see [20] for detailed computations concerning the second
derivatives). This concludes the proof of Proposition 3.2. &

3.3. Coming back to the original problem

We introduce the following functional defined in H1ðOÞ-L6þeðOÞ:

JeðuÞ ¼
1

2

Z
O
ðjruj2 þ mu2Þ � 3

6þ e

Z
O

u6þe
þ ð3:23Þ

whose nontrivial critical points are solutions to ðP5þe;mÞ (up to the multiplicative

constant 3
1

4þe). We consider also the rescaled functions defined in O

ŴðL; aÞðxÞ ¼ e�zWL;xðe�1xÞ ¼ e
1
2
�zVL;aðxÞ ð3:24Þ

with

z ¼ 1

2þ 1
2
e
; a ¼ ex:
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We define also

#cðL; aÞðxÞ ¼ e�zcðL; xÞðe�1xÞ; #fðL; aÞðxÞ ¼ e�zfðL; xÞðe�1xÞ ð3:25Þ

and we set

IeðL; aÞ 
 JeððŴ þ #cþ #fÞðL; aÞÞ: ð3:26Þ

We have:

Proposition 3.3. The function u ¼ 3
1

4þeðŴ þ #cþ #fÞ is a solution to problem ðP5þe;mÞ if

and only if ðL; aÞ is a critical point of Ie:

Proof. For v in H1ðOeÞ-L6þeðOeÞ; we set

KeðvÞ ¼
1

2

Z
Oe

ðjrvj2 þ me2v2Þ � 3

6þ e

Z
Oe

v6þe
þ ð3:27Þ

whose nontrivial critical points are solutions to ðP0
5þe;mÞ: According to the definition

Ie we have

IeðL; aÞ ¼ e1�2zKeððW þ cþ fÞðL; xÞÞ: ð3:28Þ

We notice that u ¼ 3
1

4þeðÛ þ #cþ #fÞ being a solution to ðP5þe;mÞ is equivalent to

W þ cþ f being a solution to ðP0
5þe;mÞ; that is a critical point of Ke: It is also

equivalent to the cancellation of the ci’s in (3.15) or, in view of (3.6) (3.7)

K 0
eðW þ cþ fÞ½Yi� ¼ 0; 0pip3: ð3:29Þ

On the other hand, we deduce from (3.28) that I 0eðL; aÞ ¼ 0 is equivalent to the

cancellation of K 0
eðW þ cþ fÞ applied to the derivatives of W þ cþ f with respect

to L and x: According to definition (3.1) of the Yi’s, Lemma 3.3 and Proposition 3.2
we have

@ðW þ cþ fÞ
@L

¼ Y0 þ y0;
@ðW þ cþ fÞ

@xj

¼ Yj þ yj; 1pjp3

with jjyijjLN

�
¼ oð1Þ; 0pip3: Writing

yi ¼ y0
i þ
X3
j¼0

aijYj; /y0
i;ZjS ¼ ðy0

i;YjÞe ¼ 0; 0pi; jp3

and

K 0
eðW þ cþ fÞ½Yi� ¼ ai
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it turns out that I 0eðL; aÞ ¼ 0 is equivalent, since K 0
eðW þ cþ pÞ½y� ¼ 0 for /y;ZjS ¼

ðy;YjÞe ¼ 0; 0pjp3; to

ðId þ ½aij �Þ½ai� ¼ 0:

As aij ¼ Oðjjyijj�Þ ¼ oð1Þ; we see that I 0eðL; aÞ ¼ 0 means exactly that (3.29) is

satisfied. &

4. Proof of Theorem 1.1

In view of Proposition 3.3 we have, for proving the theorem, to find critical points

of Ie: We establish first a C2-expansion of Ie:

4.1. Expansion of Ie

Proposition 4.1. There exist A; B; C; strictly positive constants such that

IeðL; aÞ ¼ A þ A

4
e lnðeLÞ þ 1

2
C þ A

6

� �
eþ 3BL

2
ðm1=2 þ Hmða; aÞÞeþ eseðL; aÞ

with se; DðL;aÞse and D2
ðL;aÞse going to zero as e goes to zero, uniformly with respect to

a; L satisfying (2.4) and (2.5).

Proof. In view of definition (3.26) of Ie; we first estimate JeðŴÞ: We have

e2z�1JeðŴÞ ¼ e2z�1Jeðe
1
2
�zVÞ

¼ JeðVÞ þ 3
1� e

e
2

6þ e

Z
O

V 6þe
þ

¼ JeðVÞ þ 1

2
� e
2
ln eþ oðeÞ

� �Z
O

V 6þe
þ

from which we deduce, using the integral estimates (A.8), (A.9) and Proposition 5.1
in Appendix, that

JeðŴÞ ¼ A þ A

4
e lnðeLÞ þ 1

2
C þ A

6

� �
eþ 3BL

2
ðm1=2 þ Hmða; aÞÞeþ oðeÞ: ð4:1Þ

Then, we prove that

IeðL; aÞ � JeðŴ þ #cÞ ¼ oðeÞ: ð4:2Þ
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Indeed, from a Taylor expansion and the fact that J 0
eðŴ þ #cþ #fÞ½f� ¼ 0; we have

IðL; aÞ � JeðŴ þ #cÞ

¼ JeðŴ þ #cþ #fÞ � JeðŴ þ #cÞ

¼
Z 1

0

J 00
e ðŴ þ #cþ t #fÞ½ #f; #f�t dt

¼ e1�2z
Z 1

0

K 00
e ðW þ cþ fÞ½f;f�t dt

¼ e1�2z
Z 1

0

Z
Oe

ðjfj2 þ me2f2 � 3ð5þ eÞðW þ cþ fÞ4þe
þ f2Þ

� �
t dt

¼ e1�2z
Z 1

0

Z
Oe

ðNeðfþ cÞfþ 3ð5þ eÞ ½W 4þe
þ � ðW þ cþ tfÞ4þe

þ �f2Þ
� �

t dt:

The desired result follows from (3.18), Lemma 3.3 and (3.19). Similar computations

show that estimate (4.2) is also valid for the first and second derivatives of IeðL; aÞ �
JeðŴ þ #cÞ with respect to L and a: Then, the proposition will follow from an

estimate of JeðŴ þ #cÞ � JeðŴÞ: We have

JeðŴ þ #cÞ � JeðŴÞ ¼ e1�2zðKeðW þ cÞ � KeðWÞÞ

¼ e1�2zðK 0
eðWÞ½c� þ

Z 1

0

ð1� tÞK 00
e ðW þ tcÞ½c;c�Þ:

By definition of c and Re

K 0
eðWÞ½c� ¼ �

Z
Oe

Rec

and we have

K 00
e ðW þ tcÞ½c;c� ¼

Z
Oe

ðjrcj2 þ me2c2Þ � 3ð5þ eÞ
Z
Oe

ðW þ tcÞ4þe
þ c2:

Then, integration by parts and c ¼ LeðReÞ yield

K 00
e ðW þ tcÞ½c;c� ¼

Z
Oe

Rec� 3ð5þ eÞ
Z
Oe

ððW þ tcÞ4þe
þ � W 4þe

þ Þc2:

Consequently

JeðŴ þ #cÞ � JeðŴÞ

¼ e1�2z � 1

2

Z
Oe

Rec� 3ð5þ eÞ
Z 1

0

ð1� tÞ
Z
Oe

½ðW þ tcÞ4þe
þ � W 4þe

þ �c2

� �
dt

� �
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and Lemmas 3.2 and 3.3 yield

JeðŴ þ #cÞ � JeðŴÞ ¼ oðeÞ:

The same estimate holds for the first and second derivatives with respect to L and a;
obtained similarly with more delicate computations—see Proposition 3.4 in [20].
This concludes the proof of Proposition 4.1. &

4.2. Proof of Theorem 1.1 (Conclusion)

According to the statement of Theorem 1.1, we assume the existence of b and c;

boco0; such that c is not a critical value of jmðxÞ ¼ m
1
2 þ Hmðx; xÞ and the relative

homology H�ðjc
m;j

b
mÞa0: In view of Proposition 3.3, we have to prove the existence

of a critical point of IeðL; aÞ: According to Proposition 4.1, we have

@Ie

@L
ðL; aÞ ¼ Ae

4L
þ 3B

2
jmðaÞeþ oðeÞ

and
@2Ie

@L2
ðL; aÞ ¼ � Ae

4L2
þ oðeÞ

uniformly with respect to a and L satisfying (2.4) (2.5). For d40; Z40; we define

Od;g ¼ faAO s:t: dða; @OÞ4d; jmðaÞo� gg:

The implicit functions theorem provides us, for e small enough, with a C1-map
aAOd;g/LðaÞ such that

@Ie

@L
ðLðaÞ; aÞ ¼ 0; LðaÞ ¼ � A

6B
ðjmðaÞÞ

�1 þ oð1Þ:

Then, finding a critical point of ðL; aÞ/IeðL; aÞ reduces to finding a critical point of
a/ĨeðaÞ; with

ĨeðaÞ ¼ IeðLðaÞ; aÞ:

We deduce from Proposition 4.1 the C1-expansion

ĨeðaÞ ¼ A þ A

4
e ln eþ 1

2
C � A

3
þ A

2
ln

A

6B

� �
e� A

4
e lnjjmðaÞj þ oðeÞ:

Therefore, up to an additive and to a multiplicative constant, we have to look for
critical points in Od;g of

IeðaÞ ¼ �lnjjmðaÞj þ teðaÞ ð4:3Þ

with teðaÞ ¼ oð1Þ; rteðaÞ ¼ oð1Þ as e goes to zero, uniformly with respect to aAOd;g:
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Arguing by contradiction, we assume

ðHÞ Ie has no critical point aAOd;g such that bojmðaÞoc:

We are going to use the gradient of Ie to build a continuous deformation of jc
m onto

jb
m; a contradiction with the assumption H�ðjc

m;j
b
mÞa0:

We first remark that jm has isolated critical values, since jm is analytic in O and

jm ¼ �N on the boundary of O: Therefore, the assumption that c is not a critical

value of jm implies the existence of Z40 such that jm has no critical value in

ðb; b þ Z�,ðc � Z; c�: Moreover, jc
m retracts by deformation onto jc�Z

m ; jbþZ
m retracts

by deformation onto jb
m; and H�ðjc�Z

m ;jbþZ
m Þa0:

Secondly, we choose d40 such that jmðxÞob for dðx; @OÞpd: We choose also

g40 such that �g4c: Then, a point x in the complementary of Od;g in O is either in

jb
m; or not in jc

m: Consequently, deforming jc�Z
m onto jbþZ

m is equivalent to deforming

jc�Z
m -Od;g onto jbþZ

m : To this end we set, for a0Aðjc�Z
m -Od;gÞ

d

dt
aðtÞ ¼ �rIeðaðtÞÞ; að0Þ ¼ a0:

aðtÞ is defined as long as the boundary of Od;g is not achieved. IeðaðtÞÞ being

decreasing, (4.3) shows that for e small enough, aðtÞ remains in jc
m: Then, the

boundary of Od;g may only be achieved by aðtÞ in jb
m: This means that aðtÞ is well

defined as long as bojmðaðtÞÞoc; and according to assumption ðHÞ; IeðaðtÞÞ is

strictly decreasing in that region. Therefore (4.3) proves, for e small enough, the
existence of t40 such that jmðaðtÞÞ ¼ b þ Z: Composing the flow with a retraction

of jc
m onto jc�Z

m ; we obtain a continuous deformation of jc�Z
m onto jbþZ

m ; a

contradiction with H�ðjc�Z
m ;jbþZ

m Þa0:

The previous arguments prove the existence, for e small enough, of a nontrivial
solution ue to the problem

�Du þ mu ¼ u5þe
þ in O;

@u

@n
¼ 0 on @O:

Then, the strong maximum principle shows that ue40 in O: The fact that ue blows
up, as e goes to zero, at a point a such that bojmðaÞoc; rjmðaÞ ¼ 0; follows from

the construction of ue: In particular, rjmðaÞ ¼ 0 is a straightforward consequence of

(4.3) as e goes to zero. This concludes the proof of the theorem.

Appendix A

A.1. Integral estimates

In this subsection, we collect the integral estimates which are needed
in the previous section. We recall that according to the definitions of Section 2,

ARTICLE IN PRESS
O. Rey, J. Wei / Journal of Functional Analysis 212 (2004) 472–499 491



we have

VL;a;m;eðxÞ ¼ U 1
Le;a

ðxÞ � ðLeÞ
1
2

1� e�m
1
2jx�aj

jx � aj þ Hmða; xÞ

0
B@

1
CAþ rL;a;m;eðxÞ ðA:1Þ

with

rL;a;m;e ¼ Oðjej
3
2Þ ðA:2Þ

uniformly in O and with respect to a and L satisfying (2.4) (2.5), and the same
estimate holds for the derivatives of rL;a;m;e with respect to a and L: We recall also

that VL;a;m;e satisfies

�DVL;a;m;e þ mVL;a;m;e ¼ 3U5
1
Le;a

þ m U 1
Le;a

� ðLeÞ
1
2

jx � aj

0
@

1
Aþ r0L;a;m;e in O;

@VL;a;m;e

@n
¼ 0 on @O

8>>>><
>>>>:

ðA:3Þ

with

r0L;a;m;e ¼ m
ðLeÞ

1
2

jx � ajð1� e
� e2

jx�aj2Þ � mðLeÞ
1
2

e2

jx � aj3
þ 2e4

jx � aj5

 !
e
� e2

jx�aj2 þ Oðjej
7
2Þ

ðA:4Þ

and such an expansion holds for the derivatives of r0L;a;m;e with respect to a and L:
Omitting, for sake of simplicity, the indices L; a; m; e; we state:

Proposition 5.1. Assuming that a and L satisfy (2.4) (2.5), we have the uniform

expansions as e goes to zero

JeðVÞ ¼ A þ A

4
e lnðjejLÞ þ 1

2
C þ A

6

� �
eþ 3BL

2
ðm1=2 þ Hmða; aÞÞjej þ Oðe2ð ln jejÞ2Þ;

@Je

@L
¼ Ae
4L

þ 3B

2
ðm1=2 þ Hmða; aÞÞjej þ Oðe2ð ln jejÞ2Þ;

@Je

@a
¼ 3BL

2

@

@a
ðHmða; aÞÞjej þ Oðe2ð ln jejÞ2Þ;

@2Je

@L2
¼ � Ae

4L2
þ Oðe2ð ln jejÞ2Þ;

@2Je

@L@a
¼ 3B

2

@

@a
ðHmða; aÞÞjej þ Oðe2ð ln jejÞ2Þ
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with

A ¼
Z
R3

U6
1;0 ¼

p2

4
; B ¼

Z
R3

U5
1;0 ¼

4p
3
; C ¼ � 1

2

Z
R3

U6
1;0 ln U1;040:

Proof. For sake of simplicity, we assume that e40 (the computations are equivalent
as eo0), and we set r ¼ jx � aj: In view of (A.3), we write

Z
O
ðjrV j2 þ mV 2Þ ¼

Z
O
ð�DV þ mVÞV ¼

Z
O

3U5 þ m U � ðLeÞ
1
2

r

0
@

1
Aþ r0

0
@

1
AV :

ðA:5Þ

From (A.1), (A.2) we deduce

Z
O

U5V ¼
Z
O

U6 � ðLeÞ
1
2

Z
O

U5 1� e�m
1
2r

r
þ Hmða; xÞ

0
B@

1
CAþ Oðe2Þ

noticing that Z
O

U5 ¼ Oðe
1
2Þ: ðA:6Þ

One one handZ
O

U6 ¼ A þ Oðe3Þ with A ¼
Z
R3

U6 ¼ 4p
Z

N

0

r2 dr

ð1þ r2Þ3
¼ p2

4
:

On the other hand, since dða; @OÞXd40

Z
O

U5 1� e�m
1
2r

r
þ Hmða; xÞ

0
B@

1
CA

¼ 1

ðLeÞ
1
2

Z
ðO�aÞ=ðLeÞ

U5 1� e�m
1
2Ler

r
dx þ

Z
Bða;RÞ

U5Hmða; xÞ þ Oðe
5
2Þ

¼ 4p

ðLeÞ
1
2

Z R=ðLeÞ

0

1� e�m
1
2Ler

ð1þ r2Þ
5
2

r dr þ Hmða; aÞ
Z

Bða;RÞ
U5 þ O

Z
Bða;RÞ

U5r2 þ e
5
2

 !

¼ 4pBðLeÞ
1
2ðm

1
2 þ Hmða; aÞÞ þ Oðe

3
2Þ
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with

B ¼
Z
R3

U5
1;0 ¼ 4p

Z
N

0

r2 dr

ð1þ r2Þ
5
2

¼ 4p
3
:

Concerning the second term in the right-hand side of (A.5), denoting by R0 the
diameter of O and using (2.6), we have

Z
O
m U � ðLeÞ

1
2

r

0
@

1
AV ¼O

Z
O

U � ðleÞ
1
2

r

������
������

0
@

1
AU

¼O e2
Z R0=ðLeÞ

0

1

r
� 1

ð1þ r2Þ
1
2

0
@

1
A r2 dr

ð1þ r2Þ
1
2

0
@

1
A

¼Oðe2Þ:

Lastly, noticing that V ¼ OðUÞ uniformly in O and with respect to the parameters
a; L satisfying (2.4) and (2.5), we have, using (A.4)

Z
O
r0V ¼O

Z
O

e
1
2

r
ð1� e�

e2
r2Þ þ e

1
2

e2

r3
þ e4

r5

� �
e�

e2
r2

0
@

1
AU þ e4

0
@

1
A

¼O e2
Z R0

e

0

rð1� e�
1
r2Þ þ 1

r
þ 1

r2

� �� �
dr

ð1þ r2Þ
1
2

þ e4

0
@

1
A

¼Oðe2Þ

whence finallyZ
O
ðjrV j2 þ mV 2Þ ¼ 3A � 3BLðm1=2 þ Hmða; aÞÞeþ Oðe2Þ: ðA:7Þ

In the same way we haveZ
O

V6
þ ¼ A � 6BLðm1=2 þ Hmða; aÞÞeþ Oðe2Þ: ðA:8Þ

Namely, from (A.1) (A.2) and V ¼ OðUÞ we derive

Z
O

V6
þ ¼

Z
O

U6 � 6ðLeÞ
1
2

Z
O

U5 1� e�m
1
2r

r
þ Hmða;xÞ

0
B@

1
CAþ O e

3
2

Z
O

U5 þ e
Z
O

U4

� �

and the conclusion follows from the previous computations, noticing thatZ
O

U4 ¼ OðeÞ:
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Then, we write Z
O

V 6þe
þ ¼

Z
O

V 6
þ þ

Z
O

V 6
þðV e

þ � 1Þ:

Noticing that 0pVþp2e�
1
2

V e
þ � 1 ¼ e ln Vþ þ Oðe2ðln eÞ2Þ

and using the fact that Vþ ¼ U þ Oðe
1
2Þ we have

V 6
þ ¼ U6 þ Oðe

1
2U5Þ; ln Vþ ¼ ln U þ O

e
1
2

U

0
@

1
A

(note that UX
e
1
2

R0 in O) whence

V6
þ ln Vþ ¼ U6 ln U þ Oðe

1
2U5 þ e

1
2U5j ln U jÞ:

We find easily Z
O

U6 ln U ¼ � A

2
ln ðLeÞ � C þ Oðe3j ln ejÞ

and noticing that
R
O U5jln U j ¼ Oðe

1
2jln ejÞ; we obtainZ

O
V 6þe

þ ¼
Z
O

V 6
þ � A

2
e lnðjejLÞ � Ceþ Oðe2ðlnjejÞ2Þ: ðA:9Þ

The first expansion of Proposition 5.1 follows from (A.7)–(A.9) and definition (3.23)
of Je:
The expansions for the derivatives of Je are obtained exactly in the same way. &

A.2. Green’s function

We study the properties of Green’s function Gmðx; yÞ and its regular part Hmðx; yÞ:
We summarize their properties in the following proposition.

Proposition 5.2. Let Gmðx; yÞ and Hmðx; yÞ be defined in (1.1) and (1.2), respectively.

Then we have

Hmðx; xÞ-�N as dðx; @OÞ-0; ðA:10Þ

jGmðx; yÞjp C

jx � yj; ðA:11Þ

m
1
2 þmax

xAO
Hmðx; xÞ-�N; as m-0; ðA:12Þ
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m
1
2 þmax

xAO
Hmðx; xÞ-þN; as m-þN: ðA:13Þ

Proof. Eq. (A.10) follows from standard argument. Let xAO be such that d ¼
dðx; @OÞ is small. So there exists a unique point %xA@O such that d ¼ jx � %xj:
Without loss of generality, we may assume %x ¼ 0 and the outer normal at %x is
pointing toward xN-direction. Let x� be the reflection point x� ¼ ð0;y; 0;�dÞ and
consider the following auxiliary function:

H�ðy; xÞ ¼ e�m
1
2jy�x�j

jy � x�j :

Then H� satisfies DyH� � mH� ¼ 0 in O and on @O

@

@n
ðH�ðy; xÞÞ ¼ � @

@n

e�m
1
2jy�xj

jy � xj

0
B@

1
CAþ Oð1Þ:

Hence we derive that

Hðy; xÞ ¼ �H�ðy; xÞ þ Oð1Þ ðA:14Þ

which implies that

Hðx; xÞ ¼ � 1

dðx; @OÞ þ Oð1Þ ðA:15Þ

hence (A.10).
From (A.14), we see that as dðx; @OÞ-0; we have

Gmðy; xÞ ¼ e�m
1
2jy�xj

jy � xj þ H�ðy; xÞ þ Oð1Þp C

jx � yj: ðA:16Þ

On the other hand, if dðx; @OÞ4d040; then jHmðy; xÞjpC and (A.11) also holds.

We now prove (A.12). For m small, we can decompose Hm as follows:

Hmðx; yÞ ¼ c þ H0ðx; yÞ þ Ĥðx; yÞ; ðA:17Þ

where

c ¼ 1

jOj

Z
O

Hmðx; yÞ ¼ 1

mjOj

Z
@O

@

@n

e�m
1
2jy�xj

jy � xj

0
B@

1
CA ¼ � 4p

mjOj þ Oð1Þ ðA:18Þ
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and H0 satisfies

�DH0 ¼
4p
jOj;

Z
O

H0 ¼ 0;
@

@n
H0 ¼

@

@n

1

jy � xj

� �
on @O

and Ĥ is the remainder term. By simple computations, Ĥ satisfies

DĤ � mĤ þ OðmH0ðx; yÞÞ þ Oð1Þ ¼ 0 in O;
Z
O

Ĥ ¼ 0;
@

@n
Ĥ ¼ Oð1Þ on @O

which shows that Ĥ ¼ Oð1Þ: Thus

m
1
2 þmax

xAO
Hmðx; xÞp� 4p

mjOj þ Oð1Þ-�N

as m-0: (A.12) is thus proved.
To prove (A.13), we choose a point x0AO such that dðx0; @OÞ ¼ maxxAO dðx; @OÞ:

Then, since @
@n
ðe�m

1
2 jx0�xj

jx0�xj Þ ¼ Oðe�
m
1
2

2
dðx0;@OÞÞ on @O; for m large enough we see that

m
1
2 þmax

xAO
Hmðx; xÞXm

1
2 þ Hðx0; x0ÞXm

1
2 þ Oðe�

m
1
2

2 dðx0;@OÞÞ-þN

as m-þN; which proves (A.13). &
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