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Abstract In Bose-Einstein condensates (BECs), skyrmions can be characterized by pairs

of linking vortex rings coming from two-component wave functions. Here we construct
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1 Introduction

Vortex rings formed in nature with various scales and composed of vortices whose core is

an one-dimensional close loop in three space dimensions have fascinated scientists and mathe-

maticians for a long time. They can also be observed in the trapped Bose-Einstein condensate

(BEC) represented by one-component wave functions (cf. [1]). In a double condensate (a bi-

nary mixture of BECs with two different hyperfine states) described by two-component wave

functions (cf. [13]), the skyrmion may be formed with a pair of linking vortex rings (cf. [7]).

The skyrmion can be depicted as a quantized vortex ring in one component close to the core of

which is confined the second component carrying quantized circulation around the ring.
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The GP functional with two-component wave functions is a standard model to describe a

double condensate. In [3], GP functionals can be mapped onto a version of the nonlinear sigma

model having a similar form to the Skyrme model. Conventionally, the Skyrme model gives

skyrmions which are topologically non-trivial maps from three-dimensional space to a target

manifold in order to represent baryons in nuclear physics (cf. [5], [9], [10], [17]). It would be

natural to believe that skyrmions can be found in GP functionals with two-component wave

functions. Here we want to prove rigorously the existence of configuration of skyrmions by

studying critical points of GP functionals with two-component wave functions.

Physically, the two-component GP functional can be written as

E[Ψ1,Ψ2] =

∫
R3

2∑
i=1

(
�

2M
|∇Ψi|2 + Vi |Ψi|2

)
+

2∑
i,j=1

Uij |Ψi|2 |Ψj|2, (1.1)

under the following constraints: ∫
R3

|Ψi|2 = Ni, i = 1, 2, (1.2)

where � is the Planck constant, M is the atomic mass, and Vi is the i-th trap potential. The

coefficients Uij ’s are determined by all mutual s-wave scattering lengths. Due to Feshbach

resonance, Uij ’s can be tuned over a very large range by adjusting the externally applied

magnetic field (cf. [8]). Besides, Ψi is the complex-valued wave function of the i-th component

BEC, and Ni is a positive constant denoting the number of atoms of the i-th component BEC.

By numerical simulations, a configuration with the topology of a skyrmion, i.e., a topological

soliton of the S3 → S3 map (cf. [14]) can be imprinted in a double condensate (cf. [15]),

where S3 is the unit sphere in R4. Furthermore, stable skyrmions may exist in a homogeneous

two-component BEC under the condition that phase separation occurs due to strong inter-

component repulsion without the effect of trap potentials (cf. [2]). This motivates us to replace

R3 by S3 and to set Vi ≡ 0 for i = 1, 2 in (1.1) and (1.2).

Mathematically, we may compactify R
3 into S3 if (Ψ1,Ψ2) approaches a constant vector

at infinity of R3. Hence we may replace R3 by S3 in (1.1) and (1.2), respectively. Let Vi ≡ 0

for i = 1, 2 and choose suitable scales on Uij ’s and Ni’s. Then we may transform the functional

(1.1) and the condition (1.2) (up to constants) into

EΛ,β(u, v) =

∫
S3

|∇u|2 + |∇v|2 + Λ

2
(1− |u|2 − |v|2)2 + 4β|u|2|v|2, (1.3)

for u, v ∈ H1(S3;C) satisfying∫
S3

|u|2 = c1,Λ|S3|,
∫

S3

|v|2 = c2,Λ|S3|, (1.4)

where |S3| = 2π2, Λ and β are large parameters, and cj,Λ’s are positive constants such that

cj,Λ → cj as Λ ↑ ∞, 0 < c1, c2 < 1, and c1 + c2 = 1. It is evident that the large parameter

Λ forces the vector (u, v) to be close to S3 in order to get finite energy, and another large

parameter β may provide strong inter-component repulsion to fulfill the condition of phase

separation in the physical literature (cf. [18]). In this paper, we study critical points of the

functional (1.3) with the constraint (1.4) in order to represent skyrmions in double condensates.
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2 Problems and Results

For simplicity, we first assume (u, v) ∈ S3 and

⎛
⎝u

v

⎞
⎠ =

⎛
⎝ (sinλ)eimφ

(cosλ)einθ

⎞
⎠ , (2.1)

where λ = λ(r), λ(0) = 0, λ(π
2 ) =

π
2 , m,n ∈ Z, (r, φ, θ) are standard Hopf (toroidal) coordinates

of S3 defined by

x1 = cos r cos θ, x2 = cos r sin θ, (2.2)

x3 = sin r cosφ, x4 = sin r sinφ,

for (x1, · · · , x4) ∈ S3 = {(x1, · · · , x4) :
4∑

j=1

x2
j = 1}, where r ∈ [0, π

2 ], θ and φ ∈ [0, 2π]. For

each fixed value of r ∈ [0, π
2 ], the θ and φ coordinates sweep out a two-dimensional torus.

Taken together, these tori almost fill S3. The exceptions occur at the endpoints r = 0 and

r = π
2 , where the stack of tori collapses to the circles Γ1 = {(x1, x2, 0, 0) : x

2
1 + x2

2 = 1} and
Γ2 = {(0, 0, x3, x4) : x

2
3 + x2

4 = 1}, respectively. It is obvious that Γ1 and Γ2 are linking circles

in S3. The coordinates r, θ and φ are everywhere orthogonal to each other. Thus, the metric

on S3 may be written as

ds2 = dr2 + cos2 rdθ2 + sin2 rdφ2.

Besides, the volume form is given by

dV = sin r cos rdr ∧ dθ ∧ dφ.

Consequently,

∫
S3

|∇w|2 = 1

2

∫ 2π

0

∫ 2π

0

∫ π
2

0

[
(sin 2r)|∂rw|2 +

sin 2r

cos2 r
|∂θw|2 +

sin 2r

sin2 r
|∂φw|2

]
drdθdφ, (2.3)

and ∫
S3

|w|2 = 1

2

∫ 2π

0

∫ 2π

0

∫ π
2

0

(sin 2r)|w|2drdθdφ, (2.4)

for w ∈ H1(S3;C).

By (2.1), (2.3) and (2.4), the energy functional (1.3) can be reduced to

Eβ(λ) = 2π2

∫ π
2

0

[
(sin 2r)|λ′|2 + m2 sin 2r

sin 2r
sin 2λ+

n2 sin 2r

cos 2r
cos 2λ+ β(sin 2r) sin 22λ

]
dr,

(2.5)

under the constraint ∫ π
2

0

(sin 2r) sin2 λdr = c1 ∈ (0, 1), (2.6)
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which may come from (1.4) and (2.1). Let ε = 1/
√
β. Then the energy functional can be

written as Eβ = 2π2 ε−2Eε, where 0 < ε� 1 is a small parameter, and

Eε(λ) =

∫ π
2

0

{
ε2
[
(sin 2r)|λ′|2 + m2 sin 2r

sin 2r
sin 2λ+

n2 sin 2r

cos 2r
cos 2λ

]
+ (sin 2r) sin2 2λ

}
dr.

(2.7)

To find critical points ofEε under the constraint (2.6), we study solutions (λ, μ)’s of the following

problem: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ε2
[
λ′′ +

2 cos 2r

sin 2r
λ′ − 2

sin2 2r
(m2 cos 2r − n2 sin 2r) sin 2λ

]
+ sin 4λ

= με sin 2λ, 0 < r <
π

2
,

λ(0) = 0, λ(
π

2
) =

π

2
,

(2.8)

where μ is the associated Lagrange multiplier. Note that the conditions λ(0) = 0 and λ(π
2 ) =

π
2

are crucial to let (u, v) (defined in (2.1)) form a smooth map from S3 to S3 with topological

charge mn. Here topological charge means how many times the domain sphere S3 are wrapped

on the image sphere S3. Actually, we may find solutions of the equation in (2.8) satisfying

another conditions e.g. λ(0) = 0 and λ(π
2 ) = 0 or π but the corresponding map (u, v) may

become multi-valued and lose smoothness at r = π/2, i.e., the circle Γ2.

In this paper, we show the following result.

For each μ ∈ R, the problem (2.8) has a solution λ = λε(r) satisfying

λε(r)→

⎧⎨
⎩0, ∀ 0 ≤ r < t0,
π

2
, ∀ t0 < r ≤ π

2
,

(2.9)

and

Eε (λε) = O(ε), (2.10)

as ε→ 0+, where 0 < t0 <
π
2 depends on μ. As ε > 0 sufficiently small, the profile of λε having

a sharp interface near t0 can be sketched in Figure 1 as follows:

�

�

π
2

0 t0
π
2

Figure 1

Moreover, we may choose a suitable μ to fulfill the condition (2.6), and the associated solution

can be proved as a local minimizer of the energy functional (2.7) under the constraint (2.6).

This may give the linear stability of the solution.
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To find critical points of EΛ,β , we assume⎛
⎝u

v

⎞
⎠ = ρ

⎛
⎝ (cosλ)eiφ

(sin λ)eiθ

⎞
⎠ , (2.11)

where ρ = ρ(r) and λ = λ(r) satisfy the following boundary conditions:⎧⎪⎨
⎪⎩
ρ(0) = ρ(

π

2
) = 0,

λ(0) = 0, λ(
π

2
) =

π

2
.

(2.12)

Here (r, φ, θ) are standard Hopf coordinates of S3. It is remarkable that⎛
⎝ (cosλ)eiφ

(sinλ)eiθ

⎞
⎠ =

⎛
⎝ (sin λ̃)eiφ

(cos λ̃)eiθ

⎞
⎠ , λ̃ =

π

2
− λ

has the same form as (2.1) with m = n = 1. Then, by (1.3), (2.3), (2.4), and (2.11), the energy

functional EΛ,β(u, v) can be written as

EΛ,β = EΛ,β(ρ, λ)

= 2π2

∫ π
2

0

[(sin 2r) ρ2|λ′|2 + β(sin 2r)ρ4 sin2 2λ]dr

+2π2

∫ π
2

0

[
(sin 2r) |ρ′|2 +

(sin 2r
sin2 r

cos2 λ+
sin 2r

cos2 r
sin2 λ

)
ρ2 + (sin 2r)

Λ

2
(1 − ρ2)2

]
dr.

(2.13)

Besides, the constraint (1.4) becomes∫ π
2

0

(sin 2r) ρ2 cos2 λdr = c1,Λ,

∫ π
2

0

(sin 2r) ρ2 sin2 λdr = c2,Λ, (2.14)

where cj,Λ → cj as Λ→∞, 0 < c1, c2 < 1, and c1 + c2 = 1.

Let δ =
√
1/Λ and ε =

√
1/β, where Λ and β are large parameters tending to infinity.

Then the functional EΛ,β = 2π2 ε−2 Ẽδ,ε, where

Ẽδ,ε(λ, ρ) =

∫ π
2

0

[ε2 (sin 2r)ρ2|λ′|2 + (sin 2r)ρ4 sin2 2λ]dr

+

∫ π
2

0

{
ε2(sin 2r)|ρ′|2 + ε2

[sin 2r
sin2 r

cos2 λ+
sin 2r

cos2 r
sin2 λ

]
ρ2

+
ε2

2δ2
(sin 2r) (1− ρ2)2

}
dr, (2.15)

and the constraint (2.14) becomes∫ π
2

0

(sin 2r) ρ2 cos2 λdr = c1,δ,

∫ π
2

0

(sin 2r) ρ2 sin2 λdr = c2,δ, (2.16)

where cj,δ → cj as δ → 0, 0 < c1, c2 < 1, and c1+ c2 = 1. Without loss of generality, we assume

ρ → 1 almost everywhere as δ → 0. Actually, such a hypothesis will be removed later. Then

two conditions of (2.16) can be reduced to one condition as follows:∫ π
2

0

(sin 2r) ρ2 sin2 λdr = c2,δ, (2.17)
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where c2,δ → c2 as δ → 0. Critical points of Ẽδ,ε subject to (2.17) satisfy

− ε2

sin 2r
(ρ2λ′ sin 2r)′ + ρ4 sin 4λ− ε2

(
2 cos 2r

sin2 2r

)
ρ2 sin 2λ = εμρ2 sin 2λ, ∀ 0 < r < π/2,

(2.18)

and

− δ2

sin 2r
(ρ′ sin 2r)′ + (ρ2 − 1) ρ+ δ2

(
|λ′|2 + cos2 λ

sin2 r
+
sin2 λ

cos2 r

)
ρ+

2δ2

ε2
ρ3 sin2 2λ

= δμρ sin2 λ, ∀ 0 < r < π/2, (2.19)

with the conditions of (2.12), where μ is the Lagrange multiplier. Under the assumption

0 < ε2 � δ � ε� 1, (2.20)

we may show the following result.

For each μ ∈ R, there exists a solution (λ, ρ) = (λδ,ε,μ, ρδ,ε,μ) to (2.18)–(2.19) such that

λδ,ε,μ(r)→

⎧⎨
⎩0, ∀ 0 ≤ r < t0,
π

2
, ∀ t0 < r ≤ π

2 ,
(2.21)

ρδ,ε,μ(r)→

⎧⎪⎨
⎪⎩
1, ∀ 0 < r <

π

2
,

0, if r = 0,
π

2
,

(2.22)

and

Ẽδ,ε (λδ,ε,μ, ρδ,ε,μ) = O(ε) +O
(
ε2 log

1

δ

)
, (2.23)

as ε→ 0+, where 0 < t0 <
π
2 depends on μ. Moreover, we may find a suitable μ such that the

condition (2.17) is fulfilled. When ε > 0 is sufficiently small, the graph of λδ,ε,μ has a sharp

interface near t0. Besides, the profile of ρδ,ε,μ gives linking vortex rings around r = 0, π
2 , i.e., the

circles Γj , j = 1, 2. Therefore, by (2.11), we may obtain skyrmions of GP functionals. We point

out that, on one hand, one may regard Ẽδ,ε as an approximation to Eε when 0 < δ � ε � 1.

On the other hand, by (2.23), it is evident that Ẽδ,ε is of O(ε) which is same as Eε in (2.10)

if δ � ε2 > 0 holds. This provides one of the reasons for the technical condition (2.20) in

the sense that certain restrictions may needed in order to accommodate phase-seperations and

vortex-confinements. We use this technical assumption mainly for the purpose of simplifications

of some proofs. We refer to Section 7 of the paper for details.

The rest of paper is organized as follows: In Section 3, we introduced the heteroclinic

solution of Sine-Gordon equation. The heteroclinic solution can be used to approach solutions

of (2.8) with (2.9) in Section 4. We study the spectrum of linearized operator and the local

minimizer of Eε in Section 5 and 6, respectively. In Section 7, we find solutions of (2.18)–(2.19)

with (2.21)–(2.23).
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3 Heteroclinic Solution

Let w denote the unique heteroclinic solution of Sine-Gordon equation given by⎧⎨
⎩−w

′′ + sin 4w = 0 in R,

w(−∞) = 0, w(+∞) = π
2 .

(3.1)

Note that the solution w can be written as

w(x) =
π

4
+
1

2
arcsin [tanh (2x)], ∀ x ∈ R. (3.2)

The following lemma plays an important role in our study.

Lemma 3.1 The eigenvalue problem⎧⎨
⎩−φ

′′ + 4(cos 4w)φ = λφ in R,

φ(±∞) = 0
(3.3)

has the following set of eigenvalues

λ1 = 0, φ1 = w′; λ2 > 0, (3.4)

where λ1 is the first eigenvalue, φ1 is the first eigenfunction and λ2 is the second eigenvalue.

Proof Using (3.2), the eigenvalue problem (3.3) becomes

−φ′′ + 4(1− 2(tanh(2x))2)φ = λφ, φ ∈ H1(R). (3.5)

Letting y = 2x, (3.5) becomes

−φ′′ − (−1 + 2(cosh(y))−2)φ = λφ. (3.6)

In fact, (3.6) can be written as

−φ′′ − (−1 + w2
0)φ = λφ, φ ∈ H1(R), (3.7)

where w0 =
√
2(cosh y)−1 is the unique ODE solution of

w′′0 − w0 + w3
0 = 0, w0 > 0.

It is well-known that the eigenvalues of (3.7) are given by λ1 = 0, φ1 = cw0 = c
√
2 sech y;λ2 >

0. See Lemma 4.1 of [19]. This proves the lemma.

As a consequence, we have∫
R

φ′2 + 4

∫
R

(cos 4w)φ2 ≥ 0, ∀φ ∈ H1(R). (3.8)

It is also easy to see that⎧⎨
⎩w(x) = O(e−c1|x|) as x→ −∞,
w(x) =

π

2
+O(e−c1|x|) as x→ +∞,

(3.9)
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where c1 is a positive constant. Fix t ∈ (0, π
2 ), we define

wt(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 < x < t− 2δ0,

w
(x− t

ε

)
, t− δ0 < x < t+ δ0,

π

2
, t+ 2δ0 < x <

π

2
,

(3.10)

where δ0 > 0 is a small constant independent of ε. Because of (3.9), we may use smooth cut-off

functions to define wt(x) for x ∈ [t− 2δ0, t− δ0] ∪ [t+ δ0, t+ 2δ0] such that

wt(x) = w
(x− t

ε

)
+O

(
e−

δ0
ε e−

c2|x−t|

ε

)
, (3.11)

where c2 is a positive constant.

4 Solutions of (2.8)

Let μ > 0 be a fixed number. We shall use localized energy method to find solutions of

(2.8) with the following asymptotic behavior

λ(r) = wtε,ε(r) + φε(r), ‖φε‖L∞ = O(ε).

For references on localized energy method, we refer to Section 2.3 of [21].

To this end, we divide our proof into two steps:

Step I For each t ∈ (0, π
2 ), there exists a unique function φε,t and a unique number cε(t)

such that λ(r) = wt(r) + φε,t(r) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ε2
[
λ′′ +

2 cos 2r

sin 2r
λ′ − 2

sin2 2r
(m2 cos 2r − n2 sin 2r) sin 2λ

]

+sin 4λ− εμ sin 2λ = cε(t)w
′
(r − t

ε

)
,

∫ π
2

0

w′
(r − t

ε

)
φε,t(r)dr = 0, φε,t(0) = φε,t

(π
2

)
= 0.

(4.1)

Step II There exists a constant tε ∈ (0, π
2 ) such that

cε(tε) = 0.

The proof of Step I relies on the following Lemma.

Lemma 4.1 Consider the following linearized problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ε2
[
φ′′ +

2 cos 2r

sin 2r
φ′ − 4

sin2 2r
(m2 cos2 r − n2 sin2 r)(cos 2wt)φ

]

+4(cos 4wt)φ− 2εμ(cos 2wt)φ = h,

∫ π
2

0

w′
(r − t

ε

)
φ(r)dr = 0, φ(0) = 0, φ

(π
2

)
= 0.

(4.2)

Then

‖φ‖L∞(0, π
2
) ≤ c‖h‖L∞(0, π

2
). (4.3)
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Furthermore,

|φ(r)| ≤ C‖h‖∗e−σ| r−t
ε
|, ∀ r ∈

(
0,
π

2

)
, (4.4)

where σ ∈ (0, 1) is a small number, C is a positive constant independent of ε, and ‖ · ‖∗ is
defined by

‖h‖∗ = sup
r∈(0, π

2
)

eσ|
r−t

ε
||h(r)|, ∀h ∈ L∞

(
0,
π

2

)
.

Proof First, we prove (4.3) by contradiction. Suppose that ‖h‖L∞(0, π
2
) = oε(1) and

‖φ‖L∞(0, π
2
) = 1, where oε(1) is a small quantity tending to zero as ε goes to zero. Let rε ∈ (0, π

2 )

such that φ(rε) = ‖φ‖L∞(0, π
2
) = 1. If rε is close to zero, then⎧⎨

⎩φ′′(rε) < 0, (m2 cos 2rε − n2 sin 2rε)(cos 2wt(rε))φ(rε)) > 0,

φ′(rε) = 0.
(4.5)

Consequently, by (4.5) and the equation of (4.2), we have

4(cos 4wt(rε))φ(rε)− 2εμ(cos 2wt(rε))φ(rε) ≤ h(rε) = oε(1),

which is impossible. Similarly, if rε is close to
π
2 , we may also get a contradiction. Hence by

(3.11), rε must be close to t. In fact, the same argument as above may show that

|rε − t| ≤ c ε, (4.6)

where c is a positive constant. Let rε = t+ εyε. Then (4.6) implies |yε| ≤ c so due to notation

convenience, we may assume yε → y0 as ε→ 0+.

Now, we rescale the variable by setting r = t+ εy and φ̃ε(y) := φ(t + εy). Then by (4.2),

we obtain φ̃ε(y)→ φ0(y) as ε→ 0+, where φ0 satisfies

−φ′′0 + 4(cos 4w)φ0 = 0 in R, (4.7)

and ∫
R

φ0w
′dy = 0. (4.8)

By (4.7) and Lemma 3.1, we have φ0(y) = c∗ w
′(y) and hence by (4.8), c∗ = 0, i.e., φ0 ≡ 0.

However, 1 = φ(rε) = φ̃ε(yε)→ φ0(y0), i.e., φ0(y0) = 1. Therefore, we get a contradiction and

complete the proof of (4.3).

To prove (4.4), we notice that the function ‖h‖∗ e−σ| r−t
ε
| is a supersolution of (4.2) for

|r− t| ≥ εR, provided σ > 0 sufficiently small, where R is a positive constant independent of ε.

Here we have used the fact that

|h(r)| ≤ ‖h‖∗e−σ| r−t
ε
|, ∀ r ∈

(
0,
π

2

)
.

Moreover, C‖h‖∗ e−σ| r−t
ε
| is a supersolution of (4.2) for 0 < r < π

2 , where C is a positive

constant independent of ε. Then (4.4) follows from comparison principle.
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Let us define ⎧⎪⎪⎨
⎪⎪⎩
‖φ‖∗ = sup

r∈(0, π
2
)

eσ|
r−t

ε
||φ(r)|,

‖h‖∗∗ = sup
r∈(0, π

2
)

eσ|
r−t

ε
||h(r)|.

(4.9)

Then, by Lemma 4.1 and a contraction mapping principle (see our earlier papers Phy. D, JMP),

we have

Proposition 4.2 For each t ∈ (0, π
2 ), there exists (φε,t, cε(t)) a unique solution of (4.1)

such that

‖φε,t‖∗ ≤ K ε, (4.10)

where K is a positive constant independent of ε. Moreover, the map t→ φε,t is of C
2.

Now we proceed to Step II. We first expand cε(t) as follows:

Lemma 4.3 As ε→ 0+, we have

(∫
R

(w′(y))2dy
)
cε(t) = −2 cot (2t)ε

∫
R

(w′(y))2dy − εμ+O(ε2). (4.11)

The proof of Lemma 4.3 is simple: we just multiply (4.1) by w′(y) and integrate it over R.

Using r = t+ ε y and integrate by parts, we may obtain (4.11).

By Proposition 4.2 and Lemma 4.3, we may derive the following main result of this section.

Theorem 4.4 For each μ ∈ R, there exists a solution uε,μ to (2.8) with the following

properties

uε,μ(r) = w
(r − tε,μ

ε

)
+O(εe−σ|

r−tε,μ
ε

|), (4.12)

and

Eε (uε,μ) = O(ε),

where

tε,μ = t0 +O(ε), (4.13)

and t0 ∈ (0, π/2) satisfies

2 cot (2t0)

∫
R

(w′(y))2dy = −μ. (4.14)

5 Spectrum Estimates

In this section, we estimate the spectrum of the following linearized problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε2
[
φ′′ +

2 cos 2r

sin 2r
φ′ − 4

sin 22r
(m2 cos 2r − n2 sin 2r)(cos 2uε,μ)φ

]
+4(cos 4uε,μ)φ− 2εμ(cos 2uε,μ)φ = λεφ, ∀r ∈ (0, π/2),

φ(0) = 0, φ
(π
2

)
= 0,

(5.1)
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where uε,μ is the solution (defined in Theorem 4.4) of (2.8) satisfying (4.12) and (4.14). Our

main result is the following.

Theorem 5.1 For ε sufficiently small, λε,j , j = 1, 2, the first and the second eigenvalues

of (5.1) satisfy

λε,1 = −4ε2 csc2 (2t0) + o(ε2), λε,2 ≥ δ0 > 0,

where t0 and δ0 are positive constants.

Proof Without loss of generality, we may assume λε → λ0 as ε → 0 for j = 1, 2. Then,

by (4.12) and (5.1), λ0’s satisfy

−φ′′0 + 4(cos 4w)φ0 = λ0 φ0 inR, (5.2)

where φ0(y) = lim
ε→0

φ(tε,μ + εy) for y ∈ R. Hence (5.2) and Lemma 3.1 imply that either λ0 = 0

having the associated eigenfunction φ0 = cw′ or λ0 ≥ 2δ0 > 0, where δ0 > 0 and c are suitable

constants.

To complete the proof, we only need to concentrate on the eigenvalues λε’s with λε → 0

as ε→ 0. Let us decompose

φ(r) = w′(y) + φ⊥(r), ∀r = tε,μ + ε y ∈ (0, π/2), (5.3)

where φ⊥ satisfies

∫ π
2

0

φ⊥(r)w′
(r − tε,μ

ε

)
dr = 0. (5.4)

Then (5.1) and (5.3) give

−ε2
[
φ⊥

′′
+
2 cos 2r

sin 2r
φ⊥

′ − 4

sin 22r
(m2 cos 2r − n2 sin 2r)(cos 2uε,μ)φ

⊥
]

+4(cos 4uε,μ)φ
⊥ − 2εμ(cos 2uε,μ)φ

⊥ − λεφ
⊥ = Eε, (5.5)

where

Eε = w′′′ + ε
2 cos 2r

sin 2r
w′′ − 4ε2

sin2 2r
(m2 cos2 r − n2 sin2 r)(cos 2uε,μ)w

′

−4(cos 4uε,μ)w
′ + 2εμ(cos 2uε,μ)w

′ + λεw
′. (5.6)

Setting r = tε,μ + ε y and using (3.1) and (4.12), it is easy to get the following estimate

Eε = O
(
(ε+ |λε|)e−2σ|

r−tε,μ
ε

|
)
, (5.7)

where σ is a positive constant independent of ε. By the same proof as in Lemma 4.1, we have

φ⊥ = O
(
(ε+ |λε|)e−σ|

r−tε,μ
ε

|
)
. (5.8)

Now we expand φε,tε,μ
(r) = uε,μ(r) − w( r−tε,μ

ε ). By Theorem 4.4, it is easy to see that

φε,tε,μ
(r) = εφ1

(r − tε,μ

ε

)
+O(ε2),
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where φ1 = φ1(y) satisfies⎧⎨
⎩−φ

′′
1 + 4(cos 4w)φ1 − 2(cot 2t0)w

′ − μ sin 2w = 0, ∀ y ∈ R,

φ1(±∞) = 0.
(5.9)

Note that sin 2w and w′ are even functions. So φ1 is also even. Consequently,∫
R

φ′1w
′dy = 0, (5.10)

∫
R

(cos 2w)φ1w
′dy = 0. (5.11)

We may multiply (4.1) (with t = tε,μ) by w
′ and integrate to y-variable. Then by (5.10) and

(5.11), we obtain

−2ε
∫

R

(cot 2r)w′
2
dy − 2ε2

∫
R

(cot 2r)φ′1w
′dy

+

∫
R

2ε2

sin 22r
(m2 cos 2r − n2 sin 2r)(sin 2w)w′dy

−εμ
∫

R

(sin (2w + 2εφ1))w
′dy + o(ε2) = 0, (5.12)

where r = tε,μ + ε y. Here we have used the fact that cε(tε,μ) = 0. Note that

∫
R

(sin 2w)w′dy = −1
2
cos 2w

∣∣∣∣
+∞

−∞

=
1

2
cos 0− 1

2
cos 2 · π

2
= 1. (5.13)

Hence (5.10)–(5.13) give

−2 (cot 2tε,μ)

∫
R

w′
2
dy − μ+ 2ε

sin2(2tε,μ)
(m2 cos2 tε,μ − n2 sin2 tε,μ) + o(ε) = 0. (5.14)

Let tε,μ = t0 + εt1 + o(ε). Then by (4.14) and Taylor expansion on (5.14), we have

(4 csc2 2t0)t1

∫
R

w′
2
dy =

2

sin2 2t0
(m2 cos2 t0 − n2 sin2 t0). (5.15)

It is clear to see that

2(cot 2(tε,μ + εy))(w′ + εφ′1)

= 2(cot 2tε,μ)w
′ + 2ε(cot 2t0)φ

′
1 − 4ε(csc2 2t0)yw

′ + o(ε)

= 2(cot 2t0)w
′ − 4ε(csc 22t0)x1w

′ + 2ε(cot 2t0)φ
′
1 − 4ε(csc 22x0)yw

′ + o(ε). (5.16)

Let φε,tε,μ
(r) = εφ1(y) + ε2φ2(y) + O(ε3), where y =

r−tε,μ

ε . Then by (4.1) with t = tε,μ,

(5.9) and (5.16), φ2 satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−φ′′2 + 4(cos 4w)φ2 + 4(csc2 2t0)t1w

′ + 4(csc2 2t0)yw
′

+
2

sin2 2t0
(m2 cos2 t0 − n2 sin2 t0) sin 2w

−8(sin 4w)φ2
1 − 2μ(cos 2w)φ1 − 2(cot 2t0)φ

′
1 = 0 in R.

(5.17)
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Here we have used the fact that cε(tε,μ) = 0. Since w′ solves φ′′ = 4(cos 4w)φ in R, then we

may assume ∫
R

φ2w
′dy = 0. (5.18)

Similarly, we may expand

φ⊥(r) = εφ⊥1 (y) + ε2φ⊥2 (y) + o(ε2), (5.19)

and

λε = ε λ1 + ε2 λ0 + o(ε2), (5.20)

where λj ’s are constants and φ
⊥
j ’s are functions independent of ε such that∫

R

φ⊥j w
′dy = 0, j = 1, 2. (5.21)

Here φ⊥1 = φ⊥1 (y) satisfies⎧⎨
⎩−φ

⊥
1
′′
+ 4(cos 4w)φ⊥1 = 2(cot 2t0)w

′′ + 2μ(cos 2w)w′ + 16(sin 4w)w′φ1 + λ1 w
′ in R,

φ⊥1 (±∞) = 0.
(5.22)

Since
∫

R
φ⊥1 w

′dy = 0 and w′ solves −φ′′+4(cos 4w)φ = 0 in R, then by (5.22), we have λ1 = 0.

Consequently, (5.21) becomes

λε = ε2 λ0 + o(ε2), (5.23)

and (5.22) becomes⎧⎨
⎩−φ

⊥
1
′′
+ 4(cos 4w)φ⊥1 = 2(cot 2t0)w

′′ + 2μ(cos 2w)w′ + 16(sin 4w)w′φ1 in R,

φ⊥1 (±∞) = 0.
(5.24)

By (5.9), it is easy to check that φ′1(y) satisfies (5.24). Thus φ
⊥
1 can be written as

φ⊥1 = φ′1 + cw′, (5.25)

where c = −
�

R
φ′

1
w′dy�

R
w′2dy

. Since w′ and φ1 are even functions, then
∫

R
φ′1w

′dy = 0, i.e., c = 0.

Consequently, (5.25) becomes

φ⊥1 = φ′1. (5.26)

Substituting (5.19) and (5.23) into (5.5), we have

−φ⊥2
′′
+ 4(cos 4w)φ⊥2 = Eε + Eε,2, (5.27)

where

−Eε,2 = ε−1
[
− (φ⊥1

′′
+ 2ε(cot 2r)φ⊥1

′ − 4ε2

sin 22r
(m2 cos 2r − n2 sin 2r)(cos 2uε,μ)φ

⊥
1 )

+4(cos 4(w + εφ1))φ
⊥
1 − 2εμ(cos 2(w + εφ1))φ

⊥
1

]
+ o(1)

= −2(cot 2t0)φ⊥1
′ − 16(sin 4w)φ1φ

⊥
1 − 2μ(cos 2w)φ⊥1 + o(1), (5.28)

Eε = −4(csc 22t0)(t1 + y)w′′ − 4

sin 22t0
(m2 cos 2t0 − n2 sin 2t0)(cos 2w)w

′

+32(cos 4w)φ2
1w
′ − 4μ(sin 2w)φ1w

′ + λ0w
′ + 16(sin 4w)φ2w

′ + o(1). (5.29)
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Multiply (5.27) by w′ and integrate it over R. Then we obtain

λ0

∫
R

w′
2 − 4μ

∫
R

(sin 2w)φ1w
′2 + 32

∫
R

(cos 4w)φ2
1w
′2 + 16

∫
R

(sin 4w)φ2w
′2

−4 csc2 2t0
∫

R

yw′′w′ − 4

sin 22x0
(m2 cos2 t0 − n2 sin2 t0)

∫
R

(cos 2w)w′
2

+2 cot2t0

∫
R

w′φ⊥1
′
+ 16

∫
R

(sin 4w)φ1φ
⊥
1 w

′ + 2μ

∫
R

(cos 2w)φ⊥1 w
′ = 0. (5.30)

Here we have used integrating by parts. Since cos 2w is odd and w′ is even, then∫
R

(cos 2w)w′
2
=

∫
R

(sin 2w)w′′ = 0. (5.31)

Using integration by part, we obtain∫
R

yw′′w′ = −1
2

∫
R

w′
2
. (5.32)

By (5.26) and integration by part, we have

16

∫
(sin 4w)φ1φ

⊥
1 w

′ + 32

∫
(cos 4w)φ2

1w
′2 = 16

∫
(sin 4w)φ1φ

′
1w
′ + 32

∫
(cos 4w)φ2

1w
′2

= 8

∫
(sin 4w)(φ2

1)
′w′ + 32

∫
(cos 4w)φ2

1w
′2

= −8
∫
(sin 4w)φ2

1w
′′. (5.33)

Since w′′ = sin 4w in R, then

−w(4) + 4(cos 4w)w′′ − 16(sin 4w)w′
2
= 0 in R. (5.34)

Multiplying (5.34) by φ2, we may use (5.17) and integration by part to get

−16
∫

R

(sin 4w)w′
2
φ2 = 4(csc2 2t0)

∫
R

yw′w′′ +
2

sin2 2t0
(m2 cos2 t0 − n2 sin2 t0)

∫
R

(sin 2w)w′′

−8
∫

R

(sin 4w)φ2
1w
′′ − 2μ

∫
R

(cos 2w)φ1w
′′ − 2(cot 2t0)

∫
R

φ′1w
′′. (5.35)

Substituting (5.31)–(5.33) and (5.35) into (5.30), we obtain

λ0

∫
R

w′
2 − 4μ

∫
R

(sin 2w)φ1w
′2 + 4(csc2 2t0)

∫
R

w′
2
+ 2(cot 2t0)

∫
R

w′φ⊥1
′

+2μ

∫
R

(cos 2w)φ⊥1 w
′ + 2(cot 2t0)

∫
R

φ′1w
′′ + 2μ

∫
R

(cos 2w)φ1w
′′ = 0. (5.36)

On the other hand, using integration by part, it is obvious that

2μ

∫
R

(cos 2w)φ1w
′′ = 4μ

∫
R

(sin 2w)φ1w
′2 − 2μ

∫
R

(cos 2w)φ′1w
′. (5.37)

Thus, by (5.26), (5.36) and (5.37), we have

λ0

∫
R

w′
2
= −4(csc2 2t0)

∫
R

w′
2 − 2(cot 2t0)

∫
R

w′φ′′1 − 2(cot 2t0)

∫
R

φ′1w
′′

= −4(csc2 2t0)
∫

R

w′
2 − 2(cot 2t0)

∫
R

(φ′1w
′)′ = −4(csc2 2t0)

∫
R

w′
2
,

i.e., λ0 = −4 csc2 2t0. Therefore we may complete the proof of Theorem 5.1.
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6 Local Minimizers of Eε

Let μ ∈ R and uε,μ be the solution constructed in Section 4 (see Theorem 4.4). We first

have

Lemma 6.1 For ε sufficiently small, uε,μ is locally unique and nondegenerate. As a

result, uε,μ is continuous in μ.

Proof Since the spectrum of the linearized problem (5.1) with respect to uε,μ is non-zero,

then the uniqueness follows from the same proof in [20]. Moreover, uε,μ is locally unique, i.e.,

if there exists another solution ûε,μ ∼ w
(x−t̂ε,μ

ε

)
, t̂ε,μ = t0 + o(1), then

ûε,μ ≡ uε,μ.

The continuity follows from the uniqueness.

By (4.12), (4.13), and (4.14), we may obtain

ρ(μ) :=

∫ π
2

0

(sin 2r) sin2 uε,μdr

=

∫ tε,μ

0

(sin 2r) sin2 uε,μdr +

∫ π
2

tε,μ

(sin 2r)(sin2 uε,μ − 1)dr +

∫ π
2

tε,μ

sin 2rdr

=

∫ tε,μ

0

(sin 2r) sin2 uε,μdr +

∫ π
2

tε,μ

(sin 2r)(sin2 uε,μ − 1)dr + (−1
2
cos 2r)

∣∣∣∣
π
2

tε,μ

=
1

2
(1 + cos 2t0) +O(ε),

i.e.,

ρ(μ) =
1

2
(1 + cos 2t0) +O(ε), (6.1)

where 2(cot 2t0)
∫

R
w′

2
= −μ. Due to the continuity of uε,μ in μ, ρ(μ) is continuous in μ.

Furthermore, by Mean-Value Theorem, there exists με ∈ R such that ρ(με) = c1 ∈ (0, 1), i.e.,

(2.6) holds, provided λ = uε,με
and

1

2
(1 + cos 2t0) = c1. (6.2)

Hence uε,με
is a critical point of the energy functional Eε(·) under the constraint (2.6).

Now, we want to show that uε,με
is a local minimizer of the energy functional Eε(·) under

the constraint (2.6). We consider the associated quadratic form as follows:

Q[ψ] := E′′ε (uε,με
)[ψ]

=

∫ π
2

0

[
ε2(sin 2r)|ψ′|2 + ε2

m2 sin 2r

sin2 r
(cos 2uε,με

)ψ2

+ε2
n2 sin 2r

cos2 r
(− cos 2uε,με

)ψ2 + (sin 2r)(4 cos 4uε,με
)ψ2

]
dr, (6.3)

for ψ ∈ H1
0 ((0, π/2)) with the following constraint∫ π

2

0

(sin 2r)(sin 2uε,με
)ψdr = 0. (6.4)
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Let

Q̃[ψ] = Q[ψ]− 2εμε

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ2dr, (6.5)

and let

ψ = c1ψ1(r) + ψ2(r), ψj ∈ H1
0 ((0, π/2)), j = 1, 2, (6.6)

such that ∫ π
2

0

(sin 2r)ψ1ψ2dr = 0, (6.7)

where c1 ∈ R is a constant and ψ1 is the eigenfunction corresponding to the first eigenvalue

λε,1 defined in Theorem 5.1. Then using (5.1), (6.5), (6.7) and integration by parts, we have

Q̃[ψ] = c21Q̃[ψ1] + Q̃[ψ2] = c21λε,1

∫ π
2

0

(sin 2r)ψ2
1dr + Q̃[ψ2]. (6.8)

On the other hand, (6.4) and (6.6) imply

c1

∫ π
2

0

(sin 2r)(sin 2uε,με
)ψ1dr +

∫ π
2

0

(sin 2r)(sin 2uε,με
)ψ2dr = 0. (6.9)

From the proof of Theorem 5.1, we obtain

ψ1(r) = w′(y) +O(ε), uε,με
= w(y) +O(ε), r = tε,με

+ ε y. (6.10)

Hence (6.9) and (6.10) give

c1 = O
(
ε−1

∫ π
2

0

(sin 2r)|ψ2|dr
)
. (6.11)

Moreover, by (6.10), (6.11) and Hölder inequality, we obtain∣∣∣∣c21ε2
∫ π

2

0

(sin 2r)ψ2
1dr

∣∣∣∣ ≤ C ε

∫ π
2

0

(sin 2r)ψ2
2dr, (6.12)

where C is a positive constant independent of ε. Besides, (6.6) and (6.10) imply

εμε

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ2dr

= εμε

∫ π
2

0

(sin 2r)(cos 2uε,με
)(c21ψ

2
1 + 2c1ψ1ψ2 + ψ2

2)dr

= 2εμε c1

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ1ψ2dr + εμε

∫ π
2

0

(sin 2r)(cos 2uε,με
)(c21ψ

2
1 + ψ2

2)dr

= 2εμε c1

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ1ψ2dr +O

(
ε

∫ π
2

0

(sin 2r)ψ2
2dr

)
,

i.e.,

εμε

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ2dr = 2εμε c1

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ1ψ2dr

+O
(
ε

∫ π
2

0

(sin 2r)ψ2
2dr

)
. (6.13)
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Here we have used (6.11) and the fact that∫
R

(cos 2w)w′
2
dy = 0.

By (6.10), (6.11) and Hölder inequality, we obtain∣∣∣∣εμε c1

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ1ψ2dr

∣∣∣∣
≤ |με| |ε c1|

( ∫ π
2

0

(sin 2r)ψ2
1dr

) 1

2

( ∫ π
2

0

(sin 2r)ψ2
2dr

) 1

2

≤ C
( ∫ π

2

0

(sin 2r)ψ2
1dr

) 1

2

∫ π
2

0

(sin 2r)ψ2
2dr

≤ C
√
ε

∫ π
2

0

(sin 2r)ψ2
2dr,

i.e., ∣∣∣∣εμε c1

∫ π
2

0

(sin 2r)(cos 2uε,με
)ψ1ψ2dr

∣∣∣∣ ≤ C
√
ε

∫ π
2

0

(sin 2r)ψ2
2dr, (6.14)

where C is a positive constant independent of ε. Thus, by (6.5), (6.8), (6.13), and (6.14), we

have

Q[ψ] ≥ c21λε,1

∫ π
2

0

(sin 2r)ψ2
1dr + Q̃[ψ2]− C

√
ε

∫ π
2

0

(sin 2r)ψ2
2dr. (6.15)

Consequently, (6.12), (6.15) and Theorem 5.1 imply

Q[ψ] ≥
(
δ0 − C

√
ε
) ∫ π

2

0

(sin 2r)ψ2
2dr ≥ C−1 δ0

2

∫ π
2

0

(sin 2r)ψ2
2dr, (6.16)

provided ε > 0 is sufficiently small. Since φ = c1φ1 + φ2, then by (6.7) and (6.12), we obtain∫ π
2

0

(sin 2r)ψ2dr =

∫ π
2

0

(sin 2r)(c1ψ1 + ψ2)
2dr ≤ Cε

∫ π
2

0

(sin 2r)ψ2
2dr.

So (6.16) becomes

Q[ψ] ≥ C−1
ε

∫ π
2

0

(sin 2r)ψ2dr,

where Cε is a positive constant which may depend on ε. We may summarize what have been

proved as follows:

Theorem 6.2 There exists uε,με
a local minimizer of Eε[·] under the constraint (2.6).

7 Critical Points of Ẽδ,ε

In this section, we study critical points of the functional Ẽδ,ε (defined in (2.15)) by solving

equations (2.18) and (2.19). Now, we want to simplify these equations. Let S0 = S0(t) be the

unique solution of ⎧⎨
⎩S′′0 +

1

t
S′0 −

S0

t2
+ S0 − S3

0 = 0, ∀t > 0,

S0(0) = 0, S0(+∞) = 1.
(7.1)
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It is well known that

S0(t) = t+O(t3) for t > 0 small, (7.2)

S0(t) = 1− 1

2t2
+O

( 1
t4

)
for t large. (7.3)

One may refer to [4] and [6] for the solution S0. Let (ρ, λ) be a solution of (2.18) and (2.19),

where

ρ = s (r) ρ̂,

and s is a smooth function defined by

s(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0

(r
δ

)
if 0 ≤ r ≤ ε,

S0

( π
2 − r
δ

)
if

π

2
− ε ≤ r ≤ π

2
,

1 if 2ε ≤ r ≤ π

2
− 2ε,

η1(r) if ε < r < 2ε or
π

2
− 2ε < r <

π

2
− ε.

(7.4)

Here we assume that

0 < ε2 � δ � ε� 1, (7.5)

and η1(r) ∼ 1 as δ → 0. It is clear that s(0) = s(π
2 ) = 0 so ρ(0) = ρ(π

2 ) = 0. Then (2.18) and

(2.19) become

S1[λ, ρ̂] := −ε2
[
λ′′ +

(2 cos 2r
sin 2r

+
2s′

s
+
2ρ̂′

ρ̂

)
λ′
]

+s2ρ̂2 sin 4λ− ε2
(
2 cos 2r

sin2 2r

)
sin 2λ− εμ sin 2λ = 0, (7.6)

and

S2[λ, ρ̂] := −δ2
(
ρ̂′′ +

2s′

s
ρ̂′ +

2 cos 2r

sin 2r
ρ̂′
)
− δ2

(2 cos 2r
sin 2r

− 1

r

)s′
s
ρ̂

+(1− ρ̂) s2 + (ρ̂3 − 1) s2 + δ2ρ̂

[
|λ′|2 +

(cos2 λ
sin2 r

− 1

r2

)
+
sin2 λ

cos2 r

]

+
2δ2

ε2
s2ρ̂3 sin 2λ− δμ ρ̂ sin2 λ = 0. (7.7)

Here we have used the fact

ρ′ = s′ρ̂+ sρ̂′,

ρ′

ρ
=
s′

s
+
ρ̂′

ρ̂
,

ρ′′ = s′′ρ̂+ 2s′ρ̂′ + sρ̂′′.

To fulfill (2.12), we require the boundary conditions as follows:⎧⎪⎨
⎪⎩
λ(0) = 0, λ

(π
2

)
=
π

2
,

ρ̂′(0) = 0, ρ̂
(π
2

)
= 1.

(7.8)
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As for (4.14) and (6.2), we may assume that

2(cot 2t0)

∫
R

w′
2
(y)dy = −μ, (7.9)

and t0 is the unique solution of

1

2
(1 + cos 2t0) = c2. (7.10)

We need the following lemma.

Lemma 7.1 The linear problem⎧⎨
⎩φ′′ +

1

t
φ′ − 1

t2
φ+ φ− 3S2

0φ = 0, ∀ t > 0,

φ(0) = 0, |φ| ≤ C t, ∀ t > 0
(7.11)

admits only zero solution, where C is a positive constant independent of t. Furthermore, the

linear problem ⎧⎨
⎩φ′′ +

1

t
φ′ − 1

t2
φ− 2S2

0φ = 0, ∀ t > 0,

φ(0) = 0, |φ| ≤ C t, ∀ t > 0
(7.12)

also admits only zero solution.

Proof Setting φ = tψ, then ψ satisfies⎧⎨
⎩ψ′′ +

3

t
ψ′ + (1− 3S2

0)ψ = 0, ∀ t > 0,

ψ′(0) = 0, |ψ| ≤ C, ∀ t > 0.
(7.13)

Since S0(t)→ 1 as t→ +∞, we may use comparison principle on (7.13) to derive that

|ψ| ≤ Ce−t for t large,

which in turn implies that ⎧⎨
⎩ |φ| ≤ C, ∀ t > 0,

|φ| ≤ Ce−t/2 for t large.
(7.14)

Hence by (7.11), (7.14) and the result of [11] and [12], we obtain φ ≡ 0. Similarly, letting φ

satisfy (7.12) and ψ = tφ, then ψ satisfies⎧⎨
⎩ψ′′ +

3

t
ψ′ − 2S2

0ψ = 0, ∀ t > 0,

ψ′(0) = 0, |ψ| ≤ C, ∀ t > 0.
(7.15)

By Maximum Principle, we conclude that (7.12) also has only zero solution. Therefore, we may

complete the proof.

For t > 0, we define norms

‖φ‖∗,ε = sup
r∈(0, π

2
)

eσ|
r−t

ε
|(|φ(r)| + ε|φ′(r)|), (7.16)
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‖ψ‖∗,δ = sup
r∈(0, π

2
)

(|ψ(r)| + δ|ψ′(r)|), (7.17)

where σ is a small constant, and

‖h‖∗∗,ε = sup
r∈(0, π

2
)

eσ|
r−t

ε
||h(r)|, (7.18)

‖h‖∗∗ = sup
r∈(0, π

2
)

|h(r)|. (7.19)

As for the proof in Section 4, we may choose⎧⎨
⎩λ(r) = wt(r) + φ(r),

ρ̂(r) = 1 + ψ(r),
(7.20)

for t ∈ (t0 − δ1, t0 + δ1) and r ∈ (0, π/2), where wt is defined in (3.10) and δ1 is a positive

constant independent of ε and δ.

Now we follow three steps.

Step I For each t ∈ (t0 − δ1, t0 + δ1), we find a unique pair (φ, ψ) = (φt, ψt) such that

S1[wt + φt, 1 + ψt] = cε(t)w
′
(r − t

ε

)
, (7.21)

S2[wt + φt, 1 + ψt] = 0, (7.22)

with

‖φt‖∗,ε ≤ Cε, (7.23)

‖ψt‖∗,δ ≤ C
(δ2
ε2

+ δ
)
. (7.24)

Step II There exists tε = t0 +O(ε) such that

cε(tε) = 0. (7.25)

Step III We show that as ε→ 0 and δ/ε→ 0,∫ π
2

0

(sin 2r)ρ2 sin2 λdr → c2. (7.26)

As in Section 4, the proof of Step I relies on the following lemma.

Lemma 7.2 Consider the following linearized equations

L1[φ, ψ] := −ε2
[
φ′′ +

(2 cos 2r
sin 2r

+
2s′

s

)
φ′
]
− 2ε2ψ′w′t + 2(sin 4wt) s

2ψ

+4(cos 4wt) s
2φ− 4ε2 cos 2r

sin2 2r
(cos 2wt)φ− 2εμ(cos 2wt)φ = h1, (7.27)

and

L2[φ, ψ] := −δ2
[
ψ′′ +

(2s′
s
+
2 cos 2r

sin 2r

)
ψ′
]
− δ2

(2 cos 2r
sin 2r

− 1

r

)s′
s
ψ

+2s2ψ + δ2ψ
[
(w′t)

2 +
(cos2 wt

sin2 r
− 1

r2

)
+
sin2 wt

cos2 r

]
(7.28)

+
6δ2

ε2
(sin 2wt) s

2 ψ − δμ(sin2 wt)ψ + 2δ2 w′tφ
′

+

[
−δ2 sin 2wt

sin2 r
+ δ2

sin 2wt

cos2 r
+ 4

δ2

ε2
(cos 2wt) s

2 − δμ (sin 2wt)

]
φ = h2, (7.29)
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where ∫ π
2

0

w′
(r − t

δ

)
φ(r)dr = 0, φ(0) = φ

(π
2

)
= 0,

and

ψ(0) = ψ
(π
2

)
= 0.

For any h1 and h2 �≡ 0, there exists (φ, ψ) a unique solution to (7.27) and (7.28) such that

‖φ‖∗,ε ≤ C‖h1‖∗∗,ε + C ε
δ‖h2‖∗∗, (7.30)

‖ψ‖∗,δ ≤ C‖h2‖∗∗ + C δ2

ε2 ‖h1‖∗∗,ε, (7.31)

provided the assumption (7.5) holds, where C is a positive constant independent of ε and δ.

Proof Let⎧⎪⎨
⎪⎩
h̃1 = h1 + 2ε2w′t ψ

′ − 2(sin 4wt) s
2ψ,

h̃2 = h2 − 2δ2w′t φ
′ −

[
−δ2 sin 2wt

sin2 r
+ δ2

sin 2wt

cos2 r
+ 4

δ2

ε2
(cos 2wt) s

2 − δμ (sin 2wt)

]
φ.
(7.32)

Firstly, we may follow the proof of Lemma 4.1 to get

‖φ‖L∞ ≤ C‖h̃1‖L∞ . (7.33)

Next, we prove that

‖ψ‖L∞ ≤ C‖h̃2‖L∞ . (7.34)

Suppose (7.34) fails. Then we may assume that ‖h̃2‖L∞ = o(1) but ‖ψ‖L∞ = ψ(rδ) = 1, where

0 < rδ <
π
2 . If rδ ≤ π

2 − 2ε and rδ

δ → +∞ as δ → 0, then s2(rδ)→ 1 as δ → 0. Hence we may

consider the equation (7.28) at r = rδ and obtain that

ψ(rδ) ≤ C‖h̃2‖L∞ = o(1),

which contradicts with ψ(rδ) = 1. Here we have used the facts that∣∣∣∣(2 cos 2rsin 2r
− 1

r

)s′
s

∣∣∣∣ ≤ C

δ
, (7.35)

∣∣∣∣cos2 wt

sin2 r
− 1

r2

∣∣∣∣ ≤ C, ∀ r ∈
(
0,
π

2

)
, (7.36)

where C is a positive constant independent of ε and δ. Similarly, for the case that rδ >
π
2 − 2ε

and
π
2
−rδ

δ → +∞, we may also get a contradiction. On the other hand, suppose rδ

δ → r0 > 0

as δ → 0 (up to a subsequence). Let ψ̃δ(t) = ψ( r
δ ) and t =

r
δ . Then ψ̃δ’s approach to a solution

of ⎧⎨
⎩ψ′′ +

3

t
ψ′ − 2S2

0 ψ = 0, ∀ t > 0,

ψ ≤ 1, ψ(r0) = 1, ψ′(0) = 0.

Thus, by the proof of Lemma 7.1, we have ψ ≡ 0 which gives a contradiction. Similarly, we may

also get a contradiction, provided
π
2
−rδ

δ → r1 > 0 as δ → 0 (up to a subsequence). Therefore,

(7.34) is proved.
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Now we prove the gradient estimate

‖δψ′‖L∞ ≤ C‖h̃2‖L∞ . (7.37)

It is clear that (7.28) can be regarded as a linear second-order problem on S3 given by

−δ2�S3ψ +

[
2s2 +O

(δ2
ε2

+ δ
)]
ψ = h̃2 in S3. (7.38)

Then by (7.34) and the standard Lp-estimate for (7.38), we obtain (7.37). Similarly, we can

prove

‖εφ′‖L∞ ≤ C‖h̃1‖L∞ . (7.39)

By comparison principle, we have∣∣∣eσ |r−t|
ε φ(r)

∣∣∣ ≤ C‖h̃1‖∗∗,ε, ∀ r ∈
(
0,
π

2

)
, (7.40)

provided σ > 0 is sufficiently small. Here as for the proof of Lemma 4.1, we have used the fact

that the function C‖h̃1‖∗∗,ε e−σ| r−t
ε
| is a supersolution of (7.27) for 0 < r < π

2 , where C is a

positive constant independent of ε.

To obtain a gradient estimate as in (7.40), we use the transformation

φ̂ = eσ
|x−t|

ε φ. (7.41)

Then φ̂ satisfies

−ε2�S3 φ̂+
[
4(cos 4wt)− σ2 +O(ε)

]
φ̂ = eσ

|r−t|
ε h̃1 in S3 with |r − t| ≥ cε. (7.42)

Hence by (7.39) and elliptic regularity estimates of (7.42), we obtain∣∣∣eσ |r−t|
ε εφ′

∣∣∣ ≤ C‖h̃1‖∗∗,ε, ∀ r ∈
(
0,
π

2

)
. (7.43)

Here we have used the fact that

εφ̂′ = eσ
|r−t|

ε εφ′ +O
(
σ eσ

|r−t|
ε

)
φ.

Thus (7.34), (7.37), (7.40), and (7.43) may give

‖φ‖∗,ε ≤ C‖h̃1‖∗∗,ε, ‖ψ‖∗,δ ≤ C‖h̃2‖∗∗. (7.44)

By (7.5) and (7.16)–(7.19), it is easy to get that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∥∥ε2ψ′ w′t∥∥∗∗,ε + ∥∥(sin 4wt) s
2ψ
∥∥
∗∗,ε

≤ C
ε

δ
‖ψ‖∗,δ,∥∥∥∥2δ2 w′tφ′ +

[
−δ2 sin 2wt

sin2 r
+ δ2

sin 2wt

cos2 r
+ 4

δ2

ε2
(cos 2wt) s

2 − δμ (sin 2wt)

]
φ

∥∥∥∥
∗∗

≤ C
δ2

ε2
‖φ‖∗,ε,

(7.45)

provided σ > 0 is sufficiently small, where o(1) is a small quantity tending to zero as ε goes to

zero. Here we have used the assumption (7.5). Hence (7.44) and (7.45) imply

‖φ‖∗,ε ≤ C‖h̃1‖∗∗,ε ≤ C‖h1‖∗∗,ε + C
ε

δ
‖ψ‖∗,δ ≤ C‖h1‖∗∗,ε + C

ε

δ
‖h2‖∗∗ + C

δ

ε
‖φ‖∗,ε.
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Consequently,

‖φ‖∗,ε ≤ C‖h1‖∗∗,ε + C
ε

δ
‖h2‖∗∗. (7.46)

Here we have used δ � ε from the assumption (2.20). Similarly, we obtain

‖ψ‖∗,δ ≤ C‖h2‖∗∗ + C
δ2

ε2
‖h1‖∗∗,ε. (7.47)

Therefore, by (7.46) and (7.47), we may complete the proof of Lemma 7.2.

To finish Step I, we expand

S1[wt + φ, 1 + ψ] = S1[wt, 1] + L1[φ, ψ] +N1[φ, ψ], (7.48)

where L1[φ, ψ] is given by (7.27) and N1[φ, ψ] is the higher-order term which can be estimated

as follows:

N1[φ, ψ] = O
(
|φ|2 + | sin 4wt| |ψ|2 + |φ| |ψ|+ ε2|ψ′||ψ||w′t|

)
. (7.49)

We calculate

S1[wt, 1]

= −ε2
(
w′′t +

(2 cos 2r
sin 2r

+
2s′

s

)
w′t

)
+ (sin 4wt) s

2 − ε2
(
2 cos 2r

sin 22r

)
sin 2wt − εμ sin 2wt

= −ε2
(2 cos 2r
sin 2r

+
2s′

s

)
w′t + (sin 4wt) (s

2 − 1)− ε2
(
2 cos 2r

sin2 2r

)
sin 2wt − εμ sin 2wt. (7.50)

Note that wt(r) = 0 for 0 < r < t − 2δ0 and wt(r) = π/2 for t + 2δ0 < r < π/2. It is easy to

see that

‖S1[wt, 1]‖∗∗,ε ≤ C ε. (7.51)

Similarly, we expand

S2[wtε
+ φ, 1 + ψ] = S2[wt, 1] + L2[φ, ψ] +N2[φ, ψ],

where L2[φ, ψ] is given by (7.28) and N2[φ, ψ] is the higher-order term:

N2[φ, ψ] = O

(
|ψ|2 + δ2

ε2
(|φ| |ψ|+ φ2) + δ2|ψ| |φ′|2 + δ2|w′t| |φ′| |ψ|

)

+O

(
δ2
(

φ2

sin2 r
+

φ2

cos2 r

))
. (7.52)

Suppose φ(0) = φ(π/2) = 0 and φ ∈ C1([0, π/2]). Then∣∣∣∣φ(r)sin r

∣∣∣∣+
∣∣∣∣ φ(r)cos r

∣∣∣∣ ≤ C

ε
‖φ‖∗,ε, ∀0 < r <

π

2
.

Consequently, (7.52) becomes

N2[φ, ψ] = O

(
|ψ|2 + δ2

ε2
(|φ| |ψ|+ φ2) + δ2|ψ| |φ′|2 + δ2|w′t| |φ′| |ψ|+

δ2

ε2
‖φ‖2∗,ε

)
. (7.53)
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We estimate S2[wt, 1] as follows:

S2[wt, 1] = −δ2
(2 cos 2r
sin 2r

− 1

r

)s′
s
+ δ2

[
(w′t)

2 +
(cos 2wt

sin 2r
− 1

r2

)
+
sin2 wt

cos2 r

]

+
2δ2

ε2
s2 sin 2wt − δμ sin 2wt. (7.54)

Noting that

(w′t)
2 = O

( 1
ε2

)
,

and w′t(r) = 0 for 0 < r < t− 2δ0 and t+ 2δ < r < π
2 . It is easy to see that

‖S2[wt, 1]‖∗∗ ≤ C
(δ2
ε2

+ δ
)
≤ C

δ2

ε2
. (7.55)

Here we have used the assumption (7.5). Set

B =

{
(φ, ψ) ∈

(
C1([0, π/2])

)2
: ‖φ‖∗,ε ≤ C

δ

ε
, ‖ψ‖∗,δ ≤

(δ
ε

)1+σ

, φ(0) = φ(π/2) = 0

}
,

where 0 < σ < 1
2 is a small constant. Let us denote the map from (h1, h2) to (φ, ψ) be

T = (T1, T2). Namely, φ = T1(h1, h2), ψ = T2(h1, h2). By Lemma 7.2, we have

‖T1(h1, h2)‖∗,ε ≤ C‖h1‖∗∗,ε + C
ε

δ
‖h2‖∗∗, ‖T2(h1, h2)‖∗,δ ≤ C‖h2‖∗∗ + C

δ2

ε2
‖h1‖∗∗,ε. (7.56)

It is easy to see that

S1[wt + φ, 1 + ψ] = 0, S2[wt + φ, 1 + ψ] = 0

is equivalent to

(φ, ψ) = T (−S1[wt, 1]−N1,−S2[wt, 1]−N2) := G(φ, ψ). (7.57)

Then by (7.49), (7.53), and (7.56), we obtain that

‖T1(−S1[wt, 1]−N1,−S2[wt, 1]−N2)‖∗,ε
≤ C‖S1[wt, 1] +N1‖∗∗,ε + C

ε

δ
(‖S2[wt, 1]‖∗∗ + ‖N2‖∗∗)

≤ Cε+ C
(δ
ε

)2

+ C
ε

δ
‖ψ‖2∗∗ ≤ Cε+ C

(δ
ε

)2

+ C
(δ
ε

)1+2σ

≤ C
δ

ε
. (7.58)

Here we have used ε2 � δ from the assumption (2.20). Similarly we have

‖T2(−S1[wt, 1]−N1,−S2[wt, 1]−N2)‖∗,δ ≤ C‖S2[wt, 1] +N2‖∗∗ + C
δ2

ε2
‖S1[wt, 1] +N1‖∗∗,ε

≤ C
(δ
ε

)2

+ C
(δ
ε

)1+σ

+ C
δ2

ε

≤ C
(δ
ε

)1+σ

. (7.59)

Here we have used 0 < σ < 1/2 and δ2

ε �
(

δ
ε

)1+σ
from δ � ε � 1 as another part of (2.20).

Thus the map G is a map from B to B. Similarly, we can show that G is a contraction map.
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Then as for the proof of Proposition 4.2 of Section 4, we may prove Step I using contraction

mapping principle.

For Step II, we can use the same argument as Lemma 4.3 to get(∫
R

(w′(y))2dy
)
cε(t) = −2(cot 2t)ε

∫
R

(w′(y))2dy + εμ+O(ε2), (7.60)

and hence there exists tε such that

cε(tε) = 0. (7.61)

Thus we have obtained the following theorem.

Theorem 7.3 Under the condition (7.5), there exists a solution (λδ,ε,μ, ρδ,ε,μ) to (2.18)–

(2.19) with the following properties

λδ,ε,μ(r) = w
(r − tε,μ

ε

)
+O

(
ε e−σ|

r−tε,μ
ε

|
)
, (7.62)

ρδ,ε,μ(r) = s
(r
δ

)(
1 +O

(δ
ε

))
, (7.63)

and

Ẽδ,ε,μ(λδ,ε,μ, ρδ,ε,μ) = O(ε) +O
(
ε2 log

1

δ

)
,

for each μ ∈ R, where tε,μ = t0 +O(ε) and t0 satisfies

2(cot 2t0)

∫
R

(w′(y))2dy = μ.

For Step III, we can use (7.62) and (7.63) to compute∫ π
2

0

(sin 2r) ρδ,ε,μ sin
2 λδ,ε,μdr →

∫ π
2

t0

sin 2rdr =
1

2
(1 + cos 2t0),

as ε, δ → 0. Therefore, we may choose t0 suitably such that

1

2
(1 + cos 2t0) = c2 ∈ (0, 1), 0 < t0 <

π

2
,

and then we complete the proof of Step III.
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