CLUSTERED BUBBLES FOR AN ELLIPTIC PROBLEM WITH
CRITICAL GROWTH

JUNCHENG WEI AND SHUSEN YAN

ABSTRACT. We consider the following nonlinear Schrédinger equation in R®

—Au+ AV (ly)u=u®, u>0 inBg

u =0, on 0Bpr
where ) is large. Ambrosetti, Malchiodi and Ni [2] established the existence of one layered
solution if M(r) = r2V(r) has a nondegenerate critical point 7 = ro > 0. Brezis and
Peletier [12] asked if there are more and more (radial or nonradial) solutions as A increases.
We partially solve this question by constructing solutions with clustered bubbles at the
origin and a layer at r = rg, provided that A is large and is away from certain resonant
numbers.

1. INTRODUCTION

In this paper, we consider the existence of positive solutions with clustered bubbles for
the following problem:

—Au+ AV (Jy)u=u®, uv>0 in By (1.1)
u:()’ on 6BR, .

where By is the ball centered at the origin with radius R in R*, V(]y|) is smooth in Bg
and V(|y|) > Vo > 0 in Bg.

Problem (1.1) involves critical growth. By using Pohozaev identity, one can show that
if (r*V(r))’ > 0 in (0, R), (1.1) does not have any solution. Concerning the existence
result for (1.1), Ambrosetti, Malchiodi and Ni ([2], [3]) showed that if 72V (r) has a non-
degenerate critical point ro € (0, R), then for large A > 0, (1.1) has a radial solution w,
concentrating as A — +00 at . (See also [8] and [10].) More precisely,

(1) ~ (V(ro)A) " w (VV A0 = 10)),
where w is the unique solution of
w' —w+w’=0, u>0 w'(0)=0, w(doo)=0.

One of the open problems raised by Brezis and Peletier in [12] is that if 72V (r) has a
critical point 79 > 0, then the number of the solutions for (1.1) is unbounded as A — +oc.

See Open Question 8.5 of [12]. In this paper, we will partially prove this claim.
1
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Problem (1.1) is related to the following elliptic problem on the spherical caps:

—Agsu=u®+ Ay, u >0, in B, (1.2)
u=0, on OB’ ’

where Ags is the Laplace-Beltrami operator in the unit sphere S3, and B’ is a spherical
caps in S?, that is, B’ is the set of points in S3, such that its geodesic distance to the north

pole in S? is less than a constant 6*. By using the stereographic projection with vertex at
the south pole of S3, (1.2) can be transformed into

5 .
Au—l—)\(1+| ppu=u’, v >0, inBg (1.3)
u =0, on 0Bg,
Wherethaunﬂ A = —4X\—3. Note that R > 1 if ¢* € (%, ), andA—)—l—ooasj\—)—oo.
Note that (1+ 2)2 has a nondegenerate critical point 7y = 1, and ( Tr2)? ) > 0in (0,1).

So, by Pohozaev identity, (1.3) has no solution if R < 1. On the other hand, it follows
from the result in [2] that (1.3) has a radial solution for large A if R > 1. Another open
problem raised in [12] is that (1.3) has non-radial solution if R > 1. See Remark 1.2 and
Remark 1.8 in [12]. In this paper, we will also partially give a positive result for this open
problem. For the study of problem (1.2), we refer to [5], [6], [7], [11], [12], [14], [34] and
the references therein.

The aim of this paper is to show that the existence of a layer solution near a non-
degenerate critical point ry € (0, R) of 72V (r) will create new type of solutions for (1.1)
with multiple bubbles clustering near the origin. Since we aim at constructing solutions
with bubbles near the origin, we first define an approximate solution for (1.1) in the
following way.

Let PU; j be the solution of

_APUj,ﬂ+)\V( )PUJJN = Ugﬂ’ in BR,
PUj7ﬁ = 0, on (9BR,
where, for any 7 € R?, i > 0,
1/2
Unaly) = ol ¢ =34, (1.4)

(1+ 2y — 2%
Note that Uz satisfies —AUzz = U2, in R®. In this paper, we will use the following
notation: U = Uy ;.

For any u,v € H}(Bg), we define

(u,v):/B (VuVo+ AV (lyuv) dy, [lull = (u, u)/2.

For any integer k > 2, let H, be the subspace of Hj(Bg), consisting of functions u
satisfying
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u(yla Yo, _y3) = u(yb Y2, y3)7 U(T COS((Q + 2%)’ r Sin(e + 2%)7 93) = ’U'(T COS 0: 7 sin 0, y3);
(1.5)
where y; = rcos 5, Yo = rsin 0.
Let f,,, m = 0,1,---, be all the eigenvalues of —Ag2 in the symmetric subspace of
L?(S?), consisting of functions O(y), y € S?, satisfying (1.5).
The main result of this paper is the following:

Theorem 1.1. Suppose that M(r) = r*V(r) has a non-degenerate critical point at o €
(0, R) and

M"(ro) # —pimV (r0) form=1,---. (1.6)
Let uy be the solution of (1.1) with a layer near ro. Then, for any integer k > 2, there
exists Ag > 0, such that for all )\ > A satisfying the gap condition

|8 — MOV - \ > vm—0,1,2 (1.7)

where ¢ > 0 s any small fixed constant, (1.1) has a solution u € Hy, which has the form

k
U= E PUzz\,j,ﬂ/\-f-U)\-i-wA,k,

7j=1
satisfying that as A — +00,
(i) zy; = (r,\cos 2(j;l)ﬂ,r)\sin @,0), PMVA>a>0, |r\| =0, j=1,---,k;
(iii) [|wakll = ( 1+T) for some constant T > 0.

“)\

Let us make a few remarks on Theorem 1.1.

Remark 1.2. By working in the symmetric space Hy, the set of eigenvalues [i,, is a subset
of all the eigenvalues of —Ag2 in the whole space. By simple computations, it is easy to
see

b, = 2m(2m +1),m = 0,1, .... (1.8)
(See Section 10.3 and 10.6 of [33].) In particular, fi, > 6 for m > 1. This is important
when we apply the result in Theorem 1.1 to the elliptic problem in a spherical cap. See the
discussion before Corollary 1.6.

Remark 1.3. By Lemma 3.1 of [37], we have

ux(t) = e~ (L V(T) drin(t ))\5\’ (1.9)

where yx(t) — 0 uniformly fort < ro—0, as A — oo, for any 0 > 0. In [37], we prove that
for all large A > 0, (1.1) has a radial solution with a layer near ro and a bubble exactly in
the origin. The main reason that we can not prove Theorem 1.1 for all large X\ is that the
linear operator of the layer solution uy has many small eigenvalues in the space Hy. More
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precisely, condition (1.7) represents a kind of resonance phenomena for layered solutions,
which has appeared in many other problems. See e.g. [22] and [26] and the references
therein.

Remark 1.4. Theorem 1.1 also holds in the whole space, i.e., for the following nonlinear
Schrodinger equation in R3:

—-A AV =’ 0 imR3
u—ll— 3 (lyhu=w’, u>0 in (1.10)
u € H'(R’).
We remark that for Schrodinger equation with critical exponent,
—Au —|1- AW(Eu=u’, u>0 inR" (111)
u € HY(R").
where p = Z—f;, there are very few results. Benci and Cerami in [9] proved the existence of

one solution A||V||, 5 is small. On the other hand, it is proved by Cingonali and Pistoia
in [15] that there are no single bubble solutions when n > 5, as A — 4o00. Results in
the nearly critical case are contained in [30, 28|: setting p = Z—Jjg + 6, they find multiple
solutions concentrating as & — 0%, at a critical point of V with negative value for n > 7.
There A|V||,z is also required to be globally small, so that in particular the mazimum
principle holds.

On the other hand, for Schriodinger equation with subcritical growth, many results on
existence of concentrating solutions have been proved, under various assumptions on the
potential or the nonlinearity, with the aid of perturbation or variational methods, lifting
non-degeneracy and also allowing the potential to vanish in some region or even be negative
somewhere, see for instance [1, 4,13, 16, 17, 18, 19, 20, 23, 24, 25, 35, 36] and the references
therein. In particular, it s proved that there is no solution with clustering peaks near a
minimum point of V. See [25]. In Theorem 1.1, no condition is imposed on V at y = 0.
In the present situation, it is the layer solution that creates new solutions with clustering
bubbles near the origin.

Suppose that M(r) = r?V(r) has a non-degenerate critical point 74 € (0, R). If M(r) is a
local maximum point of M (r), then, (1.1) has (radially symmetric) solutions with multiple
layers clustering near rg, [27]. Thus, (1.1) has more and more solution as A — +oo. On
the other hand, if ry is a local minimum point of M (r), then M"(ro) > 0, which gives
M"(r¢) # —pmV (r9) for any nonnegative integer m. By Theorem 1.1, (1.1) has solutions
with multiple bubbles clustering near the origin for some large A away from certain resonant
intervals. So we have the following result which partially answers Open Question 8.5 raised
by Brezis and Peletier in [12].

Corollary 1.5. Suppose that M(r) = r?V(r) has a non-degenerate critical point ro €
(0, R). Then, for any integer k > 1, there exists A\g > 0 such that (1.1) has at least k
solutions, provided that X\ > Ay satisfies (1.7).
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For the elliptic problem (1.2) on the spherical cap, V(r) = Direct calculations

(1—|—r )2
show that M(r) = (1+ zyz has a critical point at ro = 1 with M"(1) = —2. By Remark 1.2,
fim > 6, m=1,2,- So, we have M"(1) # —pfmV (), m = 0,1,2,---. An application

of Theorem 1.1 is the following result that partially answers another question put forward
by Brezis and Peletier [12]. (See Remark 1.2 and Remark 1.3 of [12].)

Corollary 1.6. If 6* € (n/2,7), then (1.2) has non-symmetric solutions for X > Ao
satisfying (1.7).

Before we close this section, we outline the proof of Theorem 1.1. The proof uses the
so-called “localized energy method’, which combines varitional techniques and Liapunov-
Schmidt reduction method. Firstly, we carry out the reduction argument in the symmetric
space H;. To achieve this goal, we need to arrange the location of the peaks x; in a
symmetric way. Thus, we let

T = (21, ,Tk), Zj= (rcosw,rsinw,m, j=1,---.k,

and

Define

. _ bogi(r)A _ — _ bigi(r)A
M7~;={(T,u): dAVP<r<dy, == << }
8 u3(r) u3(r)
where b; > by, and d; are some constants, and dy — 0 as A — 400, and g,(r) is the
function defined in (3.4).

Let
1 1
Iy =5 [ (VP eV dy— 5 [ Py, ue HB),
2 /By 6 /B,
and
k
J)\(Ta laaw) = I(Z PUzj,ﬁ + Uy + w)a (Ta lj’) € Mr,ﬂa w € E’r,ﬂa
7j=1
where

Ple,u)

EBp={w: we H, (v, PUM> (w, )=0,h=123]}

In section 2, we will prove that there exists a large /\0 > 0, such that for any A > )
satisfying (1.7), there is a C' map w,, from M, ; to H, satisfying w, , € E,;, and

OJN(r, i1, wy ) O(PUy, z) O(PUy, z)
a) _ 4 ’ B, S Yarn)
0w o1 +2_ B o,

h=1
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for some constants A and Bj. Next, we will choose (r, i) € M, ;, such that corresponding
to this (7, ), all the constants A and By, are zero. It is well known that if (r, z) is a critical
point of the function K (7, i) defined as

K(T’ ,1_1,) = J)\ (Ta 1, wT,ﬂ)a

then, all the constants A and Bj, are zero. See for example [21], [31], [32] and [38].

In section 3, we will prove the existence of a critical point of K(r, i) in M, 5 by using a
min-max procedure, and thus prove Theorem 1.1.

We put all the calculations for the energy expansion in Appendix A. In Appendix B, we
analyze the spectrum for the linear operator of the layer solution, which lays a foundation
for the reduction argument.

Acknowledgment. The first author is supported by an Earmarked Grant from RGC of
Hong Kong. The second author is partially supported by ARC.
2. THE REDUCTION

In the section, we will reduce the problem of finding solution for (1.1) to a finite dimension
problem.

Proposition 2.1. Let A > 0 be large and satisfy (1.7). Then there exists a C* map w,p
from M, ; to Hy, satisfying w,; € E. ;5 and

OJx(r, b, wr,z) O(PUy, ) : O(PUy, z)
) g ’ B, 2\ o) 2.1
o oi +; " o (2.1)

for some constants A and By,. Moreover,

C

lnall < 7z
for some positive constant T.

Proof. We expand J,(r, i, w) at w = 0 as follows:

1
J/\(Ta /j’aw) = J/\(Ta H, 0) + <l/\aw> + §<Q)\waw> + R,\(CU),
where [\ € F, ; satisfying

k k
<zw>=/ V(ZPij,u—kuA)Dwdy—k)\/ V(Iy) O PUs, i+ ua)wdy
Bg j=1 Bpg j=1

) (2.2)
— /B ) PU,, s+ un)’wdy, Vw € E,p,

R j:l

and ), is a bounded linear map from F, ; to E, ;, satisfying
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(@)= [ Fovady+a [ Vilyhondy
Br Br
k (2.3)
- 5/ (Z PUzj,ﬁ + UA)4W77 dy> W, n € E’r,ﬂa
Br 21
and R, (w) collects all the other terms, satisfying
RY () = O(lw]*), j=0,1,2
Thus, to find a critical point for J,(r, fi,w) in E, ; is equivalent to solving
l)\ + Q,\w + Rf\(w) =0. (24)

By Lemma 2.3, for large A satisfying (1.7), @, is invertible in E, ;, and there is a constant
C > 0, such that ||Q;'|] < CA. It follows from the implicit function theory that for this
A, there is a C' map w, ; from M, ; to Hj, satisfying w, ; € E, 5, and

Tyl
[lwrall < CAJ|LA]]-

Thus, the result follows from Lemma 2.2.

Lemma 2.2. There is a constant 7 > 0, such that for any (r, p) € M, g,

1
Il = 07z

Proof. We have

()= [ S (PU 03,00

Br j—1
k
_ / ((Z PU,, )" — Y (PUL, ;) )
Bg j=1 i1
/ ( ZPU”J’“ + u* - (Z Pij,ﬂ)s - Ui)“
Br — o
_'ll + lg -+ l3.

It is easy to check that

] < CY eijllwll,
i#]

where ¢;; = and

1
Alzi—z;|’
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k k
1] < /B ((Z PUs ) un + b Y PUmj,ﬂ) |
R j=1

k k /5y 5/
([ (v s Y P ) e
R 7j=1

k
<O (a4 )i 4 22 ol
7j=1
Finally, by Lemma A.1
[l <CZ/ U: Pl < e Z/ z;,u

CVA 5/6 CVA
_wNQXX/ U)ol < S ol

j=1 7 Br

Thus, the result follows.

Lemma 2.3. For X satisfying (1.7), and for any (r, i) € My, it holds
Q] = cod Hlwll, V€ Eny,

where ¢y > 0 is a constant, independent of \.

Proof. The proof of this lemma is quite standard. We just sketch it.

(2.5)

Let A satisfy (1.7). So Corollary B.5 holds. We argue by contradiction. Suppose that

there are A, — +oo satisfying (1.7), (rn, ftn) € My, 4., wn € Er, p,, With

1Qx,wnll = oA, llwnll.

We may assume ||wy|| = 1. Let
On(y) = fip 0 (finy + T10)-
We define
ISP 1/2
(u,v) = / (VuVv + X\afi, V(8 'y + 210)uv),  ||ullnye = {(u, u>n/*,
’ Br,n ’

where Bg, = {y Sty T, € BR}. Then, ||wy||n« =1, and

(2.6)
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/ V&, Vndy + A\ ji 2 / V(i 'y + 21)0nn dy
BRn BR,n
(2.7)
_ L 4 » _
-5 ZUm +ur(l, 'y + 210) ) @undy = o(\inll, V€ B,
BRn ] 1
where Uy = fin " PUs, . (1Y + #1,0), and
_ U, U
En &7n€H Brp) : <m - %*=<, 1%* mthza}
From (2.7), we can deduce that there are A,and By, h =1, 2,3, such that
k 4
_ __ __ _ — _ 1 _
— AGp + M1 2V (7 Yy + 21.0) 0 — 5(2 Ujn + un, (i, y + xln)) Wn,
=t (2.8)
aUl ) ale ,n -1
=A B A0
8/,6 +Z ha.Th +0( n)

Let & be a smooth function, such that { = 1 in B s(0), £ = 0 in R3\ B,,75(0),
|D¢| < C,u_7/8 and |D?*¢| < Clin /% Then, noting that i, > e*» for some ¢ > 0, we find

— A(éwn) + )‘nﬂgzv(xl n)E@n — 5ﬁf,n§wn

(8Uln ZBh8U1n> (}\_1)' (2.9)

a%lh

Let P, is the projection of H}(Bg,) to E,. We obtain from (2.9) that

P, (—A(ga;n) + Afly, 2V (31,0 €@y — 5U{{n§wn) =o(\1).

(2.10)
Choose A and By, such that
Uin N~ 7 Oin
~TL —_— 7” A _, - B ’ G En
n = LW of hz_; PP,
Then, from @, € E,, we can check A, B, = O(e=“*"), where ¢/ > 0 is a constant. So
from (2 10), we find
Po( =880 + MtV (@100 — 504,30 ) = 037, (2.11)

On the other hand, it is easy to check that

IL

w2 @l Vw€ By,
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where L, is the linear operator, defined by

L,w=P, (—Aw + M i1 %V (210w — 5(_Jinw).
So, we obtain from (2.11) that

|@nln = 0(A3),
which gives

By the symmetry, we find

/ wi=0(\"), i=1,--- k.
Bﬁ;1/8($i,n)

For |y — z;| > i /8, we have U,, 5 < ﬁ— So, using (2.12), we obtain

Qr,wn = Ly, wn +0(X, 1),
which, together with (2.6), gives

[La,wall = 0(A7") = oM7) |lwal|-
This is a contradiction to Corollary B.5.

3. PROOF OF THE MAIN RESULT
Since A satisfies (1.7), Proposition 2.1 holds. Let
K(’l“, ﬂ) = J)\(’l“, Hs wnﬁ)a (Ta ﬂ) € M, ()

(2.12)

where w;, ; is the map obtained in Proposition 2.1. Then, we obtain from Propositions 2.1

and A.6 that
i by _ 1
K (r. 1) =I5, 5:0) + Ol + legl) = 0 7.0) + O (=)
B \/
—I(uy) + kA + kco By \/_ _ 1003126 A/ V(O)A|zi— xj|?S
2]
ux(r) 1 Vr?
_B1/€ g +O(M\/_ 7 >’

1
Blzi—xj]

Note that |z; — 21| = a;|z1|, where a; = \/2 — 2cos @ So (3.1) becomes

where €;; =
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. keoBi/V(O)VA 1 VVOarva_L
K(r,p) =I(uy) + kA + 2% — 51%031 Z e i o
o (3.2)
ux(r) 1 Ar
— Bk 10 —
! ﬂ1/2 <'u,\/_ M )
We need the following expansions of the derivative of K (r, ).
Proposition 3.1. Assume (r,) € M, . Then
_ o) k
aK(i”u):——kCoBl )‘+1kz coBy \//\V(Oar_}_Blku)\( )
on 2 2 S’ r 2 ji3/?
J= (3.3)
1 Ar?
+0(——+ Var )
T2V8) H

We will put the proof of Proposition 3.1 to the end of this section. Now, we prove the
main result of this paper.

Let
C()Bl\/v NsY 1
ry=_~"""vY ‘7 _ —c B e~ O‘JT 3.4
ga(7) 9 01 E a]“/— (3.4)
Let 79 > 0 be the largest number, such that g)\(rok_l/z) = 0.

Define

_ _ _ 0y 493(r)A 4g3(r)A

— : d 1/2 1 _ A 1 9 A
S ={0om) i r €[\, pe [0 ) graes (L) s 1

where d; = ry + e‘e‘/x, f > 0 is a small constant, and dy — 0 as A — 400, satisfying
dxvV'A = +00, d,'7,(t) = 0 uniformly for ¢ < 1ry. Here 7,(¢) is the function in (1.9).
Let

co = I(uy) + kA +n,

and

ui (FA~Y?)
Vi
where n > 0 is small fixed small constant, and ¥ > 0 and L > 0 are fixed large constants.
For any ¢, let K¢ = {(r, 1) : K(r, i) < c}.
Consider the following flow:

cl,\—](u,\)—i—kA L
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H = V. K(r(0),0(0), >0
W = VK (r(t), a(t)), >0 (3.5)
(r(0), 2(0)) = (ro, fio) € K.

Then

Proposition 3.2. (r(t), u(t)) will not leave S before it reaches K.

4g§(r))\
Biu3 ()

Proof. By the definition of g(r), we find that if g = (1 — r?) , then

) B) Lo o 1,V
oii 16X3/2g3(r) 2 2V ’
and if g = (1 + 1Y) 4923(;))‘, then
Biux(r)
OK(r,f) _ Bluj(r) 1, N o( L, fm) o
oi 16X3/2¢3(r) 2 T2V N = '

On the other hand, if » = d; A~'/?, then,

k2 Biui(did )
2V Agx (i A~1/2)
kB3 (A1) ui (A~
2v/A uX (FA=Y/2) g (d1A71/2)

K(r,p) <I(uy) + kA —¢

=I(uy)) + kA —c <,

since ga(dyA™1/2) ~ e and by (1.9)

ui (diA12)  (6+o())VX
uX (FA1/2) g (di A1) '
Suppose that » = dy. Then
K2B202 (dy)
K(r,p) < I(uy) + kA — ¢ ——2222 < J(uy) + kA — ¢
2V Aga(dy)

" Ui(d)\)

\/X < Cl,)\’

since by (1.9)
ur(dy) o (S5 VO d= @)= @A) VE S L V@ devi
Uy (f)\fl/Q) B o
and dyv\ = +o0. O

Proof of Theorem 1.1. We will prove that K (r, i) has a critical point in K¢ \ K.
Let A be the set of maps h(r, i) from S to S, satisfying

hy(r,i) =7, ifr=dAY2 or r=d,,
where h(r, i) = (hi(r, i), ho(r, i), h1 € [diA"/2,d,], and hy is the [i component.
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Define

cy = inf sup K(h(r, i)).
= ol sup K((r )

We will show that c, is a critical value of K(r, i). To prove this claim, we need to prove
(i) e1x < ex < e
(ii) if 7 = dyA"Y/2, or 7 = dj, then K (h(r, 1)) < c1, ¥V h € A.

To prove (ii), let € A. Then, for any (r, i) € S with r = d;\"'/2, or r = d,, we have
h(r, ) = (r, jt) for some fi. By Proposition 3.2, we obtain

K(r, 1) < e
Now, we prove (i). It is easy to see ¢y < co.
Let fi(r) = %. For any h € A, h(r) =: hi(r, i(r)) is a map from [d;A71/2,d,] to
[diA~Y/2,d,], satisfying

h(r)y =7, ifr=dA"2 or r=d,.

Therefore, there is a 7 € [d;A"'/2,d,], such that h(r) = FA~Y2. Let i = hy(r, fi(r)). We
have

sup K(h(r,p)) > K(TA~ 1/2 S ).
(rm)es

But

ul(FAY/2
K(FA Y2, ) = T(uy) + kA — o(ng(A()\)\ 1/)2)) o

if L > 0 is large enough.

O
In the rest of this section, we prove Proposition 3.1.
We use 0 to denote elther i or z.-. Using Proposition 2.1, we find
_ — aJ T, _7wr,'
0K (r, i) = 0J\(r, i, wr.z) + <%, 0 ,ﬁ>
8PU$1 Uz,
—aJ)\(T s wru + A< £ , Ow ,N> + ZB’Z< - , Ow ’“> (3.6)

8PU$1,M

=0J\(r, i1, wr z) A<8

 Wrg) = ZB,,(@ w Wrp)-

Thus, to estimate 0K (r, fi), we need to estimate 0J,(r, i, w, ), A and By,
First, we estimate 0Jx(r, i, wrz)-
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Lemma 3.3. Let w,; be the function obtained in Proposition 2.1 and (r, ) € M, . Then

i, Wr 1 V(OA 1<~ B B
6J,\(T(,9/: wT,u) _ _ ikCOBl M(Q ) + 5 Z :Olazlre AV (0)ar + %’L:\?)(/Z)
j=2 (3.7)
1 r?
+0( =+ Var ).
a2V %
and
OJx\(r, i, wr a
O Isons) _ (/). (3.8)
axh
Proof. We have
OJA(r, by wr, )
=8J>\(r, /7,, 0)
k k k
- / ((Z PUy, 5+ us+wez)® — (O PUy, i+ uA)5>8 > PU,, .
Bgr = j=1 i=1
So, using the estimate for ||wy,,||, similar to the proof of Lemma 2.2, we find
TRAN [ 1
0J\(r, 2 Wr.z) _ 8J,\(rlu, 0) —|—O(7 )
op op pEtT
and
OJ\(r, by wy 5 aJx(r, 12,0 1
,\(7‘,/11,(4),/_‘) _ /\(TIU' )+0(_>
oxy, oxy, "
Thus, the result follows from Proposition A.7. U

Next, we estimate A and By,

Lemma 3.4. Let A and By, be the constants obtained in Proposition 2.1. Then, we have

Proof. From Proposition 2.1 and Lemma 3.3, we know that A; and B;;, satisfy

<3PUm1,ﬁ 8 $1M Z<8PU1;1/1, Uml ,LL>B

on Ozp
Ju Th (3.9)
_<8J)\ aPle N> aJ)\(Ta 1L, w?‘,ﬁ) _ O(Q)
MV ow’ O B Ofi IR
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8PU$1 zl aPle $1
(O e Ol 5 zxa%% ot p,

(3.10)
LR
Thus, we can solve (3.9) and (3.10) to obtain the result. O
We are now ready to prove Proposition 3.1.
Proof of Proposition 3.1. It follows directly from (3.6), Lemmas 3.3 and 3.4.
U

APPENDIX A. ENERGY EXPANSION

In this section, we will expand I(PUy, ,,) and its derivatives. Throughout this section,
we assume that diA~Y/2 < |z;] and |z; — x| > ¢A Y2 0 # j, p; > eV for some ¢ > 0.
Let us emphasize here that in the section, we do not assume that z;, j = 1,--- ,k, are
arranged in a symmetric way. Note that we have

1

1
=0 .
1|z — 24" (,u;-/Q)

Let

Cajuj = Usjuy — PUsjp;-
We first estimate ¢, ,; and and its derivatives. By definition, ¢, , satisfies

{—A(pmj,uj + AV () @z u; = AV (Y)Us, u;, in B, (A1)

Oaju; = Uz on 0Bp.
It is easy to see
| 8<p$] sHj ‘ g | a('pmj sHj
au — ()OSCJ sHg a

Thus, we only need to estimate <pw].,“j.

‘ < C,LL] Pajop; -

Lemma A.1. We have

c 1 _ . 1 A2z
1) = T (1= V) O ARy e B

PETEE: et )
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Proof. Let & ,. = -0 —L (1 — e VAV OW=2il)  Then ¢ satisfies
5 5HG

pi? ly=jl
AV (0 c
_Afwjauj + )‘V(O)gwj,uj = 152) | _0 1
pt YT
Write
P, (y) = 61]‘,/1.]‘ + ¢$]‘,Hj‘ (AQ)
Then,
- Awwj wy T )‘V(y)wmjaﬂj
c ¢ s
:)\V(y) (Ul'jaﬂj - 1/270) + )\(V(y) — V(O))71/2 0 e \f)\|y J|.
1"y — 4] K1Y =
Decompose ¥y; . = 1 + s + 13 + 1hs, where
—Ath + AV (y), = )\V(y)(Uzj,uj — %)a in Bg,
T J
1 =0, on 0Bg,
— Aty + AV ()2 = A(V(y) — V(0)) e |e—ﬁly—mﬂ, in Bpg,
_ i i
Yy =0, on 0Bg,

—AvYs3 + AV (y)s =0, in Bg
¢3 = ij,uj - 01.(}2 ‘y_l on aBRa

K ;|
and
— Aty + AV (y)y = 0, in Bg
Py = ;ﬁ% ‘y_lz]‘e*\/T(O)\y %! on 0Bpg
i
Then there is a Kk > 0,
emrVA
b4 O( 1/2 )
j
On the other hand, for any y € 0Bk,
Co 1 1
Up, o — = .
ot N;/Q |y _ xj‘ (,u?/z)
So
1
3| = O(ﬁ)
/’L'

J
Let ¢, (z) = ,U,j_l/Ql/Jl(,uj_lz + ;). Then
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in/h + i 2V (5 2+ i) = APV (g 2 + @) (U - %), in (BR)a;u;
’l,bl = O, on B(BR)%.M.
So,
- A
i(2) = O(—3)
H;
As a result,
A
Vi(y) = 0(3—/2)
H;
Lastly, let ¢(2) = 11 (A"Y22 + x;). Then
—Athy + VA2 + )by = (V(A22 + z;) — V(0)) :1(]/—\2?'6_"2‘, in (Br),;,vx
— J r ’
1/}2 = 07 on a(BR)xj’\/X,
Since
VAN Y224 2;) =V (0)| < CIAN Y22 + 252 = OXN 2|2 + Cla
by comparison theorem, we obtain
~ 1 AL2|g, |2
|2 (2)| = O(M;/QAl/Z T ,u;/Q
O
Remark A.2. Using the above techniques, we can prove
0Pz, 1 1 A2z,
<Pa],ug (v) _ 02/2 (1 _ ef,/,\v(o)\yfwj\) +O( 7 + 3|/332J| ), y € B,
45 205 [y — ] O
Let
1
il
3 RN
Proposition A.3. We have the following estimate:
coBiy/V(0)VA 1 Az |2
I1(PU,,,) = A+ OBVVOVA 1, VAl ), (A.3)

,Uj\/x e

2415
where By = [y, U°.
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Proof. We have

I(PUy; ;)

1 5 1 6
9 /BR Usjus PV = E/BR(PU%',NJ)

B 1 o _1 2*—2 2 6
=A+ E/B U )1t Pjuj + O</B UZC]:“] S05”]:“] + Br wxj””)

R

It follows from Lemma A.1 that

5
/ Usy s P i
Br

12
—/B U» i#(l_e—\/z\v(ﬂ)ly—wﬂ) +O( 1 L \/X|$]| )
R

"oy 1 e V.S

1 V|2

=c | U3, \/ 0)ly — 2| + O + ==
O/BR J,u;ul/Q j (,uj\/X 1

145 R VA 14

1 —\/AV(z;)|y—z; 2 1
/B U;ljhujépijauj S C/l; Uw4 j 2 (1 —¢€ ( ])|y J|) + O(_2)
R R

)

PR psly — 1
2R
s —\/ AV (z;)r \/X
< — (1 - MV dr +0(=) = 0(X2
and

C /2R ) 6 1 )\3/2
s < == —(1 i +0(—=) =0(—%
[ A< [ VT o) = 0( )

For i # j, we define

1

5ij =
Nzl/Q 1/2|37z - 37]‘

Proposition A.4. We have the following estimate:
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k
I(Z PUmj,uj LA+ Z co By \/ \/_ _ ECOBl Ze A/ V(0| z;— wj|‘S
— o

7]

i (A.5)
1 \/X\ij
(X0 5+00)
= VA 14
Proof. We have
k
](Z PUwJ ’NJ)
j=1
1
=Y I(PU,, ;) - 52 / U:  PUs, (A.6)
=1 izj / BR
+ O Z/ whlilgow“u”f + (‘05‘317“1 z]’“‘] + O Z/ Tiskhi SUJ,MJ
i#j ¥ Br i#]
For any y ¢ Buj_l/z'wrwj‘(xj), it follows from Lemma A.1 that
Pij:Ilj = Usjuj = Pajuy
2
__v Co \/)\V(O ly—x;] +O( 1 + 1 + \/X|.T]| >’
I/Q‘y_m ‘ 5/2|3:z—:r |3 u}/Z\/X ,u;ﬂ
from which, we deduce
5
/ Umv. sk PUwJ sy
Bg
:< / + / )Uﬂ?uﬂz Usj i
Bﬂi_l/2|2i—mj|(zi) B#j_l/2|%’—$j\($j)
+/ U3, . PUs;
Ba\(B 1 @)UB i @) (A7)
By EX w]‘ i |2; x]l

1 \/_|:U |2
= US , PUy i+ O( )
/B“_I/Q (wl) i3 NEL] /J/]\/X /1/;/2

lz;—=j]

i

/ e 1 Az [?
=coBieije VAV Oleimail O( + \/_|172J| ).
:uj\/X s

On the other hand, there is a constant 7 > 0, such that
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1
/ Uﬁi,uigpxi’mUzj’“i = / U;liyuﬁ%i,wUIj’w + O(ﬁ)
Br Bu_l/zlw‘—w'l(wi) Hj
[ )
1 1
:O( 172 / Uii,uig%i,ﬂi + 1+T)
Tl o, 2 s
1 .
=0 (5ij/ Ut | |( mVAVLe ‘ZVM) +T)
B 1/2|% mjl(o) < Mj
Vi1 1
==i0(22+ =) =0
ij 1 ’uj;—l—’r (M]l—l—'r)
and
/B wzi,mUzy‘M
R
A9
—O( e —(1- = VAV (@) \zl/ltz) 1 :O( 1 ) (4.9)
ij \z|5 T+r T+
B _1i/2, Hj Hj
By |$2_$]|P'1,
Finally,

Z/ Tispui z],uj Z‘SHZU = 11+T) (A.10)

u
1#£] i#£] J
Combining (A.6), (A.7), (A.8), (A.9), and (A.10), we obtain the desired estimate.
U

Next, we estimate the derivatives of I (Z L PU, M). Intuitively, these estimates can
be obtained by differentiating (A.5).

Proposition A.5. We have the following estimates:

V(A 1 coB1 _ i
1 P ) == g TR Ly 0l o

8/,4z ue 2 1o sl —
j=1 ) \/_j#z J‘ J| (All)
1 Az, |2
0 + ),
and
0

I( ZPUW] =0(V). (A.12)

8(13Zh =1
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Proof. We use 0; to denote either 8%1-’ or aw . We have

k
01> PU,, )
j=1
k
:Z/BR (U:c5] M (PUSUj;Nj)5)ai(PU$¢:Ni)

o
/ ( ZPU% ;s i (PUs, 4, ) (PU,, )

7j=1

_Z/ w] i PUw] u,) )ai(PUwi:Ni) _/ Z5(PU$¢,N¢)461'(PUwi;M)Pij,lij

Br j#i
4
+0 Z/ PU%“’“ Pijiu]) +PU$1’,W(PUZ]',M]‘) )|61(PUwz,lh) )
J#i
We prove (A.11) first.
Step 1. The estimate of fB (U2 9 — (PUy, 1,)°) 6(Pg,ff’ui)-
If 7 =4, then
O(PUy, )
U\ — (PUy,,)°) S i)
/I;R( Tiylhs ( zal%) ) aluz
Uy, . o1 \/_‘x 2
:5/ Us o=t i+ O /
By M Op T (]Zl(u 2/ I )>

:5/ Ut 'ani,m Co 1 (1—e VAV(O0)ly— z”)-i—O(Z( 1 \/_|xj| )>

Tl Oy ,uw Yy — ] = ,u?\/_ 13

8Um Co 1 V|z;[?
=5 U: bt VAV(0) + O + J
/BR ik } 1/2 (Z(H?\/_ ,U? ))

k \/_xj2

- 1/2“ aug Ve O<;(/«?iﬁ+ A/L? ‘ )>
O k \/_xj 9

; <Z ,U;/; /L] | ))

(A.13)
On the other hand, for i # j,
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O(PUy,, ,,.
(U5 (PU_T ) ) ( ullw.)
Bnr TjsHj R 8,“%
o . (A.14)
5 _
SE/I;R‘UWM - ( Zj ok |PUEHM - O(’u—f)
- 2PV
Step 2. The estimate of [, 5(PUs,,) PUyg; p;» § # i
By Remark A.2; we find
10(PUy, 1)
5(PU, — I Py,
/ ( z;,u'z) a/J/z R
1
=5 Usi PU, O(—=
/;R Ty i a,uz oMy + (/'Lz2)
=5 / i s €0 1 /Wl 4 (L)
B%m |(£Ci) P Opy ,u;ﬂ ‘$z - $j| H;
k
1 COBl —\/ AV (x;)|z;—x; 1
_5 3/ 1/2 e (z5) J‘+O<Z_2)
H |z — ;] o1 i
Step 3. The estimate of fB (PUsz;p;)° ™(PUg,; ;) m‘M ,m=2,3,4,j #1.
Using Lemma A.1, we can deduce
. d(PU,, ..) 1 1
PU,. ) ™(PU,. , )" =% | — O(—F7) = O(=).
[, PPy P = 0 el) = 0()
The proof (A.12) is similar.
U
Let
) k
In@ 1) = 13 PUsyy +102).
7j=1
Now, we expand Jy(z, 1) and its derivatives.
Proposition A.6. We have
- B \/ 1 V(0
J)\(JI,/L) :I(UA)+kA+ZCO ! \/_——C()Blze A @i wﬂ'
= el (A.15)

ux(x5) uA xj 147 1 V752
3-n) S0y L

j=1 My Hj
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where T > 0 is a constant, and B; = ng Uz-1i,

Proof. Let H =Y"%_, PU,, ;. We have

il "

J(x, 1,0) = I(H + uy)

. A.16
:I(H)—i-l(u)\)— H2 _l’U,)\—Il, ( )
Br
where
1
L=~ / ((H +uy)® — H® —u§ — 6H%uy, — 6Hu§).
Br
It follows from Lemma A.1 and Remark A.2 that
I, <C (H*u3 + H?uj)
Br
_0/ (H%2 + H?u?) +0/ (H*2 + H2ub)
By Bg\Bs
1+T
- Z O< 1/2 ) ’
for some constant 7 > 0. But
B =3 [ (P12 0(3 [ V)
Br i#]
i (A.17)
5 s UN(Tj)\ 147
3 [ Ut 30(f, Ot (H2))
j=1 " Br j=1 Hj
On the other hand,
/ U;cljaﬂj P U = / U;Ij i P Un T+ / U;lj i P UA
Br B _1/4(z;) Br\B _1/4(z;)
P’j I"j
1
:O (u)\(x]) / U;j,ﬂj(pwjyuj) + O(W)
B _y/4(x;) My
K
ux(z;) 1
:O( L+ T).
it gt

Moreover
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* * ]_
UQ.?U)\:/ U2,7?U)\+O —=
/BR o By*1/4($j) R (/J'Jl'—H)
J
Blu,\(O) 1
RYE +0( 1+7‘)
i Hi

Thus, the result follows.
O

Next, we expand the derivatives of j,\(x, p) with respect to  and p. Intuitively, we can
differentiate (A.15) and obtain the desired results.

Proposition A.7. For anyi=1,--- ,k, we have

) 2 9 3/2
Opi Hi 257 1" iz — ] 2

7

O\ (x, ) 1 V(0)A 1 coB1 VO wi—z; | Brua(ws)
e A i VOl

1 U,)\(.Ij) 147 1 \/X|£Cj‘2
+» —O + + :
Z;Mj (( wi? ) VA 14 )

and

M=0(\FA).

a.’Eih

Proof. We use 0; to denote either 8%”, or %. Then

k
01 () PUs;u; +un)

=1

k
:aif(z PUy, ;) — 5 / H*0;(PU,, ., )ux

j=1 Br
k

k k
_ / (3 POy +103)° = (X PUayy)” = 63 = 530 PUsy ) 2 0 (PUs ).
Br P

Using

ur(y) = ua(zs) + u;<xi><§—:|,y — ;) + O (ux(z:) Ay — 7:2),

we can obtain the estimates as we did in Proposition A.5. O
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APPENDIX B. SPECTRUM ESTIMATES OF LAYERED SOLUTIONS

Consider

{—Au + AV (lyh)u=vP, u>0 in Bg (B.1)

u e H&(BR),

where p > 1, n > 2, Bg is the ball in R*, with radius R, centered at the origin, and V is a
smooth function with

ylerllan V(y) > 0.
Let
M(r) =r""'Vo(r) (B.2)
where
gkt 1 (B.3)
p—1 2

Ambrosetti, Malchiodi and Ni [2] showed that if M (r) has a non-degenerate critical point
ro € (0, R), then (B.1) has a radial solutions u,(]y|) exhibiting concentration on a sphere
ly| = 7o in the form

N

ua(r) ~ (AV (r0)) = w((AV (o))

where w is the solution of

(7“—7’0));

w' —w+w =0in R, w(0) = nﬂlgxw(y),w(y) — 0 as |y| = +oo. (B.4)

Let f(t) = t?. The aim of this section is to prove that the linear operator Ly in H}(Bg)
defined by

(Lag,my = [ (VoVn+ AV (|y))vn — f'(ux)vn) (B.5)

Br
satisfies

1A%l = cod™ (|4l
for some constant ¢y > 0. For this aim, we need to study the spectrum properties of this
layered solution wu).
Let ¢ = \%\ By scaling, (B.1) can be transformed into

—?Au+V(y)u=uP, u>0, wu€ Hy(Bg), (B.6)

Let u. be the layered solution of (B.6) constructed in [2]. A standard argument (similar to
the proof of Claim 1 of Theorem 2.1 of [29]) shows that u. has a unique maximum point
r. where 7. — o with M (rg) = 0.

It is well-known that the following eigenvalue problem

¢ —¢+f(w)=véinR", ¢ecH R (B.7)
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admits the following eigenvalues
1 >0, 1n,=0113<0 (B8)

where the eigenfunction corresponding to v; can be made positive and even. We denote
the first eigenfunction as Wy(y) with [, ¥§ = 1. In fact,

1 1 p+1
vy :Z(p—l)(p—|—3),\110= Ww 2. (B.9)
Consider the following eigenvalue problem
62A¢ - V(T‘)’l/] + f,(us)’l/] = stl(ua)wa 1/) € H&(BR) (BlO)

The main result in this section is the following theorem.

Theorem B.1. Assume that there exists ¢ > 0 such that the following gap condition holds

vy — €2m(TTVJET:’)_ 2)\ >ce, Vm=0,1,---, (B.11)
and the following non-degenerate condition holds
M (rg) # —m(m+n —2)r23V(ry), Ym=0,1,---. (B.12)
If (e, 7.), . # 0, is a solution of (B.10), then we have
ve| > Ce”, (B.13)

To prove Theorem B.1, we first need some asymptotic behavior of the layered solution
ue. By a scaling argument, we may assume that V(ry) = 1. Let x = r. + ey and

1 15
Uy =Viry) »u(ey+r:), e1= ,
(y) ( ) ( 1Y ) 1 V(Ts)
and . .
A'glu =u + mul, where y € I, = [—T—E, —) . (B.14)
Te + €1y €1 €1

In [37], we proved

Lemma B.2. (Lemma 2.2 of [37].) It holds
(1) 7. =710 + o(e);
(2) te(y) = w(y) + e101(y) + 2¢2(y) + 0o(e?), where ¢1(y) is the unique (odd) solution
of

b= &1+ f (W) +
and ¢9(y) is the unique (even) solution of

by — b2+ [ (w) s
-1, " -1, , " B.16
"y e+ TV e+ 1 g =0 P

n—1

w — V' (ro)yw(y) =0,6,(0) =0, iR, (B.15)

2
T

Using Lemma B.2, we are now ready to prove Theorem B.1.
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Proof of Theorem B.1: Let (¢, v) satisfy (B.10). The symmetry of V(y) allows us to
expand 1 into spherical harmonics. We write 9 as

() = Zwm(r)em(e), r e [0, ?), fecsmt (B.17)

where ©,,, m > 0 are the eigenfunctions of the Laplace-Beltrami operator —Ag.-1 on the
sphere S™ ', normalized so that they constitute an orthonormal system in L?(S™ '). We
take ©¢y to be a positive constant, associated to the eigenvalue 0 and ©;, 1 < i < n is
an appropriate multiple of ‘%‘ which has eigenvalue \; = n —1, 1 <7 < n. In general,
tm = m(m~+n—2) denotes the eigenvalue associated to ©,,, we repeat eigenvalues according
to their multiplicity and we arrange them in an non-decreasing sequence.

The components v, then satisfy the differential equations

52A¢m - V(T)wm - T{;mwm + f’ (ue)wm = Vf’ (Us)wm: wm = lﬁm(T) € H&(BR) (B18)

Since 9 # 0, there exists a m such that t¢,, Z 0. From now on, we consider (B.18)
instead. For simplicity of notation, we denote 1, as 1. Let us assume that there exists
(¢, 7. ) satisfying (B.18) such that 7, = o(c?). We shall derive a contradiction.

Since f'(u.) < C, it is easy to see that

62

2 um < C. (B.19)
Let , 2,
Le(¢) = Agl¢ - Vs(51y + 7‘5)(15 - (7°+176Ty)2¢ + f'(’&es)(l5
and i . L
¢5(y) = 1/}E(€1y + TE)) &1 = V(T‘ )a Ve = V(’f'g) Ve
Then ,
ALtbe = Valery + re)pe — %1& + [1(@)0. = v f'(3) e,

and v, = o(&?).
Now we let 1/, be the unique even function of

(n—1)

¥y — P+ f (W) = —T—w” + V' (ro)yw — f" (w)pyw in R (B.20)
0
Set
Ui(y) = w (y) +erth(y). (B.21)
By direct calculation, we have
n—1 7 1.4 ' n—1 ., '
Le (W) 263[_7?/“’ - §V (ro)y*w ] + 5§[T—0¢1 =V (ro)yy]
0

1. 2 (B.22)

+ellf (W + S (w)gtw + [ (w)gw] — Uy +0(e?).

(TE + gly)z
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See (2.16) in [37] for details.
On the other hand, it is easy to see

e1ln—1) _, €2l " ) \
Lo(W) = =T+ (n—— )V To—e, V' (r)yTo+0(e2). (B.23
( 0) T5+5y 0+(V1 (7"5+€1y)2) O+€1f (’LU)¢1 0—¢1 (’f' )y 0+ (6 ) ( )
We decompose
Ve = dTo(y) + Ui (y) +4z, | Tily)ys = 0,/ To(y)y: =0, (B.24)
I I
where 11 satisfies
_Lg(wj) = ceLeWy + dELE(\IIO) - Vefl(ae)we n I, (B25)

and

[ mt =0, [ ww: =0,

I, Ie
Then by the same argument as in of [2], we have that

£

€2
| < C’((g2 + 2 |ce| + (e + |v1 — T—'I;D\ds\) : (B.26)
Now we multiply (B.18) by w’, integrate over I, and use (B.26) to obtain

cs/ Ls(\Ifl)w'—i—ds/ L.(To)w
I. I

) 2,
=v.[c. | f(t)Tw +O(ed.)] + 0(5(52 + &%) |ee| + O(e(e + |1 — lf |)|d5\)
I. e
(B.27)
Similarly, we multiply (B.18) by W, integrate over I, to obtain

Cs/ Ls(qjl)q]0+d5/ Ls(\IIO)\IIO
I.

I

2
‘Sllj'm
Te

)ld.).
(B.28)

We now analyze both sides of (B.27). The right hand side is relatively easy to understand
since

_, [dg/l F/(1) 83 + O(elde))] + O (=€ + ) lec] + O(ele + i -

[ pa)w - /R Flw) (W) + 0(). (B.29)
Using (B.22), we can ded;ce
/1 (L.(0y))w = ByM' (ro)e? — 8%# /R(w')2 + 0(e%) + O(% ), (B.30)

where
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Bo= -1 [ @',
R
See the calculations of (2.22)—(2.27) in [37] for details.

Using (B.22) again, we can also deduce

/ (Lo(T1)) T = O(E i + 7).

I

Next, by (B.23), we find

and

[ wwyun =0+ - 22 [

Is 7”6

Substituting (B.30)-(B.33) into (B.27) and (B.28), we obtain

c(BoM" (ro)e? — 255 + O(Phn) + 0(e) ) +0(ede) = 0,

&

and

2
c:O0(e 3lim) +d. (v — 81:;7” + 0(e%) =0.

From (B.35) and the gap condition (1.7), we have that

e
d, = 0(175“)05.
vy — lrzm
€

Substituting (B.36) into (B.34), we obtain that

4
eo| BoM" (ro)e? — €152 +o(e}) + O(—H5—) | =0,

£ ‘I/l —_ E%um

which, together with conditions (B.11) and (B.12), implies that
c. =0, d.=0.

This forces - = 0, by (B.26). Thus, . = 0. A contradiction.
This completes the proof of Theorem B.1.

If we work in a sub-space H, of H}(Bg(0)), then we have the following result:

Theorem B.3. Assume that the following gap condition holds

5 Hm

’f’oV(

v — |2(:6,‘v’m€J\/'

29

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)
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and the following non-degenerate condition holds
M (r9) # —fimr2 3V (1), ¥m €N, (B.39)

where [y, m=1,---, are all the eigenvalues of —Agn-1 on S™L, with the corresponding
eigenfunctions ©p,(0) satisfying 1(r)0,(0) € Hy for any (r).
If (e, 1), e € Hy, 1. # 0, is a solution of (B.10), then we have

ve| > Ce®, (B.40)
Remark B.4. If n = 3 and H; is the space defined in (1.5), then fi,, > 6, m=1,2,--- .
From Theorem B.1, or Theorem B.3, we can deduce the following corollary:

Corollary B.5. Suppose that the conditions in Theorem B.1 ( or Theorem B.8) hold.
There is N\g > 0 such that for A > X\ satisfying (B.11) (or (B.38)), the linearized operator
Ly from H}(Bgr) (or H,) into itself defined in (B.5) is invertible operator and satisfies

1LY = oA~ Il (B.41)

where ¢y > 0 is a constant, independent of \.

Proof. Let € = \%\ From Theorem B.1, we have that the following eigenvalue problem:

A% — V(|y)v + f/(u)p = A (2A¢% = V(|y))¢), o € Hy(Bg) (orH,),  (B.42)

has a spectrum gap || > coe? = cpA~". So, the result follows.
O
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