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Abstract. We prove that finite Morse index solutions to the Allen-Cahn equation in R2 have finitely

many ends and linear energy growth. The main tool is a curvature decay estimate on level sets
of these finite Morse index solutions, which in turn is reduced to a problem on the uniform second order

regularity of clustering interfaces for the singularly perturbed Allen-Cahn equation in Rn. Using an

indirect blow-up technique, in the spirit of the classical Colding-Minicozzi theory in minimal surfaces,
we show that the obstruction to the uniform second order regularity of clustering interfaces in Rn is

associated to the existence of nontrivial entire solutions to a (finite or infinite) Toda system in Rn−1.

For finite Morse index solutions in R2, we show that this obstruction does not exist by using information
on stable solutions of the Toda system.

1. Introduction

The intricate connection between the Allen-Cahn equation and minimal surfaces is best illustrated by
the following famous De Giorgi’s Conjecture [21].

Conjecture. Let u ∈ C2(Rn) be a solution to the Allen-Cahn equation

−∆u = u− u3 in Rn (1.1)

satisfying ∂xnu > 0. If n ≤ 8, all level sets {u = λ} of u must be hyperplanes.

In the last twenty years, great advances in De Giorgi’s conjecture have been achieved, having been
fully established in dimensions n = 2 by Ghoussoub and Gui [37] and for n = 3 by Ambrosio and Cabre
[2]. A celebrated result by Savin [67] established its validity for 4 ≤ n ≤ 8 under an extra assumption
that

lim
xn→±∞

u(x′, xn) = ±1. (1.2)

On the other hand, Del Pino, Kowalczyk and Wei [24] constructed a counterexample in dimensions n ≥ 9.

After the classification of monotone solutions, it is natural to consider stable solutions. Unfortunately
this has been less successful. The arguments in [2, 22, 37] imply that all stable solutions in R2 are one-
dimensional. On the other hand, Pacard and Wei [63] found a nontrivial stable solution in R8. This is
later shown to be also global minimizer [58]. (For local minimizers or stable solutions in bounded domains
we refer to Modica [62], Kohn-Sterberg [49], Le [55], Sternberg-Zumbrun [72], Tonegawa-Wickramasekera
[75] and the references therein.)

In this paper we consider a more difficult problem of classification of finite Morse index solutions
in R2. Finite Morse index is a spectrum condition which is hard to use to obtain energy estimate. In
the literature, another condition–finite-ended solutions–is used. Roughly speaking a solution is called
finite-ended if the number of components of the nodal set {u = 0} is finite outside a ball. (In fact more
restrictions are needed, see del Pino, Kowalczyk and Pacard [23], Gui [41].) Analogous to the structure
of minimal surfaces with finite Morse index ([35, 43, 44]), a long standing conjecture is that finite Morse
index solutions to the Allen-Cahn equation in R2 have linear energy growth and hence finitely many ends
(see [41, 25]). In this paper we will prove this conjecture by establishing a curvature decay estimate
on level sets of these finite Morse index solutions.

This curvature estimate is similar to the one for stable minimal surfaces established by Schoen in [70].
However, the key tool used in minimal surfaces is the so-called Simons type inequality [71] which has
no analogue for semilinear elliptic equations. (The closest one may be the so-called Sternberg-Zumbrun
inequality [72] for stable solutions.) Here an indirect blow up method will be employed in this paper. Our
blow-up procedure is inspired by the groundbreaking work of Colding and Minicozzi on the structure of
limits of sequences of embedded minimal surfaces of fixed genus in a ball in R3 ([14, 15, 16, 17, 18, 19]).
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We prove the curvature estimate by studying the uniform second order regularity of clustering interfaces
in the singularly perturbed Allen-Cahn equation. It turns out the uniform second order regularity does
not always hold true and the obstruction is associated to the existence of nontrivial entire solutions to
the Toda system

−∆fα = e−
√

2(fα+1−fα) − e−
√

2(fα−fα−1), in Rn−1. (1.3)

This connection between the Allen-Cahn equation and the Toda system was previously used in [23, 25,
27] to construct solutions to the Allen-Cahn equation with clustering interfaces. The analysis of clustering
interfaces started in Hutchinson-Tonegawa [46]. It is shown that the energy at the clustered interfaces is
quantized. In [73, 75], the convergence of clustering interfaces as well as regularity of their limit varifolds
were studied. However, the uniform regularity of clustering interfaces (see [74]) and precise behavior of
the solutions near the interfaces and the connection to Toda system (except some special cases such as two
end solutions in R3 studied in [42]) are still missing. In this paper we give precise second order estimates
and show that when clustering interfaces appear, then a suitable rescaling of these interfaces converge
to the graphs of a solution to the Toda system. It is through this blow up procedure we reduce the
uniform second order regularity of interfaces to the non-existence of nontrivial entire stable solutions to
the Toda system. We also show that the stability condition is preserved in this blow up procedure. Then
using results on stable solutions of the Toda system, we establish the uniform second order regularity of
interfaces for stable solutions of the singularly perturbed Allen-Cahn equation, and then the curvature
estimate for finite Morse index solutions in R2.

For other related results on De Giorgi conjecture for Allen-Cahn equation, we refer to [1, 8, 31, 32, 33,
34, 38, 48, 69, 76] and the references therein.

2. Main results

We consider general Allen-Cahn equation

∆u = W ′(u), |u| < 1, in Rn (2.1)

where W (u) is a double well potential, that is, W ∈ C3([−1, 1]) satisfying

• W > 0 in (−1, 1) and W (±1) = 0;
• W ′(±1) = 0 and W ′′(−1) = W ′′(1) = 2;
• there exists only one critical point of W in (−1, 1), which is assumed to be 0.

A typical model is given by W (u) = (1− u2)2/4.
Under these assumptions on W , it is known that there exists a unique solution (up to a translation)

to the following one dimensional problem

g′′(t) = W ′(g(t)), g(0) = 0 and lim
t→±∞

g(t) = ±1. (2.2)

After a scaling uε(x) := u(ε−1x), we obtain the singularly perturbed version of the Allen-Cahn equa-
tion:

ε∆uε =
1

ε
W ′(uε) in Rn. (2.3)

2.1. Finite Morse index solutions. We say a solution u ∈ C2(Rn) has finite Morse index if there is
a finite upper bound on its Morse index in any compact set. By [28], this is equivalent to the condition
that u is stable outside a compact set, that is, there is a compact set K ⊂ Rn such that

Q(ϕ) :=

∫
Rn
|∇ϕ|2 +W ′′(u)ϕ2 ≥ 0, ∀ϕ ∈ C∞0 (Rn \K).

Classifying finite Mores index solutions is in general a difficult task, even in dimension n = 2. In
R2 we know that stable solutions (Morse index 0) are one dimensional, i.e. after rigid motions in R2,
u(x1, x2) ≡ g(x2). Since the finite Morse index is a difficult condition to use, another class of solutions–
finite-ended solutions–has been introduced by del Pino, Kowalczyk and Pacard [23], which we recall
here.

Definition 2.1. A solution u is said to be a finite-ended solution to the Allen-Cahn equation (2.1) in
R2 if there exist k oriented half lines {aj · x+ bj = 0}, j = 1, ..., k, (for some choices of aj ∈ R2, |aj | = 1
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and bj ∈ R), such that along these half lines and away from a compact set K containing the origin, u is
asymptotic to g(ajx+ bj), that is, there exist positive constants C, c > 0 such that

‖u(x)−
k∑
j=1

(−1)j+1g(ajx+ bj)‖L∞(R2\K) ≤ Ce−c|x|. (2.4)

The set of k−ended solutions is denoted by Mk. A simple counting of nodal domains shows that k
must be even. In [23], it is shown that L2 convergence implies (2.4). Furthermore it was shown [23]
that Mk is a smooth k-dimensional Banach manifold in neighborhoods of u satisfying nondegeneracy
conditions.

Gui ([40, 41]) showed that if the nodal sets {u = 0} is finite outside a compact set, and each component
is contained by a non-overlapping cone, then u ∈Mk. Moreover he also derived the Halmitonian identity
and proved that the following balancing condition holds

k∑
j=1

aj = 0. (2.5)

All two-ended solutions are one-dimensional. Near each end the solution approaches to the one-
dimensional profile exponentially, see Del Pino-Kowalczyk-Pacard [23], Gui [40] and Kowalczyk-Liu-
Pacard [50, 51, 52]. The existence of multiple-ended solutions and infinite-ended solutions to Allen-Cahn
equation in R2 have been constructed in [3, 26, 53, 54]. The structure and classification of four end
solutions have been studied extensively in [41, 23, 50, 51, 52]. It is shown that the four-ended solutions
have even symmetries and the moduli space of four-ended solutions is one-dimensional.

A long standing and important question is

Question: Does finite Morse index solution have finite ends?

Our first main result gives a positive answer to the above question:

Theorem 2.2. Suppose u is a finite Morse index solution of (2.1) in R2. Then there exists k ∈ N such
that u ∈ Mk, i.e., u is a finite-ended solution. Moreover, u has linear energy growth, i.e., there exists a
constant C such that ∫

BR(0)

[
1

2
|∇u|2 +W (u)

]
≤ CR, ∀R ≥ 1. (2.6)

As a byproduct of our analysis, for solutions with Morse index 1 we can show that

Theorem 2.3. Any solution to (2.1) in R2 with Morse index 1 has four ends.

Remark 2.4. The linear growth condition (2.6) implies that the nodal set {u = 0} has finite length at
∞. In Rn the analogue energy bound∫

BR(0)

[
1

2
|∇u|2 +W (u)

]
≤ C Rn−1, ∀R ≥ 1 (2.7)

is a classical assumption in the setting of semilinear elliptic equations (see e.g. Hutchinson-Tonegawa
[46]). It is satisfied by minimizers or monotone solutions satisfying (1.2). This is precisely the use of
(1.2) in Savin’s proof of De Giorgi’s conjecture ([67]). (See also Ambrosio-Cabre [2] and Alberti-Ambrosio-
Cabre [1].) In dimensions 4 and 5, condition (2.7) is also an essential estimate in Ghoussoub-Gui [38].
A similar area bound for minimal hypersurfaces seems to be also crucial for the study of Stable Bernstein
Conjecture when the dimension is larger than 3. (Only three dimension case has been solved in [29, 36].
See also [11, 56, 57].)

Remark 2.5. In a recent paper [59], Mantoulidis showed that for 2m-ended solutions the Morse index is
at least m− 1.

The main tool to prove Theorem 2.2 is the following curvature estimate on level sets of u (see Theorem
3.5 and Theorem 3.8 below):
Key Curvature Estimates (Theorem 3.5): For any solution of (2.1) in R2 with finite Morse index
and b ∈ (0, 1), there exist a constant C and R = R(b) such that

|B(u)(x)| ≤ C

|x|
for x ∈ {|u| ≤ 1− b} ∩ (BR(b)(0))c, where |B(u)(x)| =

√
|∇2u(x)|2 − |∇|∇u(x)||2

|∇u(x)|2
.

(2.8)
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This curvature decay is similar to Schoen’s curvature estimate for stable minimal surfaces [70], however
the proof is quite different. This is mainly due to the lack of a suitable Simons type inequality for
semilinear elliptic equations. Hence an indirect method is employed, by introducing a blow up procedure
and reducing the curvature decay estimate to a second order estimate on interfaces of solutions to (2.3),
see Theorem 3.6 below.

2.2. Second order estimates on interfaces. It turns out that our analysis on the uniform second
order regularity of level sets of solutions to the singularly perturbed Allen-Cahn equation (2.3) works in
a more general setting and any dimension n ≥ 2. In Part II of this paper we give precise analysis in the
case of clustering interfaces. More precisely we assume that

(H1) uε is a sequence of solutions to (2.3) in C2 = Bn−1
2 × (−1, 1) ⊂ Rn, where ε→ 0;

(H2) there exists Q ∈ N, b ∈ (0, 1) and tε ∈ (−1 + b, 1− b) such that {uε = tε} consists of Q connected
components

Γα,ε = {xn = fα,ε(x
′), x′ := (x1, · · · , xn) ∈ Bn−1

2 }, α = 1, · · · , Q,

where −1/2 < f1,ε < f2,ε < · · · < fQ,ε < 1/2;

(H3) for each α, fα,ε are uniformly bounded in Lip(Bn−1
2 ) and they converge to the same limit f∞ in

Cloc(B
n−1
2 ).

Here Q is called the multiplicity of the interfaces. Analyzing clustering interfaces is one of main
difficulties in the study of singularly perturbed Allen-Cahn equations. See e.g. [46, 73, 75, 74]. In
particular, it is not known if flatness implies uniform C1,θ regularity when there are clustering interfaces
(i.e. the Lipschitz regularity in the above hypothesis (H3)).

Under these assumptions, it can be shown that f∞ satisfies the minimal surface equation (see [46])

div

(
∇f∞√

1 + |∇f∞|2

)
= 0 in Rn−1. (2.9)

Because f∞ is Lipschitz, by standard elliptic estimates on the minimal surface equation [39, Chapter 16],
f∞ ∈ C∞loc(B

n−1
2 ).

We want to study whether fα,ε converges to f∞ in C2
loc(B

n−1
2 ). It turns out this may not be true and

the obstruction is related to a Toda system

∆fα(x′) = A1e
−
√

2(fα(x′)−fα−1(x′)) −A2e
−
√

2(fα+1(x′)−fα(x′)), x′ ∈ Rn−1, 1 ≤ α ≤ Q′, (2.10)

where Q′ ≤ Q, A1 and A2 are positive constants.
More precisely, we show

Theorem 2.6. If fα,ε does not converge to f∞ in C2
loc(B

n−1
2 ), then a suitable rescaling of them converge

to a nontrivial entire solution to the Toda system (2.10).

For the multiplicity one case Q = 1, we get the following uniform C2,θ estimate.

Theorem 2.7. If {uε = 0} = {xn = fε(x1, · · · , xn−1)}, then for any θ ∈ (0, 1), fε are uniformly bounded

in C2,θ
loc (Bn−1

2 ).

These results answer partly a question of Tonegawa [74] and improves the uniform C1,θ estimate in
Caffarelli-Cordoba [10] to the second order C2,θ estimate.

The main idea in the proof of these two theorems relies on the determination of the interaction
between Γα,ε. To this aim, we introduce the Fermi coordinates with respect to Γα,ε and near each Γα,ε
we find the optimal approximation of uε along the normal direction using the one dimensional profile g
and the distance to Γα,ε. More precisely, we use an approximate solution in the form

g

(
distΓα,ε − hα,ε

ε

)
.

Here hα,ε is introduced to make sure that this is the optimal approximation along the normal direction
with respect to Γα,ε. With this construction, using the nondegeneracy of g, we can get a good estimate on
the error between uε and these approximate solutions, which in turn shows that the interaction between
Γα,ε is exactly through the Toda system

∆fα,ε =
A1

ε
e−
√

2
fα,ε−fα−1,ε

ε − A2

ε
e−
√

2
fα+1,ε−fα,ε

ε + high order terms.
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Using this representation, we show that the uniform second order regularity of fα,ε does not hold only if
the lower bound of intermediate distances between Γα,ε is of the order

√
2

2
ε| log ε|+O(ε). (2.11)

(Here the constant
√

2 =
√
W ′′(1).) Moreover, if this is the case, the rescalings

f̃α,ε(x
′) :=

1

ε
fα,ε

(
ε

1
2x′
)
−
√

2α

2
| log ε|

converges to a solution of (2.10).

In other words, if intermediate distances between Γα,ε are large (compared with (2.11)), the interaction
between different interfaces is so weak enough that it does not affect the second order regularity of fα,ε.
In particular, if there is only one component and hence no interaction between different components, we
get Theorem 2.7.

In Theorem 3.6, the situation is a little different where more and more connected components of
{uε = 0} could appear. However, the above discussion still applies. This is because, by using the stability
condition, we can get an explicit lower bound on intermediate distance between different components of
{uε = 0} which is just a little smaller than (2.11). To get a lower bound higher than (2.11), we use the
stability of fα,ε (as a solution to the approximate Toda system) inherited from uε. By this stability and

a classical estimate of Choi-Schoen [13], we get a decay estimate of e−
√

2
fα,ε−fα−1,ε

ε in the interior. In

some sense e−
√

2
fα,ε−fα−1,ε

ε replaces the role of the curvature in minimal surface theory.

We also would like to call readers’ attention to the resemblance of pictures here (especially when we
consider R3 and not only R2) with the multi-valued graph construction in seminal Colding-Minicozzi
theory [14, 15, 16, 17, 20]. When the number of connected components of {uε = 0} goes to infinity and
we do not assume the stability condition, the blow up procedure as in Theorem 2.6 produces a solution to
the Toda lattice (i.e. in (2.10) the index α runs over integers Z). The difference is that, different sheets of
minimal surfaces do not interact (in other words, interact only when they touch) while different sheets of
interfaces in the Allen-Cahn equation have an exponential interaction. It is this exponential interaction
leading to the Toda system. We notice that in a recent paper [47], Jerison and Kambrunov also performed
a similar blow-up procedure for the one-phase free boundary problem in R2. The difference is again that
different sheets of free boundaries do not interact.

Organization of the paper. This paper is divided into three parts. Part I is devoted to the analysis of
finite Morse index solutions, by assuming the curvature decay estimate. In Part II we study the second
order regularity of interfaces and prove Theorem 2.6 and Theorem 2.7. Techniques in Part II are modified
in Part III to prove the curvature decay estimate needed in Part I. Some technical calculations in Part
II are collected in the Appendix.

Acknowledgement. The research of J. Wei is partially supported by NSERC of Canada and the Cheung-
Kong Chair Professorship. K. Wang is supported by NSFC no. 11631011 and “the Fundamental Research
Funds for the Central Universities”. We thank Professor Changfeng Gui for useful discussions and
Dr. Mantoulidis for some suggestions. K. Wang is also grateful to Yong Liu for several enlightening
discussions.

Part 1. Finite Morse index solutions

In this part we study finite Morse index solutions of (2.1) in R2 and prove Theorem 2.2 and Theorem
2.3, by assuming the curvature decay estimates Theorem 3.5 and Theorem 3.8, which is based on Theorem
3.6 whose proof is given in Part III. Throughout this section we always assume that n = 2 and that u is
a finite Morse index solution to (2.1).

3. Curvature decay

The following characterization of stable solutions is well known (see for example [2, 22, 37]).

Theorem 3.1. Let u be a stable solution of (2.1) in R2, then there exists a unit vector ξ ∈ R2 and t ∈ R
such that u(x) ≡ g(x · ξ − t), ∀x ∈ R2.

Since u has finite Morse index, u is stable outside a compact set. As a consequence we then obtain
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Lemma 3.2. For any b ∈ (0, 1), there exist c(b) > 0, R(b) > 0 such that, for x ∈ {|u| ≤ 1− b}\BR(b)(0),

|∇u(x)| ≥ c(b).

Proof. If the claim were false, there would exist a sequence of xi ∈ {|u| ≤ 1− b}, xi →∞, but

|∇u(xi)| → 0. (3.1)

Let ui(x) := u(xi+x). By standard elliptic estimates and the Arzela-Ascoli theorem, up to a subsequence,
ui converges to a limit u∞ in C2

loc(R2). Because u is stable outside a compact set, u∞ is stable in R2.
Then by Theorem 3.1, u∞ is one dimensional. In particular, |∇u∞| 6= 0 everywhere. However, by passing
to the limit in (3.1), we get

|∇u∞(0)| = lim
i→+∞

|∇ui(0)| = lim
i→+∞

|∇u(xi)| = 0.

This is a contradiction. �

The proof also shows that u is close to one dimensional solutions at infinity.

The following lemma shows that the nodal set {u = 0} cannot be contained in any bounded set.

Lemma 3.3. For any solution of (2.1) in R2 with finite Morse index, if u is not constant, then {u = 0}
is unbounded.

Proof. Assume by the contradiction, u > 0 outside a ball BR(0). By Lemma 3.2 and the fact that the
only positive solution to the one dimensional Allen-Cahn equation is the constant function 1, we see
u(x) → 1 uniformly as |x| → +∞. For u near 1, W ′(u) ≤ −c(1 − u) for some positive constant c > 0.
Thus by comparison principle we get two constants C and R such that, for any x ∈ BcR,

u(x) ≥ 1− Ce−
|x|−R
C . (3.2)

Then by standard elliptic estimates or Modica’s estimates ([61]),

|∇u(x)| ≤
√

2W (u) ≤ Ce−
|x|−R
C . (3.3)

Recall that the Pohozaev type equality on ball Br(0) is∫
Br

2W (u) = r

∫
∂Br

1

2
|∇u|2 +W (u)−

(
∂u

∂r

)2

.

For r > R, substituting (3.2) and (3.3) into the right hand side, we get∫
Br

2W (u) ≤ Cre−
r−R
C .

Letting r → +∞ leads to ∫
R2

W (u) = 0.

Hence either u ≡ 1 or u ≡ −1. �

If |∇u(x)| 6= 0, denote

ν(x) :=
∇u(x)

|∇u(x)|
, and B(u)(x) = ∇ν(x). (3.4)

If |∇u(x)| 6= 0, locally {u = u(x)} is a C2 curve, thus its curvature H is well defined. Then

|B(u)(x)|2 =
|∇2u(x)|2 − |∇2u(x) · ν(x)|2

|∇u(x)|2
= H(x)2 + |∇T log |∇u(x)||2, (3.5)

where ∇T is the tangential derivative along the level set of u, see [72, 73].

Corollary 3.4. For any b ∈ (0, 1), |B(u)(x)|2 is bounded in (R2 \ BR(b)(0)) ∩ {|u| ≤ 1 − b}. Moreover,

for x ∈ (R2 \BR(b)(0)) ∩ {|u| ≤ 1− b}, if x→∞, |B(u)(x)|2 → 0.

Proof. The first claim follows from the fact that |∇2u|2 is bounded in R2 and the lower bound on |∇u| in
Lemma 3.2. The second claim also follows from Lemma 3.2, by noting that for one dimensional solutions
|B(g)| ≡ 0. �

Now we give the following key estimate on the decay rate on |B(u)(x)| at infinity.
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Theorem 3.5. For any solution of (2.1) in R2 with finite Morse index and b ∈ (0, 1), there exists a
constant C such that

|B(u)(x)| ≤ C

|x|
, for x ∈ {|u| ≤ 1− b} ∩BR(b)(0)c.

To prove this theorem, we argue by contradiction. Take X to be the complete metric space {|u| ≤ 1−b}
with the extrinsic distance and Γ := X ∩ BR(b)(0). Assume there exists a sequence of Xk ∈ X \ Γ,
|B(Xk)|dist(Xk,Γ) ≥ 2k. By the doubling lemma in [64], there exist Yk ∈ X \ Γ such that

|B(Yk)| ≥ |B(Xk)|, |B(Yk)|dist(Yk,Γ) ≥ 2k,

|B(Z)| ≤ 2|B(Yk)| for Z ∈ Bk|B(Yk)|−1(Yk).

Let εk := |B(Yk)| and define uk(x) := u(yk + ε−1
k x). Note that

dist(Yk,Γ) ≥ 2k|B(Yk)|−1. (3.6)

By Corollary 3.4, |Yk| → +∞ and εk → 0.
In Bk(0), uk is a solution of (2.3) with the parameter εk. By (3.6), uk is stable in Bk(0).
For X ∈ Bk(0) ∩ {|uk| < 1− b},

|B(uk)(X)| ≤ 2. (3.7)

On the other hand, by the above construction we have

|B(uk)(0)| = 1. (3.8)

The bound on |Bk| implies that, for any X ∈ {|uk| < 1 − b} ∩ Bk(0), {uk = uk(X)} ∩ B1/8(X) can be

represented by the graph of a function with a uniform C1,1 bound, cf. [20, Chapter 2, Lemma 2.4].
The following theorem leads to a contradiction with (3.8) and the proof of Theorem 3.5 is thus finished.

Theorem 3.6. Suppose uε is a sequence of stable solutions to (2.3) in C1(0) satisfying for some constant
b ∈ (0, 1) and C > 0 independent of ε,

|B(uε)| ≤ C, in {|uε| < 1− b} ∩B1(0).

Then for all ε small,
sup

{|uε|<1−b}∩B1/2(0)

|B(uε)| ≤ Cε1/7.

The proof will be postponed to Part III. Here we only note that under the assumptions of this theorem,
locally the level set of uε is a family of graphs. For example, after a rotation, assume that the connected
component of {uε = uε(0)} ∩ B1/8(0) passing through 0 (denoted by Σε) is represented by the graph
{x2 = fε(x1)}, where fε(0) = f ′ε(0) = 0. By the curvature bound (3.7), |f ′′ε | ≤ 32 in [−1/8, 1/8]. By
these bound, after passing to a subsequence, we can assume fε converges to f∞ in C1([−1/8, 1/8]).

There are two cases.

• Case 1. {x2 = fε(x1)} is an isolated component of {uε = uε(0)}. In other words, there exists
an h > 0 independent of ε such that {uε = uε(0)} ∩Bh(0) = {x2 = fε(x1)}.

• Case 2. There exists a sequence of points on other components of {uε = uε(0)}∩B1/8(0) disjoint
from Σε, converging to a point on Σε.

The following simple lemma can be proved by combining the curvature bound (3.7) with the fact that
different connected components of {uε = uε(0)} are disjoint. (This fact has been used a lot in minimal
surface theory, in particular, in [15].)

Lemma 3.7. There exist two universal constants h and C(h) such that if a connected component Γ of
{uε = uε(0)}∩B1/8(0) (other than Σε) intersects Bh(0), then Γ∩B2h(0) can be represented by the graph

{x2 = f̃ε(x1)}, where ‖f̃ε‖C1,1([−2h,2h]) ≤ C(h).

Using this lemma, we deduce that under the assumptions in Theorem 3.6, the nodal set of uε is given
by ∪α{x2 = fα,ε(x1)}, where |f ′′α,ε(x1)| ≤ 64 for every α and x1 ∈ (−1, 1). Here the cardinality of the
index set α could remain uniformly bounded or go to infinite.

In the above we do not use the full power of Theorem 3.6. In fact, we can improve Theorem 3.5 to a
higher order decay rate.

Theorem 3.8. There exists a constant C such that

|B(u)(x)| ≤ C

|x|8/7
, for x ∈ {|u| < 1− b} ∩BR(b)(0)c.
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Proof. Take an arbitrary sequence Xk ∈ {|u| < 1− b} → ∞. Denote εk := |B(u)(Xk)|, which converges
to 0 as k →∞. Let uk(x) := u(Xk + ε−1

k x), which is a solution of (2.3) with parameter εk.
By Theorem 3.5, εk|Xk| ≤ C and for any x ∈ {|u| < 1− b} ∩B|Xk|/2(Xk),

|B(u)(x)| ≤ C

|x|
≤ 2C

|Xk|
≤ 2Cεk.

Thus after a scaling, there exists a constant ρ ∈ (0, 1/2) independent of k such that in Bρ(0), uk satisfies
the assumptions of Theorem 3.6. Note that for all k large, u is stable in B|Xk|/2(Xk). Hence uk is stable

in Bρ(0). Applying Theorem 3.6 gives |B(uk)(0)| ≤ Cε
1/7
k . Rescaling back we get the desired bound on

|B(u)(Xk)|. �

4. Lipschitz regularity of nodal sets at infinity

First using Theorem 3.8 and proceeding as in [77], we can show that there are at most finitely many
connected components of {u = 0}. This is achieved by choosing the smallest ball centered at the origin
which contains a bounded connected component of {u = 0} and comparing their curvatures at the contact
point.

In the following we take a constant R0 > R(1/2) so that u is stable outside BR0
(0). We first give a

chord-arc bound on {u = 0}.

Lemma 4.1. Let Σ be a unbounded connected component of {u = 0} \BR0
(0) and X(t) be an arc length

parametrization of Σ, where t ∈ [0,+∞). Then there exists a constant c such that for any t large,

|X(t)| ≥ c|t|.

Proof. Because Σ is a smooth embedded curve diffeomorphic to [0,+∞), if t→ +∞, |X(t)| → +∞.
By direct differentiation and applying Theorem 3.8, we obtain

d2

dt2
∣∣X(t)

∣∣2 = 2
∣∣∣dX
dt

∣∣∣2 + 2X(t) · d
2X

dt2
(t) ≥ 2− C

|X(t)|1/8
≥ 1,

for all t large. Integrating this differential inequality we finish the proof. �

Keeping assumptions as in this lemma, we can further show that

Proposition 4.2. The limit

e∞ := lim
t→+∞

X ′(t)

exists. Moreover, for all t large,

|X ′(t)− e∞| ≤
C

t1/7
.

Proof. Combining the previous lemma with Theorem 3.8 we obtain

|X ′′(t)| ≤ C

t8/7
.

Integrating this in t we finish the proof. �

The direction e∞ obtained in this proposition is called the limit direction of the connected component
Σ.

5. Energy growth bound: Proof of Theorem 2.2

First using the stability of u outside BR0
(0), we study the structure of nodal set of direction derivatives

of u at infinity. The following method can be compared with those in [22, 68].

Proposition 5.1. For any unit vector e, every connected component of {ue := e · ∇u 6= 0} intersects
with BR0(0).

Proof. Assume by the contrary there exists a unit vector e and a connected component Ω of {ue 6= 0}
contained in BR0

(0)c. Let ψ be the restriction of |ue| to Ω, with zero extension outside it. Hence ψ is
continuous, and in Ω it satisfies the linearized equation

∆ψ = W ′′(u)ψ. (5.1)
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For any R > R0, let

ηR(x) :=


1, x ∈ BR(0),

2− log |x|
logR , x ∈ BR2(0) \BR(0),

0, x ∈ BR2(0)c.

Multiplying (5.1) by ψη2
R and integrating by parts leads to∫

R2

|∇ (ψηR) |2 +W ′′(u) (ψηR)
2

=

∫
R2

ψ2|∇ηR|2 ≤
C

logR
, (5.2)

where we have used the fact that |ψ| ≤ |∇u| ≤ C.
Take an X ∈ ∂Ω such that ∂Ω is smooth in a neighborhood of X. By a suitable compact modification

of ψ in a small ball Bh(X), we get a new function ψ̃ and a constant δ > 0 so that∫
Bh(X)

1

2
|∇ψ̃|2 +W ′′(u)ψ̃2 ≤

[∫
Bh(X)

1

2
|∇ψ|2 +W ′′(u)ψ2

]
− δ. (5.3)

Combining (5.2) and (5.3) we get an R such that∫
R2

|∇
(
ψ̃ηR

)
|2 +W ′′(u)

(
ψ̃ηR

)2

< 0.

This is a contradiction with the stability condition of u outside BR0
(0). �

The following finiteness result on the ends of u can be proved by the same method in [77], using
Proposition 5.1 and Proposition 4.2.

Proposition 5.2. By taking a large enough R1 > 0, there are only finitely many connected components
of {u = 0} ∩BR1

(0)c.

The main idea is as follows.

(i) By choosing a generic direction e, using Proposition 4.2 we can show that for each connected
component of {u = 0} ∩BR1

(0)c, ue has fixed sign in an O(1) neighborhood of it.
(ii) If two connected components of {u = 0} ∩ BR1

(0)c are neighboring and the angle between their
limit directions are small, ue has different sign near these two connected components.

(iii) If there are too many connected components of {u = 0} ∩ BR1(0)c, we can construct as many
connected components of {ue 6= 0} ∩ BR1

(0)c as we want. On the other hand, by Proposition
5.1, the number of connected components of {ue 6= 0} ∩ BR1

(0)c is controlled by the number of
connected components of {ue 6= 0} ∩ ∂BR1

(0). This leads to a contradiction.

With this proposition in hand, we can proceed as in [40, 77] to obtain the linear energy growth bound
in Theorem 2.2. The main idea is to divide R2 \BR0

(0) into a number of cones with their angles strictly
smaller than π and {u = 0} is strictly contained in the interior of these cones, and then apply the
Hamiltonian identity of Gui [40] in these cones separately.

Once we have this linear energy growth bound, there are many ways to show that the solution has
finitely many ends in the sense of [23] and the refined asymptotic behavior of u at infinity, see for example
[23, 30, 40, 78].

6. Morse index 1 solutions: Proof of Theorem 2.3

In this section we study solutions with Morse index 1 in detail. We use nodal set information to show
that these solutions have only one critical point of saddle type.

First we establish a general estimate on the number of nodal domains for direction derivatives of u, in
terms of the Morse index bound.

Proposition 6.1. Suppose the Morse index of u equals N . For any unit vector e, the number of connected
components of {ue 6= 0} is not larger than 2N .

Proof. First recall some basic facts about the nodal set {ue = 0} (see [7]). Because ue satisfies the
linearized equation (5.1), it can be decomposed into sing(ue)∪ reg(ue), where sing(ue) consists of isolated
points and reg(ue) is a family of embedded smooth curves with their endpoints in sing(ue) or at infinity.

Assume by the contrary, the number of connected components of {ue 6= 0} is larger than 2N . Without
loss of generality, assume {ue > 0} has at least N + 1 connected components, Ωi, i = 1, · · · , N + 1. By
the strong maximum principle, ue > 0 on the other side of regular parts of ∂Ωi.
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Let ψi be the restriction of |ue| to Ωi, with zero extension outside Ωi. Hence ψi is continuous, and in
{ψi > 0}, it satisfies the linearized equation (5.1).

For any R > R0, choose the cut-off function ηR as in the previous section. Multiplying (5.1) by ψiη
2
R

and integrating by parts on Ωi leads to∫
R2

|∇ (ψiηR) |2 +W ′′(u) (ψiηR)
2

=

∫
R2

ψ2
i |∇ηR|2 ≤

C

logR
. (6.1)

Take an xi belonging to the regular part of ∂Ωi. There exists hi > 0 so that Bhi(xi) is disjoint from

Ωj , for any j 6= i. (For example, ue < 0 in Bhi(xi)\Ωi.) Let ψ̃i equal ψi outside Bhi(xi), while in Bhi(xi)
it solves (5.1). By this choice, we get a constant δi > 0 such that∫

Bhi (xi)

1

2
|∇ψ̃i|2 +W ′′(u)ψ̃2

i ≤

[∫
Bhi (xi)

1

2
|∇ψi|2 +W ′′(u)ψ2

i

]
− δi. (6.2)

Combining (6.1) and (6.2) we get an R such that∫
R2

|∇
(
ψ̃iηR

)
|2 +W ′′(u)

(
ψ̃iηR

)2

< 0, ∀i = 1, · · · , N + 1. (6.3)

Note that ψ̃iηR ∈ H1
0 (BR) are continuous functions satisfying

ψ̃iηRψ̃jηR ≡ 0, ∀1 ≤ i 6= j ≤ N + 1.

Hence they form an orthogonal basis of an (N + 1)-dimensional subspaces of H1
0 (BR). By (6.3), Q is

negative definite on this subspace. This is a contradiction with the Morse index bound on u. �

Remark 6.2. It seems to be more interesting to establish a relation between the number of ends and the
Morse index, as in minimal surfaces [12, 45, 65]. Recently Mantoulidis [59], by a combinatorial analysis
of the nodal domain structure of ue, showed that the number of ends is at most 2N+2.

As a corollary we get

Corollary 6.3. Given a solution u with Morse index 1, for any direction e, the nodal set {ue = 0} is a
single smooth curve. In particular, ∇ue 6= 0 on {ue = 0}.

Proof. First recall that reg(ue) are smooth embedded curves where ∇ue 6= 0, and sing(ue) = {ue =
0,∇ue = 0}. Moreover, for any X ∈ {ue = 0,∇ue = 0}, in a neighborhood of X, {ue = 0} consists of
at least 4 smooth curves emanating from X. See [7]. Hence if there is a singular point on {ue = 0}, by
Jordan curve theorem there exist at least three connected components of {ue 6= 0}, a contradiction with
Proposition 6.1. Therefore there is no singular point on {ue = 0} and they are smooth curves.

If there are two connected components of {ue = 0}, they are smooth, properly embedded curves. Hence
they are either closed or unbounded. By Jordan curve theorem, there are at least three components of
{ue 6= 0}, still a contradiction with Proposition 6.1. �

Corollary 6.4. Given a solution u with Morse index 1, any critical point of u is nondegenerate.

Proof. Suppose X is a critical point of u. For any direction e, we have ue(X) = ∇u(X) · e = 0, that is,
X ∈ {ue = 0}. By the previous corollary, ∇2u(X) · e = ∇ue(X) 6= 0. Since e is arbitrary, this means
∇2u(X) is invertible. �

Denote

P := W (u)− 1

2
|∇u|2. (6.4)

By the Modica’s inequality [61], P > 0 in R2. By the proof of Lemma 3.2, we also have

lim
|X|→+∞

P (X) = 0.

Lemma 6.5. ∇P = 0 if and only if ∇u = 0.

Proof. Since

∇P = W ′(u)∇u−∇2u · ∇u,
we see that ∇P = 0 if ∇u = 0.

On the other hand assume that ∇u(X) 6= 0. Without loss of generality, take two orthonormal basis
{e1, e2} and assume ue2(X) = |∇u(X)|, ue1(X) = 0. Note that locally {ue1/ue2 = 0} coincides with
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{ue1 = 0}, which is a smooth curve by Corollary 6.3. Since both ue1 and ue2 satisfy the linearized
equation (5.1), we infer that

div

(
u2
e2∇

ue1
ue2

)
= 0,

which implies that ∇ue1
ue2

(X) 6= 0.

By a direct calculation we get

∇P = u2
e2J∇

ue1
ue2

,

where J is the π/2-rotation in the anti-clockwise direction. Therefore ∇P (X) 6= 0. �

At a critical point of P , since ∇u = 0, we have

∇2P = W ′(u)∇2u−∇2u · ∇2u = ∆u∇2u−∇2u · ∇2u,

where · denotes matrix multiplication. Since ∇2u is invertible at this point, by a direct calculation we see
both of the eigenvalues of ∇2P equal det∇2u. Thus every critical point of P is either a strict maximal
or a strict minimal point.

Proposition 6.6. There is only one critical point of P .

Proof. Since P > 0 and P → 0 at infinity, the maxima of P is attained, which is a critical point of P .
Denote this point by X1.

Assume there exists a second critical point of P , X2. By the previous analysis, X2 is either a strict
maximal or minimal point.

Case 1. If X2 is a strict maximal point, take

Υ := {γ ∈ H1([0, 1],R2) : γ(0) = X1, γ(1) = X2}.
Define

c∗ := max
γ∈Υ

min
t∈[0,1]

P (γ(t)).

Clearly c∗ < min{u(X1), u(X2)}. Since P → 0 at infinity, by constructing a competitor curve, we see
c∗ > 0. By the Mountain Pass Theorem, c∗ is a critical value of P . Moreover, there exists a curve γ∗ ∈ Υ
and t∗ ∈ (0, 1) such that

P (γ∗(t∗)) = min
t∈[0,1]

P (γ∗(t)) = c∗

and ∇P (γ∗(t∗)) = 0. Therefore γ∗(t∗) cannot be a strict local maxima. If it is a strict local minima, by
deforming γ∗ in a small neighborhood of γ∗(t∗), we get a contradiction with the definition of c∗. This
contradiction implies that X2 cannot be a strict maximal point of P .

Case 2. If X2 is a strict local minimal point, take

Υ := {γ ∈ H1([0,+∞),R2) : γ(0) = X2, lim
t→+∞

γ(t) = +∞}.

Define

c∗ := min
γ∈Υ

max
t∈[0,+∞)

P (γ(t)).

As in the first case we get a critical point of P , which is of mountain pass type. This leads to the same
contradiction as before.

These contradictions show that X1 is the only critical point of P . �

By Lemma 6.5, u has only one critical point, too. Denote this point by X. Since this point is the
maximal point of P , det∇2u(X) < 0. Thus it is a nondegenerate saddle point of u.

Remark 6.7. Let Ψ := g−1 ◦ u be the distance type function. The Modica inequality [61] is equivalent
to the condition that |∇Ψ| < 1. The above method can be further developed to show that ∇Ψ is a
diffeomorphism from R2 to B1(0). In particular, for any r > 0,

deg

(
∇u
|∇u|

, ∂Br(X)

)
= 1 or − 1,

Compare this with [9].

Lemma 6.8. {u = u(X)} is composed by two smooth curves diffeomorphic to R, intersecting exactly at
X.
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Proof. Since X is the only critical point of u, {u = u(X)} is a smooth embedded curve outside X.
Because X is nondegenerate and of saddle type, in a small neighborhood of X this level set consists of
two smooth curves intersecting transversally at X.

Denote this connected component of {u = u(X)} by Σ. Σ does not enclose any bounded domain,
because otherwise u would have a local maximal or minimal point in this bounded domain, which is a
contradiction with Proposition 6.6. Hence we can write Σ = Σ1 ∪ Σ2, where Σ1 and Σ2 are smooth
properly embedded curves diffeomorphic to R. Moreover, Σ1 and Σ2 intersect at and only at X.

If there exists a second connected component of {u = u(X)}. Denote it by Σ̃. Similar to the above

discussion, Σ̃ is a smooth embedded curve diffeomorphic to R. Σ̃ and Σ bound a domain Ω. Without
loss of generality, assume u > u(X) in Ω.

Let

Υ := {γ ∈ H1([0, 1],R2) : γ(0) ∈ Σ, γ(1) ∈ Σ̃},
and

c∗ := min
γ∈Υ

max
t∈[0,1]

u(γ(t)).

By choosing a competitor curve, we see c∗ < 1. Hence by Lemma 3.2, c∗ is attained by a curve γ∗ ∈ Υ.

Because Σ and Σ̃ are separated,

max
t∈[0,1]

u(γ∗(t)) > u(X).

By the Mountain Pass Theorem, there exists t∗ ∈ (0, 1) such that u(γ∗(t∗)) = c∗ and γ∗(t∗) is a critical
point of u. This is a contradiction with Proposition 6.6. Therefore {u = u(X)} = Σ. �

Combining this lemma with Theorem 2.2, we see there are exactly four ends of u. This completes the
proof of Theorem 2.3.

Part 2. Second order estimate on interfaces

In this part we study second order regularity of clustering interfaces and prove Theorem 2.6 and
Theorem 2.7. Recall that uε is a sequence of solutions to (2.3) satisfying (H1)− (H3) in Section 2.2.

7. The case of unbounded curvatures

By standard elliptic regularity theory, uε ∈ C4
loc(C2). Concerning the regularity of fα,ε, we first prove

that different components are at least O(ε) apart.

Lemma 7.1. For any α ∈ {1, · · · , Q} and xε ∈ Γα,ε ∩ C3/2, as ε→ 0, ũε(x) := uε(xε + εx) converges to

a one dimensional solution in C2
loc(Rn). In particular, for any α ∈ {1, · · · , Q},

fα+1,ε − fα,ε
ε

→ +∞ uniformly in Bn−1
3/2 . (7.1)

Proof. In Bε−1/2, ũε(x) satisfies the Allen-Cahn equation (2.1). By standard elliptic regularity theory,

ũε(x) is uniformly bounded in C2,θ
loc (Rn). Using Arzela-Ascoli theorem, as ε → 0, it converges to a limit

function u∞ in C2
loc(Rn). For each β ∈ {1, · · · , Q}, either (fβ,ε(x

′
∗ + εx′)− fα,ε(x′∗)) /ε converges to a

limit function fβ,∞ in Cloc(Rn−1) or it converges to ±∞ uniformly on any compact set of Rn−1.
Assume tε → t∞. Then {u∞ = t∞} consists of Q′ ≤ Q connected components, Γα,∞, 1 ≤ α ≤ Q′.

Each Γα,∞ is represented by the graph {xn := fα,∞(x′)}. In Rn−1, |∇fα,∞| ≤ C for a universal constant
C and f1,∞ ≤ · · · ≤ fQ′,∞.

By applying the sliding method in [6], u∞(x) = g(x · e) for some unit vector e. In particular, Q′ = 1
and for any β 6= α, (fβ,ε(x

′
∗ + εx′)− fα,ε(x′∗)) /ε goes to ±∞ uniformly on any compact set of Rn−1. �

A consequence of this lemma is

Corollary 7.2. Given a constant b ∈ (0, 1),

(i) there exists a constant c(b) > 0 depending only on b such that

∂uε
∂xn

>
c(b)

ε
, in {|uε| < 1− b} ∩ C3/2;

(ii) for any t ∈ [−1 + b, 1− b] and all ε small, {uε = t} is composed by Q Lipschitz graphs

{xn = f tα,ε(x
′)}, α = 1, · · · , Q.



FINITE MORSE INDEX 13

By the implicit function theorem, fα,ε belongs to C2,θ
loc (Bn−1

2 ), although we do not have any uniform

bound on their C2,θ norm but only a uniform Lipschitz bound.

Now

νε(x) :=
∇uε(x)

|∇uε(x)|
is well defined and smooth in {|uε| ≤ 1− b}. Recall that B(uε)(x) = ∇νε(x). We have

|B(uε)(x)|2 = |Aε(x)|2 + |∇T log |∇uε(x)||2,

where Aε(x) is the second fundamental form of the level set {uε = uε(x)} and ∇T denotes the tangential
derivative along the level set {uε = uε(x)}.

Assume as ε→ 0,

sup
C1∩{|uε|≤1−b}

|B(uε)(x)| → +∞.

Let xε ∈ C1 ∩ {|uε| ≤ 1− b} attain the following maxima (we denote x = (x′, xn))

max
C3/2∩{|uε|≤1−b}

(
3

2
− |x′|

)
|B(uε)(x)|. (7.2)

Denote

Lε := |B(uε)(xε)|, rε :=

(
3

2
− |x′ε|

)
/2. (7.3)

Then by definition

Lεrε ≥
1

2
sup

C1∩{|uε|≤1−b}
|B(uε)(x)| → +∞. (7.4)

In particular, Lε → +∞.
By the choice of rε at (7.3), we have (here Crε(x′ε) := Bn−1

rε (x′ε)× (−1, 1))

max
x∈Crε (x′ε)∩{|uε|≤1−b}

|B(uε)(x)| ≤ 2Lε. (7.5)

Let ε := Lεε and define uε(x) := uε(xε +L−1
ε x). Then uε satisfies (2.3) with parameter ε in BLεrε(0).

For any t ∈ [−1 + b, 1− b], the level set {uε = t} consists of Q Lipschitz graphs{
xn = f tβ,ε(x

′) := Lε
[
f tβ,ε(x

′
ε + L−1

ε x′)− f tα,ε(x′ε)
]}
,

where α is chosen so that xε lies in the connected component of {|uε| ≤ 1− b} containing Γα,ε.
By (7.5), we also have

|B(uε)| ≤ 2, for x ∈ C1 ∩ {|uε| ≤ 1− b}.
Without loss of generality, by abusing notations, we will assume in the following

(H4) There exist two constants b ∈ (0, 1) and C > 0 independent of ε such that |B(uε)| ≤ C for any
x ∈ C2 ∩ {|uε| ≤ 1− b}.

8. Fermi coordinates

8.1. Definition. For simplicity of presentation, we now work in the stretched version and do not write
the dependence on ε explicitly.

By denoting R = ε−1, u(x) = uε(εx) satisfies the Allen-Cahn equation (2.1) in C2R := Bn−1
2R ×(−R,R).

Its nodal set {u = 0} consists of Q connected components, Γα, 1 ≤ α ≤ Q, which is represented by
the graph {xn := fα(x′)}. In Bn−1

2R , there is a constant C independent of ε such that

|∇fα| ≤ C, |∇2fα| ≤ Cε. (8.1)

By (H2), −R/2 < f1 < · · · < fQ < R/2.
The second fundamental form of Γα with respect to the parametrization y 7→ (y, fα(y)) is given by

Aij(y, 0) =
1√

1 + |∇fα(y)|2
∂

∂yi

[
1√

1 + |∇fα(y)|2
∂fα
∂yj

(y)

]
.

The Fermi coordinate is defined by (y, z) 7→ x as x = (y, fα(y)) + zNα(y), where

Nα(y) =
(−∇′fα(x′), 1)√
1 + |∇′fα(x′)|2

.
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Note that here z is nothing else but the signed distance to Γα which is positive above Γα. By (8.1), there
exists a constant δ ∈ (0, 1/2) independent of ε such that, the Fermi coordinate is well defined and C4 in
the open set {|y| < 3R/2, |z| < δR}.

Define the vector field

Xi :=
∂

∂yi
+ z

∂Nα
∂yi

=

n−1∑
j=1

(δij − zAij)
∂

∂yj
.

For any z ∈ (−δR, δR), let Γα,z := {dist(x,Γα) = z}. The Euclidean metric restricted to Γα,z is denoted
by gij(y, z)dy

i ⊗ dyj , where

gij(y, z) = < Xi(y, z), Xj(y, z) > (8.2)

= gij(y, 0)− 2z

n−1∑
k=1

Aik(y, 0)gjk(y, 0) + z2
n∑

k,l=1

gkl(y, 0)Aik(y, 0)Ajl(y, 0).

Here

gij(y, 0) =
1

1 + |∇fα(y)|2

[
δij +

∂fα
∂yi

(y)
∂fα
∂yj

(y)

]
. (8.3)

The second fundamental form of Γz has the form

A(y, z) = (I − zA(y, 0))
−1
A(y, 0). (8.4)

8.2. Error in z. In this subsection we collect several estimates on the error of various terms in z. Recall
that ε is the upper bound on curvatures of level sets of u, see (8.1).

By (8.1), |A(y, 0)| . ε. Thus for |z| < δR, |A(y, z)| . ε. We also have

Lemma 8.1. In Bn−1
3R/2,

|∇A(y, 0)|+ |∇2A(y, 0)| . ε. (8.5)

Proof. By Corollary 7.2, |∇u| ≥ c(b) > 0 in {|u| < 1− b}, where c(b) is a constant depending only on b.
Hence ν = ∇u/|∇u| is well defined and smooth in {|u| < 1− b}.

By direct calculation, we have

−div
(
|∇u|2∇ν

)
= |∇u|2|∇ν|2ν. (8.6)

Recall that B = ∇ν. Differentiating (8.6) gives the following Simons type equation

−div
(
|∇u|2∇B

)
= |∇u|2|B|2B + |∇u|2∇|B|2 ⊗ ν + |B|2∇|∇u|2 ⊗ ν + |∇u|2∇2 log |∇u|2 ·B. (8.7)

For any x ∈ {|u| < 1 − 2b}, there exists a constant h(b) such that B2h(b)(x) ⊂ {|u| < 1 − b}. Because

|∇u|2 has a positive lower and upper bound and it is uniformly continuous in B2h(b)(x), by standard
interior gradient estimate,

sup
Bh(b)

|∇B| . sup
B2h(b)

|B|+ sup
B2h(b)

|div
(
|∇u|2∇B

)
| . ε.

The bound on |∇2B| is obtained by bootstrapping elliptic estimates. �

By (8.4),

|A(y, z)−A(y, 0)| . |z||A(y, 0)|2 . ε2|z|. (8.8)

Similarly, by (8.2), the error of metric tensors is

|gij(y, z)− gij(y, 0)| . ε|z|, (8.9)

|gij(y, z)− gij(y, 0)| . ε|z|. (8.10)

As a consequence, the error of mean curvature is

|H(y, z)−H(y, 0)| . ε2|z|. (8.11)

By (8.1) and (8.5), for any |z| < δR,

|∇ygij(y, z)|+ |∇ygij(y, z)| . ε. (8.12)

The Laplacian operator in Fermi coordinates has the form

∆RN = ∆z −H(y, z)∂z + ∂zz,
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where

∆z =

n−1∑
i,j=1

1√
det(gij(y, z))

∂

∂yj

(√
det(gij(y, z))g

ij(y, z)
∂

∂yi

)

=

n−1∑
i,j=1

gij(y, z)
∂2

∂yi∂yj
+

n−1∑
i=1

bi(y, z)
∂

∂yi

with

bi(y, z) =
1

2

n−1∑
j=1

gij(y, z)
∂

∂yj
log det(gij(y, z)).

By (8.10) and (8.12), we get

Lemma 8.2. For any function ϕ ∈ C2(Bn−1
3R/2),

|∆zϕ(y)−∆0ϕ(y)| . ε|z|
(
|∇2ϕ(y)|+ |∇ϕ(y)|

)
. (8.13)

8.3. Comparison of distance functions. For each α, the local coordinates on Γα is fixed to be the
same one, y ∈ Bn−1

3R/2, which represents the point (y, fα(y)). The singed distance to Γα, which is positive

in the above, is denoted by dα. Given a point X, if (y, fβ(y)) is the nearest point on Γβ to X, we then
define Πβ(X) = y.

If α 6= β, we cannot expect Πα(X) = Πβ(X). However, the following estimates on their distance hold,
when Γα and Γβ are close in some sense.

Lemma 8.3. For any X ∈ Bn−1
3R/2× (−δR, δR) and α 6= β, if |dα(X)| ≤ K| log ε| and |dβ(X)| ≤ K| log ε|,

then we have
distΓβ (Πβ ◦Πα(X),Πβ(X)) ≤ C(K)ε1/2| log ε|3/2, (8.14)

|dβ (Πα(X)) + dα (Πβ(X)) | ≤ C(K)ε1/2| log ε|3/2, (8.15)

|dα(X)− dβ(X) + dβ (Πα(X)) | ≤ C(K)ε1/2| log ε|3/2, (8.16)

|dα(X)− dβ(X)− dα (Πβ(X)) | ≤ C(K)ε1/2| log ε|3/2, (8.17)

1−∇dα(X) · ∇dβ(X) ≤ C(K)ε1/2| log ε|3/2, (8.18)

Proof. We divide the proof into three steps.
Step 1. After a rotation and a translation, assume Πα(X) = 0, the tangent plane of Γα at (0, 0) is

the horizontal hyperplane and X = (0, T ). Since the curvature of Γα is of the order O(ε), Γα ∩ CδR is a
Lipschitz graph {xn = fα(x′)}. By the above choice, fα(0) = ∇fα(0) = 0.

Because |dβ(0)| ≤ K| log ε|, Γα and Γβ are disjoint and their curvature is of the order O(ε), we can
show that Γβ ∩ CδR is also a Lipschitz graph {xn = fβ(x′)}, see Lemma 3.7.

By this Lipschitz property of fα and fβ ,

|fβ(0)− fα(0)| ≤ C|dβ(0)| ≤ C (|dα(X)|+ |dβ(X)|) ≤ 2CK| log ε|.
Since fβ − fα 6= 0 and |∇2(fβ − fα)| . ε in Bn−1

δR (0), by an interpolation inequality we get

|∇fβ(0)| = |∇(fβ − fα)(0)| .
√
ε| log ε|.

Step 2. Because Γβ ∩ C2K| log ε| belongs to an O(ε| log ε|2) neighborhood of the hyperplane Pβ :=
{xn = fβ(0) +∇fβ(0) · x′},

dβ(X) = T − fβ(0) +O(
√
ε| log ε||T |) +O(ε| log ε|2) (8.19)

= T − fβ(0) +O(ε1/2| log ε|3/2).

Similarly,
dβ(Πα(X)) = fα(0)− fβ(0) +O(ε1/2| log ε|3/2). (8.20)

Interchanging the position of α, β gives

dα(Πβ(X)) = fβ(0)− fα(0) +O(ε1/2| log ε|3/2). (8.21)

Combining (8.19), (8.20) and (8.21), we obtain (8.15)-(8.17).
Step 3. In our setting, we have

1−∇dα(X) · ∇dβ(X) = 1− ∂

∂xn
dβ(0, T ).
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For any t ∈ (0, fβ(0)), let (x′(t), fβ(x′(t)) be the unique nearest point on Γβ to (0, t). By definition, we
have

x′(t) + [fβ(x′(t))− t]∇fβ(x′(t)) = 0. (8.22)

Differentiating this identity in t leads to[
1 + |∇fβ(x′(t))|2

] d
dt
x′(t) + [fβ(x′(t))− t]∇2fβ(x′(t)) · d

dt
x′(t) = ∇fβ(x′(t)).

As in Step 1, we still have |∇fβ(x′(t))| ≤ C(K)ε1/2| log ε|1/2. Together with the fact that |∇2fβ | . ε, we
get ∣∣∣ d

dt
x′(t)

∣∣∣ ≤ C(K)ε1/2| log ε|1/2. (8.23)

Integrating this in t on [0, T ] gives (8.14).
Note that (8.22) also implies that

|x′(t)| ≤ C(K)ε1/2| log ε|3/2. (8.24)

Because

dβ(0, t) =

√
|x′(t)|2 + (fβ(x′(t))− t)2

,

we have

d

dt
dβ(0, t) = − fβ(x′(t))− t√

|x′(t)|2 + (fβ(x′(t))− t)2
+
x′(t) + (fβ(x′(t))− t)∇fβ(x′(t))√

|x′(t)|2 + (fβ(x′(t))− t)2
· d
dt
dβ(0, t)

= −1 +O (|x′(t)|) +O

(∣∣∣ d
dt
x′(t)

∣∣∣)
= −1 +O

(
ε1/2| log ε|3/2

)
,

which gives (8.18). �

8.4. Some notations. In the remaining part of this paper the following notations will be employed.

• Given a point on Γα with local coordinates (y, 0) in the Fermi coordinates, denote

Dα(y) := min{|dα−1(y, 0)|, |dα+1(y, 0)|}.

• For λ ≥ 0, let

Mλ
α := {|dα| < |dα−1|+ λ and |dα| < |dα+1|+ λ} .

In this Part II we take the convention that d0 = −δR and dQ+1 = δR.
• In the Fermi coordinates with respect to Γα, there exist two smooth functions ρ±α (y) such that

M0
α = {(y, z) : ρ−α (y) < z < ρ+

α (y)}.

• For any r > 0, let

M0
α(r) := {(y, z) ∈M0

α, |y| < r}.
• In this Part II we denote

D(r) = ∪Qα=1M0
α(r).

• The covariant derivative on Γz with respect to the induced metric is denoted by ∇z.

9. The approximate solution

9.1. Optimal approximation. Fix a function ζ ∈ C∞0 (−2, 2) with ζ ≡ 1 in (−1, 1), |ζ ′| + |ζ ′′| ≤ 16.
Let

ḡ(x) = ζ(3| log ε|x)g(x) + (1− ζ(3| log ε|x)) sgn(x), x ∈ (−∞,+∞).

Then ḡ is an approximate solution to the one dimensional Allen-Cahn equation, that is,

ḡ′′ = W ′ (ḡ) + ξ̄, (9.1)

where spt(ξ̄) ∈ {3| log ε| < |x| < 6| log ε|}, and |ξ̄|+ |ξ̄′|+ |ξ̄′′| . ε3.
We also have (for the definition of σ0 see Appendix A)∫ +∞

−∞
ḡ′(t)2dt = σ0 +O(ε3). (9.2)
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Without loss of generality assume u < 0 below Γ1. Given a tuple of functions h := (h1(y), · · · , hQ(y)),
for each α, in the Fermi coordinates with respect to Γα, let

gα(y, z) := ḡ
(
(−1)α−1(z − hα(y))

)
= ḡ

(
(−1)α−1 (dα(y, z)− hα(y))

)
.

Then we define

g(y, z; h) :=
∑
α

gα +
(−1)Q + 1

2
.

For simplicity of notation, denote

g′α = ḡ′
(
(−1)α−1(z − hα(y))

)
, g′′α = ḡ′′

(
(−1)α−1(z − hα(y))

)
, · · · .

Proposition 9.1. There exists h(y) = (hα(y)) with |hα| � 1 for each α, such that for any α and
y ∈ Bn−1

R , ∫ δR

−δR
[u(y, z)− g(y, z;h)] ḡ′

(
(−1)α−1(z − hα(y))

)
dz = 0, (9.3)

where (y, z) denotes the Fermi coordinates with respect to Γα.

Proof. Denote

F (h1, · · · , hQ) :=

(∫ δR

−δR
[u(y, z)− g(y, z; h)] ḡ′

(
(−1)α−1(z − hα(y))

)
dz

)
,

which is viewed as a map from the Banach space X := C0(Bn−1
R (0))Q to itself.

Clearly F is a C1 map. Furthermore,

(DF (h)ξ)α = (−1)αξα(y)

∫ δR

−δR

[
g′α (y, z)

2 − (u(y, z)− g(y, z; h)) g′′α (y, z)
]
dz

+
∑
β 6=α

(−1)βξβ(Πβ(y, z))

∫ δR

−δR
g′α (y, z) g′β (y, z)∇dβ (y, z) · ∇dα (y, z) dz.

By Lemma 7.1, there exists a δ > 0 such that for any ‖h‖X < δ,∫ δR

−δR

[
g′α (y, z)

2 − (u(y, z)− g(y, z; h)) g′′α (y, z)
]
dz ≥ σ0

2
,

∣∣∣ ∫ δR

−δR
g′α (y, z) g′β (y, z)∇dβ (y, z) · ∇dα (y, z) dz

∣∣∣� 1.

Thus in this ball DF (h) is diagonal dominated and invertible with ‖DF (h)−1‖X 7→X ≤ C. By Lemma
7.1, for all ε small enough, ‖F (0)‖X << 1. The existence of h then follows from the inverse function
theorem. �

Remark 9.2. The proof shows that ‖h‖L∞(Bn−1
R ) = o(1). By differentiating (9.3), we can show that

‖h‖C3(Bn−1
R ) = o(1).

Denote g∗(y, z) := g(y, z; h(y)), where h is as in the previous lemma. Let

φ := u− g∗.
In the Fermi coordinates with respect to Γα,

∆gα = g′′α − (−1)α−1g′αH
α − (−1)α−1g′α∆zhα + g′′α|∇zhα|2

= W ′(gα) + ξα + (−1)αg′αRα,1 + g′′αRα,2,
where

ξα(y, z) = ξ̄
(
(−1)α−1(z − hα(y))

)
,

Rα,1(y, z) := Hα(y, z) + ∆zhα(y) and Rα,2(y, z) := |∇zhα(y)|2.
In the Fermi coordinates with respect to Γα, the equation for φ reads as

∆zφ−Hα(y, z)∂zφ+ ∂zzφ

= W ′(g∗ + φ)−
Q∑
β=1

W ′(gβ)− (−1)αg′α [Hα(y, z) + ∆zhα(y)]− g′′α|∇zhα|2 (9.4)
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−
∑
β 6=α

[
(−1)βg′βRβ,1 (Πβ(y, z), dβ(y, z)) + g′′βRβ,2 (Πβ(y, z), dβ(y, z))

]
−
∑
β

ξβ

= W ′′(g∗)φ+R(φ) +

W ′(g∗)− Q∑
β=1

W ′(gβ)

− (−1)αg′α [Hα(y, z) + ∆zhα(y)]− g′′α|∇zhα|2

−
∑
β 6=α

[
(−1)βg′βRβ,1 (Πβ(y, z), dβ(y, z)) + g′′βRβ,2 (Πβ(y, z), dβ(y, z))

]
−
∑
β

ξβ .

In the above we have denoted

R(φ) := W ′(g∗ + φ)−W ′(g∗)−W ′′(g∗)φ = O(φ2).

9.2. Interaction terms. In this subsection we establish several estimates on the interaction term be-
tween different components, W ′(g∗)−

∑Q
β=1W

′(gβ).

Lemma 9.3. In M4
α,

W ′(g∗)−
∑
β

W ′(gβ) = [W ′′(gα)− 2] [gα−1 − (−1)α] + [W ′′(gα)− 2] [gα+1 + (−1)α] (9.5)

+ O
(
e−2
√

2dα−1 + e2
√

2dα+1

)
+O

(
e−
√

2dα−2−
√

2|dα| + e
√

2dα+2−
√

2|dα|
)
.

Proof. In M4
α,

g∗ = gα +
∑
β<α

[
gβ − (−1)β−1

]
+
∑
β>α

[
gβ + (−1)β−1

]
.

By Lemma 7.1, gβ − (−1)β−1 (for β < α) and gβ + (−1)β−1 (for β > α) are all small quantities.
By the Taylor expansion,

W ′(g∗) = W ′ (gα) +W ′′ (gα)

∑
β<α

(
gβ − (−1)β−1

)
+
∑
β>α

(
gβ + (−1)β−1

)
+
∑
β<α

O
(
|gβ − (−1)β−1|2

)
+
∑
β>α

O
(
|gβ + (−1)β−1|2

)
.

On the other hand, for β < α,

W ′(gβ) = 2
(
gβ − (−1)β−1

)
+O

(
|gβ − (−1)β−1|2

)
,

and for β > α,

W ′(gβ) = 2
(
gβ + (−1)β−1

)
+O

(
|gβ + (−1)β−1|2

)
.

Combining these expansions we get

W ′(g∗)−
Q∑
β=1

W ′(gβ) =
∑
β<α

[W ′′(gα)− 2]
(
gβ − (−1)β−1

)
+
∑
β<α

O
(
|gβ − (−1)β−1|2

)
+

∑
β>α

[W ′′(gα)− 2]
(
gβ + (−1)β−1

)
+
∑
β>α

O
(
|gβ + (−1)β−1|2

)
.

Using the fact that

|W ′′(gα)−W ′′(1)| . 1− g2
α . e

−
√

2|dα|

and similar estimates on gβ , we get the main order terms and estimates on remainder terms in (9.5) . �

The following upper bound on the interaction term will be used a lot in the below.

Lemma 9.4. In M4
α,

∣∣W ′(g∗(y, z))− Q∑
β=1

W ′(gβ(y, z))
∣∣ . e−√2Dα(y) + ε2.

Proof. We need to estimate those terms in the right hand side of (9.5). To simplify notations, assume
(−1)α−1 = 1.
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• There exists a constant C depending only on W such that∣∣∣ [W ′′(gα)− 2] (gα−1 + 1)
∣∣∣ . e−√2dα−1−

√
2|dα|.

Note that dα−1 > 0 in M4
α. If one of dα−1 and |dα| is larger than

√
2| log ε|, we have

e−
√

2dα−1−
√

2|dα| ≤ ε2,

and we are done.
If both dα−1 and |dα| are not larger than

√
2| log ε|, by Lemma 8.3,

dα−1(y, z) = dα−1(y, 0) + dα(y, z) +O(ε1/3).

Therefore

e−
√

2dα−1−
√

2|dα| ≤ 2e−
√

2dα−1(y,0).

• In the same way we get∣∣∣ [W ′′(gα)−W ′′(1)] (gα+1 − 1)
∣∣∣ . e√2dα+1−

√
2|dα| . ε2 + e

√
2dα+1(y,0).

• If |dα+1(y, z)| ≥ | log ε|, then e−2
√

2dα+1 ≤ ε2. If |dα+1(y, z)| ≤ | log ε|, we also have |z| =
|dα(y, z)| ≤ | log ε|+ 4. Hence by Lemma 8.3,

dα+1(y, z) = dα+1(y, 0) + dα(y, z) +O(ε1/3).

Because |dα(y, z)| < |dα+1(y, z)|+ 4, we get

dα+1(y, z) ≤ 1

2
dα+1(y, 0) + 4.

Therefore

e2
√

2dα+1(y,z) ≤ e4e
√

2dα+1(y,0).

• Similarly

e−2
√

2dα−1(y,z) ≤ ε2 + e4e−
√

2dα−1(y,0).

• As in the first two cases,

e−
√

2dα−2−
√

2|dα| + e
√

2dα+2−
√

2|dα| . ε2 + e−
√

2dα−1(y,0) + e
√

2dα+1(y,0).

Putting all of these together we finish the proof. �

The Hölder norm of interaction terms can also be estimated in the following way.

Lemma 9.5. For any (y, z) ∈M3
α,∥∥∥W ′(g∗)− Q∑

β=1

(−1)β−1W ′(gβ)
∥∥∥
Cθ(B1(y,z))

. sup
B1(y)

e−
√

2Dα + ε2.

Proof. We only need to notice that, for any (y, z) ∈M3
α and any β ∈ {1, · · · , Q},

‖g2
β − 1‖Cθ(B1(y,z)) . ‖g2

β − 1‖Lip(B1(y,z)) . e
−
√

2|dβ(y,z)|. (9.6)

Then we can proceed as in the previous lemma to conclude the proof. �

9.3. Controls on h using φ. The choice of optimal approximation in Subsection 9.1 has the advantage
that h is controlled by φ. This will allow us to iterate various elliptic estimates in the below.

Lemma 9.6. For each α,

|hα(y)| . |φ(y, 0)|+ e−
√

2Dα(y),

|∇hα(y)| . |∇φ(y, 0)|+ o
(
e−
√

2Dα(y)
)
,

|∇2hα(y)| . |∇2φ(y, 0)|+ o
(
e−
√

2Dα(y)
)
,

‖∇2hα‖Cθ(B1(y)) . ‖∇2φ‖Cθ(B1(y,0)) + sup
B1(y)

e−
√

2Dα .
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Proof. Fix an α ∈ {1, · · · , Q}. In the Fermi coordinates with respect to Γα, because u(y, 0) = 0,

φ(y, 0) = −ḡ ((−1)αhα(y)) −
∑
β<α

[
ḡ
(
(−1)β−1 (dβ(y, 0)− hβ(Πβ(y, 0)))

)
− (−1)β−1

]
−

∑
β>α

[
ḡ
(
(−1)β−1 (dβ(y, 0)− hβ(Πβ(y, 0)))

)
+ (−1)β−1

]
. (9.7)

Note that for β 6= α, |hβ(Πβ(y, 0))| � 1. Thus

|hα(y)| . |φ(y, 0)|+
∑
β 6=α

e−
√

2dβ(y,0) . |φ(y, 0)|+ e−
√

2Dα(y). (9.8)

Differentiating (9.7), we get

∇0φ(y, 0) = (−1)α+1ḡ′ ((−1)αhα(y))∇0hα(y) +
∑
β 6=α

(−1)βg′β(y, 0)∇0 [dβ(y, 0)− hβ(Πβ(y, 0))] ,

and

∇2
0φ(y, 0) = (−1)α+1ḡ′ ((−1)αhα(y))∇2

0hα(y)− ḡ′′ ((−1)αhα(y))∇0hα(y)⊗∇0hα(y)

+
∑
β 6=α

(−1)βg′β(y, 0)∇2
0 [dβ(y, 0)− hβ(Πβ(y, 0))]

−
∑
β 6=α

g′′β(y, 0)∇0 [dβ(y, 0)− hβ(Πβ(y, 0))]⊗∇0 [dβ(y, 0)− hβ(Πβ(y, 0))] .

Note that |∇hβ | = o(1) and by Lemma 8.3, if ḡ′(dβ(y, 0)− hβ(Πβ(y, 0)) 6= 0,

|∇0dβ | =
√

1−∇dβ · ∇dα = O(ε1/6).

Thus

|∇0hα(y)| . |∇0φ(y, 0)|+O(ε1/6 + |∇hβ(Πβ(y, 0))|)O
(
e
√

2dα+1(y,0) + e−
√

2dα−1(y,0)
)

. |∇0φ(y, 0)|+ o
(
e−
√

2Dα(y)
)
. (9.9)

Similarly, because |∇2hβ | = o(1) and recalling that ∇2dβ is the second fundamental form of Γβ,z,

|∇2
0dβ | ≤ |∇2dβ | = O(ε),

we have

|∇2
0hα(y)| . |∇2

0φ(y, 0)|+ |∇0hα(y)|2 + e−
√

2Dα(y)

ε 1
3 +

∑
β

sup
B
ε1/3

(
|∇2hβ |+ |∇hβ |

)
. |∇2

0φ(y, 0)|+ |∇0hα(y)|2 + o
(
e−
√

2Dα(y)
)
. (9.10)

Finally, by the above formulation and (9.6), we get a control on ‖∇2hα‖Cθ(B1(y)) using ‖∇2φ‖Cθ(B1(y,0))

and supB1(y) e
−
√

2Dα . �

10. A Toda system

In the Fermi coordinates with respect to Γα, multiplying (9.4) by g′α and integrating in z leads to∫ δR

−δR
g′α∆zφ−Hα(y, z)g′α∂zφ+ g′α∂zzφ

=

∫ δR

−δR

W ′(g∗ + φ)−
∑
β

W ′(gβ)

 g′α − (−1)α
∫ δR

−δR
[Hα(y, z) + ∆zhα(y)] g′α(z)2 (10.1)

−
∫ δR

−δR
g′′αg
′
α|∇zhα|2 −

∑
β 6=α

(−1)β
∫ δR

−δR
g′αg
′
βRβ,1 −

∑
β 6=α

∫ δR

−δR
g′′βg
′
αRβ,2 −

∑
β

∫ δR

−δR
ξβg
′
α.

By the calculation in Appendix B, we obtain

Hα(y, 0) + ∆0hα(y) =
4

σ0

[
A2

(−1)αe
−
√

2dα−1(y,0) −A2
(−1)α−1e

√
2dα+1(y,0)

]
+O(ε2)
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+ O
(
|hα(y)|+ |hα−1(Πα−1(y, z))|+ ε1/3

)
e−
√

2dα−1(y,0)

+ O
(
|hα(y)|+ |hα+1(Πα+1(y, z))|+ ε1/3

)
e
√

2dα+1(y,0) (10.2)

+ O(e−
3
√

2
2 dα−1(y,0)) +O(e

3
√

2
2 dα+1(y,0)) +O(e−

√
2dα−2(y,0)) +O(e

√
2dα+2(y,0))

+
∑
β 6=α

|dβ(y, 0)|e−
√

2|dβ(y,0)|

[
sup

B
ε1/3

(y)

|Hβ + ∆β
0hβ |+ sup

B
ε1/3

(y)

|∇hβ |2
]

+ sup
(−6| log ε|,6| log ε|)

(
|∇2

yφ(y, z)|2 + |∇yφ(y, z)|2 + |φ(y, z)|2
)
.

By this equation we get an upper bound on Hα(y, 0) + ∆0hα(y).

Lemma 10.1.

sup
Br

∣∣Hα(y, 0) + ∆0hα(y)
∣∣ . sup

Br+1

e−
√

2Dα + ε2 + ‖φ‖2C2,θ(Dr+1) +
∑
β 6=α

sup
Br+1

[
|Hβ + ∆βhβ |2 + e−2

√
2Dβ
]
.

(10.3)

Proof. In the right hand side of (10.2), those terms in the first four lines are bounded by O
(
e−
√

2Dα + ε2
)

.

If dβ(y, 0) > 2| log ε|, the terms in the fifth line is controlled by O(ε2). If dβ(y, 0) < 2| log ε|, using the
Cauchy inequality, they are controlled by

|dβ(y, 0)|2e−2
√

2|dβ(y,0)| + sup
B
ε1/3

(y)

|Hβ + ∆β
0hβ |2 + sup

B
ε1/3

(y)

|∇hβ |4

. e−
√

2|dβ(y,0)| + sup
B
ε1/3

(y)

|Hβ + ∆β
0hβ |2 + sup

M0
β(r+1)

|∇φ|4,

where we have used the fact that |dβ(y, 0)| � 1, Lemma 9.6 and the fact that Bβ
ε1/3

(y, 0) ⊂ M0
β(r + 1)

(by Lemma 8.3).
Finally, the term in the last line of (10.2) is controlled by ‖φ‖2C2,θ(Dr+1). �

11. C1,θ estimate on φ

In this section we prove the following C1,θ estimate on φ.

Proposition 11.1. There exist constants L > 0, σ(L)� 1 and C(L) such that

‖φ‖C1,θ(Dα(r)) ≤ σ(L)‖φ‖C2,θ(D(r+4L) + C(L)ε2 + C(L) sup
Br+4L

e−
√

2Dα(y) (11.1)

+ σ(L)

Q∑
β=1

sup
Br+4L(y)

∣∣Hβ + ∆β
0hβ

∣∣+ C(L)
∑
β 6=α

sup
Br+4L

e−4
√

2Dβ .

To prove this proposition, fix a large constant L > 0 and define

N 1
α(r) := {−L < dα < L} ∩M0

α(r), and N 2
α(r) := {dα > L/2} ∩M0

α(r).

We will estimate the C1,θ norm of φ in N 1
α(r) and N 2

α(r) separately.

11.1. C1,θ estimate in N 2
α(r). In N 2

α(r), by using (8.8)-(8.13) and Lemma 9.4, the equation for φ can
be written in the following way.

Lemma 11.2. In N 2
α(r),

∆zφ−Hα(y, z)∂zφ+ ∂zzφ =
(
2 +O(e−cL)

)
φ+ E2

α,

where

|E2
α(y, z)| . ε2 + e−

√
2Dα(y) + |∇2

0hα(y)|2 + |∇0hα(y)|2 + e−cL
∣∣Hα(y, 0) + ∆0hα(y)

∣∣
+

∑
β 6=α

sup
B
ε1/3

(y)

[
|Hβ + ∆β

0hβ |2 + |∇hβ |4 + |∇2hβ |4
]
.
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By standard interior elliptic estimate, we deduce that, for any r > 1,

‖φ‖C1,θ(N 2
α(r))

. e−cL‖φ‖L∞(ML
α(r+L)∩{|y|=r+L}) + e−cL‖φ‖L∞({|y|<r+L,z=L/4}) + e−cL‖φ‖L∞({|y|<r+L,z=ρ+α (y)+L})

+ sup
Br+L

e−
√

2Dα + ε2 + sup
Br+L

(
|∇2

0hα(ỹ)|2 + |∇0hα(ỹ)|2
)

+ e−cL sup
Br+L

∣∣Hα + ∆0hα
∣∣+ sup

Br+L

[
|Hβ + ∆β

0hβ |2 + |∇hβ |4 + |∇2hβ |4
]
.

Substituting (10.3) into this estimate, after simplification we obtain

‖φ‖C1,θ(N 2
α(r)) ≤ σ(L)‖φ‖C2,θ(D(r+L)) + C(L) sup

Br+L(y)

e−
√

2Dα + C(L)ε2 (11.2)

+ σ(L)

Q∑
β=1

sup
Br+L(y)

∣∣Hβ + ∆β
0hβ

∣∣+ C(L)
∑
β 6=α

sup
Br+L

e−4
√

2Dβ .

Here σ(L) . e−cL + maxβ ‖Hβ + ∆β
0hβ‖L∞ � 1.

11.2. C1,θ estimate in N 1
α(r). In N 1

α(r), similar to Lemma 11.2, the equation for φ can be written in
the following way.

Lemma 11.3. In N 1
α(r),

∆zφ−Hα(y, z)∂zφ+ ∂zzφ = W ′′(gα)φ+O(φ2)− (−1)αg′α [Hα(y, 0) + ∆0hα(y)] + E1
α,

where

|E1
α(y, z)| . e−

√
2Dα(y) + ε2 +

(
|∇2hα(y)|2 + |∇hα(y)|2

)
e−
√

2|z|.

Take a function η ∈ C∞0 (−2L, 2L) satisfying η ≡ 1 in (−L,L), |η′| . L−1 and |η′′| . L−2. Let

φα(y, z) := φ(y, z)η(z) and φ̃α(y, z) := φα(y, z)− cα(y)g′α(y, z), where

cα(y) =

∫ δR

−δR
φα(y, z)g′α(y, z)dz (11.3)

=

∫ δR

−δR
φ(y, z) (η(z)− 1) g′α(y, z)dz. ( by (9.3))

Therefore we still have the orthogonal condition∫ δR

−δR
φ̃α(y, z)g′α(y, z)dz = 0, ∀ y ∈ Bn−1

R . (11.4)

Lemma 11.4 (Estimates on cα). There exists a constant σ > 0 small such that

|cα(y)| . e−σL sup
L<|z|<6| log ε|

e−(
√

2−σ)|z||φ(y, z)|, (11.5)

|∇cα(y)| . e−σL sup
L<|z|<6| log ε|

e−(
√

2−σ)|z| (|φ(y, z)|+ |∇yφ(y, z)|) , (11.6)

|∇2cα(y)| . e−σL sup
L<|z|<6| log ε|

e−(
√

2−σ)|z| (|φ(y, z)|+ |∇yφ(y, z)|+ |∇2
yφ(y, z)|

)
. (11.7)

Proof. By (11.3) and the definition of η,

|cα(y)| .

(
sup

L<|z|<6| log ε|
e−(
√

2−σ)|z||φ(y, z)|

)∫ +∞

L

e−σzdz

. e−σL sup
L<|z|<6| log ε|

e−(
√

2−σ)|z||φ(y, z)|.

Differentiating (11.3) gives

∇cα(y) =

∫ δR

−δR
∇yφ(y, z) (η(z)− 1) g′α(y, z)dz + (−1)α∇hα(y)

∫ δR

−δR
φ(y, z) (η(z)− 1) g′′α(y, z)dz.

(11.6) follows as above. The derivation of (11.7) is similar. �
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In the Fermi coordinates with respect to Γα, the equation satisfied by φ̃α reads as

∆zφ̃α −Hα(y, z)∂zφ̃α + ∂zzφ̃α = W ′′(gα)φ̃α + o(φ̃α) + c̃α(y)g′α + Ẽα, (11.8)

where
c̃α(y) = (−1)α−1 [Hα(y, 0) + ∆0hα(y)]−∆0cα(y),

while

|Ẽα(y, z)| . ε2η + e−
√

2Dα(y)η + e−
√

2|z| (|∇2hα(y)|2 + |∇hα(y)|2
)
η

+ |φ(y, z)||cα(y)|g′α + g′α
∣∣1− η∣∣∣∣Hα(y, 0) + ∆0hα(y)

∣∣
+ |φ| [ε|η′|+ |η′′|] + |φz||η′|

+ εL
[
|cα(y)|+ |∇cα(y)|+ |∇2cα(y)|

]
e−
√

2|z|

+ |cα(y)||ξα|+ |cα(y)|
[
|∇2hα(y)|+ |∇hα(y)|

]
e−
√

2|z|.

Combining this expression with Lemma 11.2 and Lemma 11.4, we obtain

Lemma 11.5 (L2 estimates on Ẽα). For any y,

‖Ẽα(y, ·)‖2L2(−δR,δR) . Lε4 + Le−2
√

2Dα(y) + |∇2hα(y)|4 + |∇hα(y)|4

+ e−2
√

2L
∣∣Hα(y, 0) + ∆0hα(y)

∣∣2 +
1

L
sup

L<|z|<2L

(
|φ(y, z)|2 + |φz(y, z)|2

)
+ e−2σL sup

L<|z|<6| log ε|
e−2(

√
2−σ)|z| (|φ(y, z)|+ |∇yφ(y, z)|+ |∇2

yφ(y, z)|
)2
.

Next we prove an L2 estimate on φ̃.

Lemma 11.6. For any r > 0,

sup
ỹ∈Br

‖φ̃α(ỹ, ·)‖2L2(−δR,δR) . e−cL sup
ỹ∈Br+L

‖φ̃α(ỹ, ·)‖2L2(−δR,δR) + Lε4 + L sup
ỹ∈Br+L

e−2
√

2Dα

+ e−2
√

2L sup
ỹ∈Br+L

∣∣Hα + ∆0hα
∣∣2 (11.9)

+
1

L
sup

Br+L×{L<|z|<2L}

(
|φ|2 + |∇φ|2

)
+ L5 sup

Br+L×{|z|<2L}

(
|∇2

yφ|4 + |∇yφ|4
)

+ e−2σL sup
Br+L×{L<|z|<6| log ε|}

e−2(
√

2−σ)|z| (|φ|+ |∇yφ|+ |∇2
yφ|
)2
.

Proof. Multiplying (11.8) by φ̃α and integrating in z, we obtain∫ +∞

−∞
φ̃α∆zφ̃α +Hα(y, z)∂zφ̃αφ̃α + ∂zzφ̃αφ̃α =

∫ +∞

−∞
W ′′(gα)φ̃2

α + o(φ̃2
α) + Ẽαφ̃α.

Integrating by parts and applying Theorem A.2 leads to∫ +∞

−∞
φ̃α∆zφ̃α =

∫ +∞

−∞
|∂zφ̃α|2 +W ′′(gα)φ̃2

α + o(φ̃2
α) + Ẽαφ̃α +

1

2

∂Hα

∂z
φ̃2
α

≥ 3µ

4

∫ +∞

−∞
φ̃2
α − C

∫ +∞

−∞
Ẽ2
α.

On the other hand, by direct differentiation we also have

1

2
∆0

∫ +∞

−∞
φ̃2
α =

∫ +∞

−∞
φ̃α(y, z)∆0φ̃α(y, z) + |∇0φ̃α(y, z)|2dz

≥
∫ +∞

−∞

(
∆0φ̃α −∆zφ̃α

)
φ̃α +

3µ

4

∫ +∞

−∞
φ̃2
α − C

∫ +∞

−∞
ẽ2
α

≥ µ

2

∫ +∞

−∞
φ̃2
α − C

∫ +∞

−∞
Ẽ2
α − Cε2

∫ +∞

−∞
z2
(
|∇2

yφ̃α(y, z)|2 + |∇yφ̃α(y, z)|2
)
dz.

This inequality implies that

sup
ỹ∈Br

‖φ̃α(ỹ, ·)‖2L2(−δR,δR) . e−cL sup
ỹ∈Br+L

‖φ̃α(ỹ, ·)‖2L2(−δR,δR) + sup
ỹ∈Br+L

‖Ẽα(ỹ, ·)‖2L2(−δR,δR)
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+ ε2 sup
Br+L(y)

∫ +∞

−∞
z2
(
|∇2φ̃α|2 + |∇φ̃α|2

)
dz. (11.10)

Note that

|∇2
yφ̃α(y, z)|+ |∇yφ̃α(y, z)| . |∇2

yφ(y, z)|η(z) + |∇yφ(y, z)|η(z) +
(
|cα(y)|+ |∇cα(y)|+ |∇2cα(y)|

)
e−
√

2|z|

. |∇2
yφ(y, z)|η(z) + |∇yφ(y, z)|η(z)

+ e−σL−
√

2|z| sup
L<|z|<6| log ε|

e−(
√

2−σ)|z| (|φ(y, z)|+ |∇yφ(y, z)|+ |∇2
yφ(y, z)|

)
.

Therefore ∫ +∞

−∞
z2
(
|∇2

yφ̃α(y, z)|2 + |∇yφ̃α(y, z)|2
)
dz

. L3 sup
|z|<2L

(
|∇2

yφ(y, z)|2 + |∇yφ(y, z)|2
)

+ e−2σL sup
L<|z|<6| log ε|

e−2(
√

2−σ)|z| (|φ(y, z)|2 + |∇yφ(y, z)|2 + |∇2
yφ(y, z)|2

)
.

Substituting this and Lemma 11.5 into (11.10) gives

sup
ỹ∈Br

‖φ̃α(ỹ, ·)‖2L2(−δR,δR) . e−cL sup
ỹ∈Br+L

‖φ̃α(ỹ, ·)‖2L2(−δR,δR) + Lε4 + L sup
Br+L

e−2
√

2Dα

+ sup
Br+L

[
|∇2hα|4 + |∇hα|4

]
+ e−2

√
2L sup

Br+L

∣∣Hα + ∆0hα
∣∣2 (11.11)

+
1

L
sup

Br+L×{L<|z|<2L}

(
|φ|2 + |φz|2

)
+ L3ε2 sup

Br+L×{|z|<2L}

(
|∇2

yφ|2 + |∇yφ|2
)

+ e−2σL sup
Br+L×{L<|z|<6| log ε|}

e−2(
√

2−σ)|z| (|φ|+ |∇yφ|+ |∇2
yφ|
)2
.

The terms involving hα can be estimated by using Lemma 9.6, while by the Cauchy inequality we have

L3ε2 sup
|z|<2L

(
|∇2

yφ(y, z)|2 + |∇yφ(y, z)|2
)
. Lε4 + L5 sup

|z|<2L

(
|∇2

yφ(y, z)|4 + |∇yφ(y, z)|4
)
.

Substituting these into (11.11) we get (11.9). �

By standard elliptic estimates we deduce that

‖φ̃α‖C1,θ(B1(y)×(−3L/4,3L/4))

. ‖φ̃α‖L2(BL(y)×(−L,L)) + ‖∆φ̃α‖L∞(BL(y)×(−L,L))

. L
n−1
2 e−cL sup

ỹ∈B2L(y)

‖φ̃α(ỹ, ·)‖L2(−δR,δR) + L
n+2
2 ε2 + L

n+2
2 sup

B2L(y)

e−
√

2Dα

+ L
n−1
2 sup

B2L(y)

∣∣Hα + ∆0hα
∣∣+ L

n−2
2 sup

B2L(y)×{L<|z|<2L}
(|φ|+ |∇φ|)

+ L
n+6
2 sup

Br+L×{|z|<2L}

(
|∇2

yφ|2 + |∇yφ|2
)

+ L
n
2 e−σL sup

B2L(y)×{L<|z|<6| log ε|}
e−(
√

2−σ)|z| (|φ(y, z)|+ |∇yφ(y, z)|+ |∇2
yφ(y, z)|

)
.

By using (10.3) we get a bound on supB2L(y)

∣∣Hα + ∆0hα
∣∣. Hence we have

‖φ̃α‖C1,θ(B1(y)×(−3L/4,3L/4))

. L
n+1
2 e−cL sup

B3L(y)×(−2L,2L)

|φ|+ L
n+2
2 ε2 + L

n+2
2 sup

B3L(y)

e−
√

2Dα

+ L
n−1
2 sup

B3L(y)

∑
β 6=α

Dαe
−
√

2Dα
[
|Hβ + ∆β

0hβ |+ |∇hβ |2
]

+ L
n−2
2 sup

B3L(y)×{L<|z|<2L}
(|φ|+ |∇φ|) + L

n+6
2 sup

B3L(y)×(−2L,2L)

(
|∇2φ|2 + |∇φ|2

)
+ L

n
2 e−σL sup

B3L(y)×{L<|z|<6| log ε|}
e−(
√

2−σ)|z| (|φ|+ |∇yφ|+ |∇2
yφ|
)
.
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Since this estimate holds for any y, it implies that

‖φ‖C1,θ(N 1
α(r)) ≤ Ce−cL sup

Br+3L×(−2L,2L)

|φ|+ CL
n+2
2 ε2 + L

n+2
2 sup

B3L(y)

e−
√

2Dα(y)

+ CL
n−1
2 sup

Br+3L

∑
β 6=α

Dαe
−
√

2Dα
[
|Hβ + ∆β

0hβ |+ |∇hβ |2
]

+ CL
n−2
2 sup

Br+3L×{L<|z|<2L}
(|φ(y, z)|+ |∇φz(y, z)|)

+ CL
n+6
2 sup

Br+3L×(−2L,2L)

(
|∇2φ|2 + |∇φ|2

)
+ CL

n
2 e−σL sup

Br+3L×{L<|z|<6| log ε|}
e−(
√

2−σ)|z| (|φ|+ |∇yφ|+ |∇2
yφ|
)
.

As before, this can be written as

‖φ‖C1,θ(N 1
α(r)) ≤ σ(L)‖φ‖C2,θ(D(r+4L) + C(L)‖φ‖2C2,θ(D(r+4L)

+ C(L)ε2 + C(L) sup
Br+4L

e−
√

2Dα(y)

+ CL
n−1
2 sup

B3L(y)

∑
β 6=α

Dαe
−
√

2Dα
[
|Hβ + ∆β

0hβ |+ |∇hβ |2
]

+ CL
n−2
2 sup

L<|z|<2L

(|φ(y, z)|+ |∇φz(y, z)|) .

The last term can be estimated by (11.2). After simplification this estimate is rewritten as

‖φ‖C1,θ(N 1
α(r)) ≤ σ(L)‖φ‖C2,θ(D(r+4L) + C(L)ε2 + C(L) sup

Br+4L

e−
√

2Dα(y) (11.12)

+ σ(L)

Q∑
β=1

sup
Br+4L(y)

∣∣Hβ + ∆β
0hβ

∣∣+ C(L)
∑
β 6=α

sup
Br+4L

e−4
√

2Dβ .

Combining (11.2) with (11.12) we obtain (11.1).

12. C2,θ estimate on φ

In the equation of φ, (9.4), the coefficients before φ have a universal Lipschitz bound. Concerning the
Hölder bounds on the right hand side of (9.4), we have the following estimates.

Lemma 12.1. For any (y, z) ∈Mα,

‖∆φ−W ′′(g∗)φ‖Cθ(B2/3(y,z)) . ε2 + sup
B1(y)

e−
√

2Dα + ‖φ‖2C2,θ(B1(y,z))

+ e−
√

2|z|‖Hα + ∆0hα‖Cθ(B1(y,0))

+ e−
√

2|dβ(y,z)|

(
‖φ‖2

C2,θ(Bβ2 (y,0))
+ sup
B2(y)

e−2
√

2Dβ

)
+ e−

√
2|dβ(y,z)|‖Hβ + ∆β

0hβ‖Cθ(Bβ2 (y,0)).

The proof is similar to the one for Lemma 11.2 and Lemma 11.3, but now we use Lemma 9.5 instead
of Lemma 9.4.

By Schauder estimates, for any (y, z) ∈M0
α(r),

‖φ‖C2,θ(B1/2(y,z)) . ‖φ‖Cθ(B2/3(y,z)) + ‖∆φ−W ′′(g∗)φ‖Cθ(B2/3(y,z))

. ε2 + sup
B1(y)

e−
√

2Dα + ‖φ‖2C2,θ(B1(y,z)) + ‖φ‖2C2,θ(B1(y,0))

+ e−
√

2|z|‖Hα + ∆0hα‖Cθ(B1(y,0))

+
∑
β 6=α

e−
√

2|dβ(y,z)|

(
‖φ‖2

C2,θ(Bβ2 (y,0))
+ sup
B2(y)

e−2
√

2Dβ

)
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+
∑
β 6=α

e−
√

2|dβ(y,z)|‖Hβ + ∆β
0hβ‖Cθ(Bβ2 (y,0)).

Because in M0
α, either e−

√
2|dβ(y,z)| . ε or e−

√
2|dβ(y,z)| . e−

√
2

2 Dα(y), from this we deduce that

‖φ‖C2,θ(M0
α(r)) . ε2 + sup

Br+L

e−
√

2Dα + ‖φ‖2C2,θ(M0
α(r)) + ‖Hα + ∆0hα‖Cθ(Br+L) (12.1)

+
∑
β 6=α

[
‖Hβ + ∆β

0hβ‖2Cθ(Br+L) + sup
Br+L

e−4
√

2Dβ + ‖φ‖4C2,θ(M0
β(r+L))

]
.

Adding in α leads to

‖φ‖C2,θ(D(r)) . ε2 +

Q∑
α=1

sup
Br+L

e−
√

2Dα + σ‖φ‖C2,θ(Dr+L) (12.2)

+ ‖Hα + ∆0hα‖Cθ(Br+L) +
∑
β 6=α

‖Hβ + ∆β
0hβ‖2Cθ(Br+L).

Concerning the Hölder norm of Hα + ∆0hα, we have

Lemma 12.2. There exist σ � 1 and L� 1 such that

‖Hα + ∆0hα‖Cθ(Br) ≤ Cε2 +C
∑
β

sup
Br+L

e−
√

2Dβ +σ‖φ‖C2,θ(Dr+L) +σ

Q∑
β=1

‖Hβ + ∆β
0hβ‖Cθ(Br+L). (12.3)

Proof. First by (10.1) and (B.1)-(B.3), we have∫ δR

−δR
(∆zφ−∆0φ) g′α + (−1)α−1

(∫ δR

−δR
φg′′α

)
∆0hα + 2(−1)α−1

∫ δR

−δR
g′′αg

ij(y, 0)
∂φ

∂yi

∂hα
∂yj

−

(∫ δR

−δR
φg′′′α

)
|∇0hα(y)|2 +

∫ δR

−δR
Hα(y, z)g′αφz +

∫ δR

−δR
ξ′αφ

=

∫ δR

−δR
[W ′′(g∗)−W ′′(gα)] g′αφ+

∫ δR

−δR
R(φ)g′α

+

∫ δR

−δR

W ′(g∗)− Q∑
β=1

W ′(gβ)

 g′α − (−1)α

(∫ δR

−δR
|g′α|2

)
[Hα(y, 0) + ∆0hα(y)]

− (−1)α
∫ δR

−δR
|g′α|2 [Hα(y, z)−Hα(y, 0)]− (−1)α

∫ δR

−δR
|g′α|2 [∆0hα(y)−∆zhα(y)]

+
1

2

(∫ δR

−δR
|g′α|2

∂

∂z
gij(y, z)

)
∂hα
∂yi

∂hα
∂yj

−
∑
β 6=α

(−1)β
∫ δR

−δR
g′αg
′
βRβ,1 −

∑
β 6=α

∫ δR

−δR
g′αg
′′
βRβ,2 −

∑
β 6=α

∫ δR

−δR
g′αξβ .

We can estimate the Hölder norms of these term one by one, by using (8.8)-(8.13) and Lemma 9.5,
which gives

‖Hα + ∆0hα‖Cθ(B1(y)) . ε2 + sup
B2(y)

e−
√

2Dα + ‖φ‖2C2,θ(B2(y)×(−6| log ε|,6| log ε|)

+
∑
β 6=α

[
‖φ‖4

C2,θ(Bβ2 (y,0))
+ ‖Hβ + ∆β

0hβ‖2Cθ(Bβ2 (y,0))
+ sup
Bβ2 (y,0)

e−4
√

2Dβ

]
.

Hence

‖Hα + ∆0hα‖Cθ(Br) . ε2 + sup
Br+L

e−
√

2Dα + ‖φ‖2C2,θ(Dr+L) +
∑
β 6=α

‖Hβ + ∆β
0hβ‖2Cθ(Br+L) +

∑
β 6=α

sup
B2(y)

e−4
√

2Dβ

≤ Cε2 + C
∑
β

sup
Br+L

e−
√

2Dβ + σ‖φ‖C2,θ(Dr+L) + σ
∑
β

‖Hβ + ∆β
0hβ‖Cθ(Br+L). (12.4)

(12.3) follows after some simplification. �
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Combining (12.2) with (12.3) we obtain

‖φ‖C2,θ(Dr)+‖Hα+∆0hα‖Cθ(Br) ≤ Cε2+C
∑
β

sup
Br+L

e−
√

2Dβ+σ

‖φ‖C2,θ(Dr+L) +
∑
β

‖Hβ + ∆β
0hβ‖Cθ(Br+L)

 .

An iteration of this inequality from r+K| log ε| to r (with K large but depending only on L and σ) gives

‖φ‖C2,θ(Dr) +
∑
β

‖Hβ + ∆β
0hβ‖Cθ(Br) ≤ Cε2 + C

∑
β

sup
Br+K| log ε|

e−
√

2Dβ . (12.5)

13. Improved estimates on horizontal derivatives

In this section we prove an improvement on the C1,θ estimates of horizontal derivatives of φ, φi :=
∂φ/∂yi. 1 ≤ i ≤ n− 1.

Differentiating (9.4) in yi, we obtain an equation for φi := φyi ,

∆zφi + ∂zzφi = W ′′(gα)φi − (−1)αg′α [Hi(y, 0) + ∆0hα,i(y)] + Ei, (13.1)

where hα,i(y) := ∂hα
∂yi

and the remainder term

Ei = (∆zφi − ∂yi∆zφ) +
∂H

∂yi
(y, z)φz +Hα(y, z)∂zφyi + [W ′′(g∗ + φ)−W ′′(gα)]φi

+ (−1)α [W ′′(g∗ + φ)−W ′′(gα)] g′αhα,i(y)

+
∑
β 6=α

(−1)β [W ′′(g∗ + φ)−W ′′(gβ)] g′β

∂dβ
∂yi
−

n∑
j=1

hβ,j (Πβ(y, z))
∂Πj

β

∂yi
(y, z)


− g′′αhα,i(y) [Hα(y, z) + ∆zhα(y)]− (−1)αg′α

[
∂H

∂yi
(y, z)− ∂H

∂yi
(y, 0) +

∂

∂yi
(∆zhα(y))−∆0hα,i(y)

]
− (−1)αg′′′α |∇zhα|2hα,i(y)− g′′α

∂

∂yi
|∇zhα|2

−
∑
β 6=α

∂

∂yi

[
(−1)βg′βRβ,1 (Πβ(y, z), dβ(y, z)) + g′′βRβ,2 (Πβ(y, z), dβ(y, z))

]
−

∑
β

ξ′β

n−1∑
j=1

hβ,j (Πβ(y, z))
∂Πj

β

∂yi
(y, z).

Compared with the orthogonal part in the equation of φ, the order of Ei is increased by one due to
the appearance of one more term involving horizontal derivatives of φ. More precisely, we have

Lemma 13.1. In M2
α(r),

|Ei| . ε2 + ‖φ‖2C2,θ(D(r+1)) + sup
Br+1

e−2
√

2Dα +

Q∑
β=1

sup
Bβr+1

∣∣Hβ + ∆β
0hβ

∣∣2 + ε1/5 sup
Br+1

e−
√

2Dα

+

(
sup
Br+1

e−
√

2
2 Dα

)∑
β 6=α

sup
Bβr+1

∣∣∣∇Hβ + ∆β
0∇hβ

∣∣∣+
∑
β 6=α

sup
Bβr+1

e−2
√

2Dβ + ‖φ‖C2,θ(D(r+1))

 .
We do not give detailed calculations here but only show a commutator estimate needed in the proof

of this lemma.

Lemma 13.2. For any ϕ ∈ C2(Bn−1
R ),

∂

∂yi
∆zϕ−∆zϕi = O(ε)

(
|∇2ϕ(y)|+ |∇ϕ(y)|

)
.

Proof. Because |∇fα| ≤ C, |∇2fα| . ε and gij(y, 0) = δij + fα,i(y)fα,j(y), we have∣∣∇ygij(y, 0)
∣∣ . ε.

By Lemma 8.5, we see

|∇ygij(y, z)|+ |∇2
yg
ij(y, z)| = O(ε).
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Then

∂

∂yi
∆zϕ = ∆zϕi +

n−1∑
k,l=1

(
∂

∂yi
gkl(y, z)

)
∂2ϕ

∂yk∂yl
(y) +

n−1∑
k=1

(
∂

∂yi
bk(y, z)

)
∂ϕ

∂yk
(y)

= ∆zϕi +O(ε)
(
|∇2ϕ(y)|+ |∇ϕ(y)|

)
. �

By differentiating (9.3) we obtain∫ δR

−δR
φig
′
αdz = hα,i(y)

∫ δR

−δR
φg′′αdz = O

(
‖φ‖2C1(D(r)) + sup

Br

e−2
√

2Dα

)
, ∀y ∈ Bn−1

R . (13.2)

Take a large constant p so that W 2,p embeds into C1,θ. By noting that∣∣∣ ∫ δR

−δR
(∆zφi −∆0φi) g

′
α

∣∣∣ . ε

∫ δR

−δR

(
|∇2φi(y, z)|+ |∇φi(y, z)|

)
|z|g′α

. ε

[∫ δR

−δR

(
|∇2φi(y, z)|+ |∇φi(y, z)|

)2
e−
√

2|z|dz

] 1
2

,

proceeding as in Section 10 we obtain for any y ∈ Br,

‖Hα
i + ∆0hα,i‖Lp(B1(y)) . ‖Ei‖L∞(M2

α(r+2))

+ ε

[∫
B2(y)

∫ δR

−δR

(
|∇2φi(y, z)|+ |∇φi(y, z)|

)p
e−σ|z|dz

] 1
p

(13.3)

+

[∫
B2(y)

∫ δR

−δR

(
|∇2φi(y, z)|+ |∇φi(y, z)|

)p
e−σ|z|dz

] 2
p

.

On the other hand, for any (y, z) ∈M1
α(r), by standard elliptic estimates, we have

‖φi‖W 2,p(B2(y,z)) . ‖φi‖Lp(B5/2(y,z)) + ‖∆zφi + ∂zzφi‖Lp(B5/2(y,z))

. ‖φi‖L∞(B3(y,z)) + e−
√

2|z|‖Hα
i + ∆α

0hα,i‖Lp(B3(y)) + ‖Ei‖L∞(M2
α(r+3)).

Substituting this into (13.3) leads to, for any y ∈ Br,∑
β

‖Hβ
i + ∆β

0hβ,i‖Lp(B1(y)) ≤ σ sup
ỹ∈B2(y)

∑
β

‖Hβ
i + ∆β

0hβ,i‖Lp(B1(ỹ)) + Cε2 (13.4)

+ C

Q∑
β=1

sup
B4(y)

e−2
√

2Dβ + C

Q∑
β=1

sup
Bβ4 (y)

∣∣Hβ + ∆β
0hβ

∣∣2
+ Cε1/5

Q∑
β=1

sup
B4(y)

e−
√

2Dβ + C‖φ‖C2,θ(D(r+4)) sup
Br+4

e−
√

2
2 Dα .

An iteration of this estimate gives

sup
y∈Br

∑
β

‖Hβ
i + ∆β

0hβ,i‖Lp(B1(y)) . ε2 +

Q∑
β=1

sup
Br+K| log ε|

e−2
√

2Dβ +

Q∑
β=1

sup
Br+K| log ε|

∣∣Hβ + ∆β
0hβ

∣∣2
+ ε1/5

Q∑
β=1

sup
Br+K| log ε|

e−
√

2Dβ + ‖φ‖C2,θ(D(r+K| log ε|)) sup
Br+K| log ε|

e−
√

2
2 Dα .

Substituting (12.5) into this we obtain

sup
y∈Br

∑
β

‖Hβ
i + ∆β

0hβ,i‖Lp(B1(y)) . ε
2 +

Q∑
β=1

sup
Br+2K| log ε|

e−
3
√

2
2 Dβ + ε1/5

Q∑
β=1

sup
Br+2K| log ε|

e−
√

2Dβ . (13.5)

Then using Lemma 13.1 and (13.2) and proceeding as in Section 11, we obtain

‖φi‖C1,θ(M0
α(r)) . ε

2 +
∑
β

sup
Br+2K| log ε|

e−
3
√

2
2 Dβ + ε1/5

∑
β

sup
Br+2K| log ε|

e−
√

2Dβ . (13.6)
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14. A lower bound on Dα

Define

Aα(r) := sup
Br

e−
√

2Dα and A(r) =

Q∑
α=1

Aα(r).

By (9.10) and (13.6),

sup
Br

|∆0h
α(y)| . ε2 +A(r +K| log ε|) 3

2 + ε1/5A(r +K| log ε|).

By (10.2), in Br

Hα(y, 0) =
4

σ0

[
A2

(−1)αe
−
√

2dα−1(y,0) −A2
(−1)α−1e

√
2dα+1(y,0)

]
+ o (Aα(r +K| log ε|)) +O(ε4/3).

Because Hα = O(ε), an induction on α from 1 to Q gives

A(r) ≤ Cε+
1

2
A(r +K| log ε|).

An iteration of this estimate from r = R to r = 5R/6 gives

A(5R/6) . ε.

In particular, for any y ∈ B5R/6 and α = 1, · · · , Q,

Dα(y) ≥
√

2

2
| log ε| − C.

With this lower bound at hand, (12.5) can now be written as

‖φ‖C2,θ(D(R/2)) +

Q∑
α=1

‖Hα + ∆0hα‖Cθ(BR/2) . ε,

and (13.6) reads as

‖φi‖C1,θ(D(R/2)) . ε
6
5 , ∀i = 1, · · · , n− 1.

Therefore by Lemma 9.6 we get
Q∑
α=1

‖∆0hα‖Cθ(BR/2) . ε
6
5 .

Now (10.2) reads as

div

(
∇fα(y)√

1 + |∇fα(y)|2

)
=

4

σ0

[
A2

(−1)α−1e−
√

2dα−1(y) −A2
(−1)αe

−
√

2dα+1(y)
]

+O
(
ε

6
5

)
. (14.1)

A remark is in order concerning whether we can improve this lower bound.

Remark 14.1. If there exists a constant M , α ∈ {1, · · · , Q} and yε ∈ BR/2 such that

dα+1(yε, 0) ≤
√

2

2
| log ε|+M.

After a rotation and translation, we may assume yε = 0 and fα(0) = 0, ∇fα(0) = 0.
Define

f̃β(y) := fβ(ε−1/2y)−
√

2

2
(β − α) | log ε|, ∀β ∈ {1, · · · , Q}.

By the curvature bound on Γα and Lemma 8.3, for any β ∈ {1, · · · , Q}, if f̃β(0) does not go to ±∞, then

in Bn−1
R2/3 ,

|∇fβ | . ε
1
6 .

Subsisting this into (14.1) and performing a rescaling we obtain

∆f̃β(y) =
4

σ0

[
A2

(−1)α−1e
−
√

2(f̃β(y)−f̃β−1(y)) −A2
(−1)αe

−
√

2(f̃β+1(y)−f̃β(y))
]

+O(ε1/6), in BR1/2 .

Moreover, as ε → 0, f̃β converges in C2
loc(Rn−1) to f̄β, which is a nontrivial entire solution to (2.10).

This blow up procedure will be employed in Section 20.
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15. Multiplicity one case

If there is only one connected component of {u = 0}, the estimates can be simplified a lot. For
example, now (12.5) reads as

‖φ‖C2,θ(D(3R/4)) + ‖H + ∆0h‖Cθ(Bn−1
3R/4

) . ε
2.

On the other hand, by Lemma 9.6 we get

‖h‖C2,θ(Bn−1
3R/4

) . ε
2.

Hence

‖H‖Cθ(Bn−1
3R/4

) . ε
2.

After a scaling, this is equivalent to the condition that∥∥∥div

(
∇fε√

1 + |∇fε|2

)∥∥∥
Cθ(Bn−1

3/4
)
. ε1−θ.

Because supB3/4
|∇fε| ≤ C, by standard elliptic estimates on mean curvature equations [39, Chapter 16],

we get

‖fε‖C2,θ(Bn−1
2/3

) ≤ C,

where the constant C is independent of ε. This completes the proof of Theorem 2.7.

16. Arbitrary Riemannian metric

In the previous analysis the background metric is an Euclidean one. Now we consider an arbitrary
Riemannian metric. Since we are concerned with local problems, we will work in the following setting.
Assume B1(0) ⊂ Rn is equipped with a C3 Riemannian metric g = gij(x)dxi ⊗ dxj . We assume the
exponential map is a globally defined diffeomorphism.

Assume

• uε ∈ C3(B1) is a sequence of solutions to the Allen-Cahn equation

ε∆guε =
1

ε
W ′(uε).

• The nodal set {uε = 0} consists of Q components,

Γα,ε = {(x′, fα,ε(x′))}, α = 1, · · · , Q,

where f1,ε < f2,ε < · · · < fQ,ε.
• For each α, the curvature of Γα,ε is uniformly bounded as ε→ 0.

By this curvature bound, the Fermi coordinates with respect to Γα,ε is well defined and C2 in a δ-
neighborhood of Γα,ε. In the Fermi coordinates, the Laplace-Beltrami operator ∆g has the same expansion
as in Section 8, for more details see [27, Section 2]. By denoting Hα,ε the mean curvature of Γα,ε, we get
the following Toda system

Hα,ε =
4

σ0ε

[
A2

(−1)α−1e−
√

2
ε dα−1,ε −A2

(−1)αe
−
√

2
ε dα+1,ε

]
+O

(
ε

1
6

)
. (16.1)

If Γα,ε collapse to a same minimal hypersurface Γ∞, this system can be written as a Jacobi-Toda system
on Γ∞ as in [27].

Now we come to the proof of Theorem 2.6.

Proof of Theorem 2.6. First by results in Section 7, we can assume fα,ε are uniformly bounded in

C1,1(Bn−1
2 ). Hence we can assume they converge to f∞ in C1,θ(Bn−1

2 ) for any θ ∈ (0, 1). Assume
there exists α ∈ {1, · · · , Q} such that fα,ε do not converge to f∞ in C2(Bn−1

1 ).
Using the Fermi coordinates (y, z) with respect to Γ∞ := {xn = f∞(x′)}, Γα,ε is represented by the

graph {z = fα,ε(y)}, where fα,ε converges to 0 in C1 but not in C2. Assume |∇2fα,ε(yε)| does not
converge to 0, then we can preform the same blow up analysis as in Remark 14.1, with the base point at
yε. This procedure results in a nontrivial solution of (2.10). �
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Part 3. Second order estimate for stable solutions: Proof of Theorem 3.6

This part is devoted to the proof of Theorem 3.6 which in turn implies Theorem 3.5 and Theorem
3.8. Throughout this part we are in dimension two and uε denotes a solution satisfying the hypothesis
of Theorem 3.6. We shall use the stability condition of uε to prove the uniform second order estimates.

17. A lower bound on the intermediate distance

In this section we use the stability condition to prove

Proposition 17.1. For any σ > 0, there exists a universal constant C(σ) such that for any α, x1 ∈
(−5/6, 5/6) and fα,ε(x1) ∈ (−5/6, 5/6),

dist ((x1, fα,ε(x1)),Γα+1,ε) ≥
√

2− σ
2

ε| log ε| − C(σ)ε.

The idea of proof is to choose a direction derivative of uε to construct a subsolution to the linearized
equation and perform a surgery as in Lemma 5.1.

17.1. An upper bound on Q(ϕε). Without loss of generality, assume uε > 0 in {fα,ε(x1) < x2 <

fα+1,ε(x1)} ∩ C6/7. Recall that Lemma 7.1 still holds. Hence near {x2 = fα,ε(x1)}, ∂uε
∂x2

> 0, while near

{x2 = fα+1,ε(x1)}, ∂uε
∂x2

< 0.

Let Dα,ε be the connected component of {∂uε∂x2
> 0} ∩ C6/7 containing {x2 = fα,ε(x1)}. Let ϕε be the

restriction of ∂uε
∂x2

to this domain, extended to be 0 outside. After such an extension, ϕε is a nonnegative

continuous function and in {ϕε > 0} it satisfies the linearized equation

ε∆ϕε =
1

ε
W ′′(uε)ϕε. (17.1)

Concerning Dα,ε we have

Lemma 17.2. Dα,ε ∩ {|uε| < 1− b} ∩ C6/7 belongs to an O(ε) neighborhood of {x2 = fα,ε(x1)}.

Proof. By Lemma 7.1, {|uε| < 1− b} ∩ C6/7 belongs to an O(ε) neighborhood of {x2 = fα,ε(x1)}, where
∂uε
∂x2

> 0. On the other hand, since ∂uε
∂x2

< 0 in a neighborhood of {x2 = fα±1,ε(x1)}, Dα,ε ∩ C6/7 belongs

to the set {fα−1,ε < x2 < fα+1,ε}. �

Choose an arbitrary point xε ∈ {x2 = fα,ε(x1), |x1| < 5/6, |x2| < 5/6}. Take an η1 ∈ C∞0 (B1/100(xε)),

satisfying η1 ≡ 1 in B1/200(xε) and |∇η1| ≤ 1000. Multiplying (17.1) by ϕεη
2
1 and integrating by parts

leads to ∫
B1/100(xε)

ε|∇ (ϕεη1) |2 +
1

ε
W ′′(uε)ϕ

2
εη

2
1 =

∫
B1/100(xε)

εϕ2
ε|∇η1|2 ≤ C

∫
B1/100(xε)

εϕ2
ε (17.2)

≤ C.

In the above we have used the following fact.

Lemma 17.3. There exists a universal constant C such that∫
B1/100(xε)

εϕ2
ε ≤ C.

Proof. We divide the estimate into two parts: {|uε| < 1− b} and {|uε| > 1− b}.
Step 1. There exists a universal constant C such that∫

Dα,ε∩{|uε|<1−b}∩B1/50(xε)

ε
∣∣∂uε
∂x2

∣∣2 ≤ C. (17.3)

Because |∇uε| . ε−1, this estimate follows from the fact that∣∣∣Dα,ε ∩ {|uε| < 1− b} ∩ C6/7
∣∣∣ ≤ Cε,

which in turn is a consequence of Lemma 17.2, the co-area formula and the following two facts: (i) for
any t ∈ [−1+ b, 1− b], {uε = t} is a smooth curve with uniformly bounded curvature and hence its length
is uniformly bounded; (ii) by Lemma 7.1, ∂uε∂x2

≥ cε−1 in {|uε| < 1− b}.
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Step 2. There exists a universal constant C such that∫
{|uε|>1−b}∩B1/100(xε)

εϕ2
ε ≤ C(b). (17.4)

In order to prove this estimate, take a cut-off function η2 ∈ C∞0 (B1/50(xε)) with η2 ≡ 1 in B1/100(xε)
and |∇η2| ≤ 1000, and ζ ∈ C∞(−1, 1) with ζ ≡ 1 in (−1,−1 + b) ∪ (1− b, 1), ζ ≡ 0 in (−1 + 2b, 1− 2b)
and |ζ ′| ≤ 2b−1. Multiplying (17.1) by ϕεη

2
2ζ(uε)

2 and integrating by parts leads to∫
B1/50(xε)

ε|∇ (ϕεη2ζ(uε)) |2 +
1

ε
W ′′(uε)ϕ

2
εη

2
2ζ(uε)

2

=

∫
B1/50(xε)

εϕ2
ε|∇ (η2ζ(uε)) |2

.
∫
B1/50(xε)

εϕ2
ε

[
|∇η2|2ζ(uε)

2 + 2η2ζ(uε)|ζ ′(uε)||∇η2||∇uε|+ η2
2ζ
′(uε)

2|∇uε|2
]

. ε

∫
B1/50(xε)

ϕ2
ε +

1

ε

∫
{1−2b<|uε|<1−b}∩B1/50(xε)

ϕ2
ε,

where we have substituted the estimate |∇uε| . ε−1 in the last line.
Since W ′′(uε) ≥ c(b) > 0 in {|uε| > 1− b}, we obtain∫

{|uε|>1−b}∩B1/100(xε)

εϕ2
ε ≤ Cε

∫
B1/50(xε)

W ′′(uε)ϕ
2
εη

2
2ζ(uε)

2

≤ Cε3

∫
B1/50(xε)

|∇uε|2 + Cε

∫
{1−2b<|uε|<1−b}∩B1/50(xε)

ϕ2
ε

≤ C.

Combining Step 1 and Step 2 we finish the proof. �

17.2. A surgery on ϕε. Next we use the smoothing modification in the proof of Proposition 6.1 to
decrease the left hand side of (17.2).

Without loss of generality, assume fα,ε(0) = 0, fα+1,ε(0) = ρε and ρε ≤ ε| log ε|. By Lemma 7.1,
ρε � ε. For any fixed constant L > 0, uε > 1− b in Ωα,ε := {|x1| < Lε,Lε < x2 < ρε − Lε}. Let ϕ̃ε be
the solution of ε∆ϕ̃ε =

1

ε
W ′′(uε)ϕ̃ε, in Ωα,ε,

ϕ̃ε = ϕε, on ∂Ωα,ε.

By the stability of uε, such an ϕ̃ε exists uniquely.
A direct integration by parts gives[∫

Ωα,ε

ε|∇ϕε|2 +
1

ε
W ′′(uε)ϕ

2
ε

]
−

[∫
Ωα,ε

ε|∇ϕ̃ε|2 +
1

ε
W ′′(uε)ϕ̃

2
ε

]

=

∫
Ωα,ε

ε|∇ (ϕε − ϕ̃ε) |2 +
1

ε
W ′′(uε) (ϕε − ϕ̃ε)2

(17.5)

≥ c

ε

∫
Ωα,ε

(ϕε − ϕ̃ε)2
.

Because uε > 1 − b in Ωα,ε, 2 − δ(b) < W ′′(uε) < 2 + δ(b) in Ωα,ε, where δ(b) is constant satisfying
limb→0 δ(b) = 0. Therefore,

∆ϕ̃ε ≤
2 + δ(b)

ε2
ϕ̃ε, in Ωα,ε.

On ∂Ωα,ε ∩ {x2 = Lε}, by Lemma 7.1,

ϕ̃ε = ϕε =
∂uε
∂x2

≥ c

ε
.

By constructing an explicit subsolution, we obtain

ϕ̃ε(x1, x2) ≥ c

ε
e
−
√

2+δ(b)+ C
L2

x2−Lε
ε , in

{
|x1| <

Lε

2
,
ρε
4
< x2 <

3ρε
4

}
. (17.6)
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Lemma 17.4. For any δ fixed, if ε is small enough, ϕε = 0 in {|x1| < Lε
2 ,

(1+δ)ρε
2 < x2 <

3ρε
4 }.

Proof. Let ε := ε/ρε � 1 and uε(x) := uε(ρ
−1
ε x), which is a solution of (2.3) with parameter ε.

The nodal set of uε has the form ∪β{x2 = f̃β,ε(x1)}, where f̃β,ε(x1) = fβ,ε(ρεx1)/ρε. Thus for any
x1 ∈ (−ρ−1

ε , ρ−1
ε ),

|f̃ ′′α,ε(x1)| ≤ 4ρε, |f̃ ′′α+1,ε(x1)| ≤ 4ρε.

and f̃α,ε(0) = f̃ ′α,ε(0) = 0, f̃α+1,ε(0) = 1.

Since ρε → 0, f̃α,ε → 0 uniformly on any compact set of R. Because different components of {uε = 0}
do not intersect, f̃α+1,ε → 1 uniformly on any compact set of R.

Consider the distance type function Ψε, which is defined by the relation

uε = g

(
Ψε

ε

)
.

By the vanishing viscosity method, in any compact set of {|x2| < 1}, Ψε converges uniformly to

Ψ∞(x1, x2) :=


1− |x2|, x2 ≥ 1/2,

x2, −1/2 ≤ x2 ≤ 1/2,

−1− |x2|, x2 ≤ −1/2.

Moreover, because Ψ∞ is C1 in {|x1| < 1, (1+δ)/2 < x2 < 3/4}, Ψε converges in C1({|x1| < 1, (1+δ)/2 <
x2 < 3/4}). In particular, for all ε small,

∂uε
∂x2

=
1

ε
g′
(

Ψε

ε

)
∂Ψε

∂x2
> 0, in

{
|x1| < 1,

1 + δ

2
< x2 <

3

4

}
.

Rescaling back we finish the proof. �

Remark 17.5. The above proof also shows that

dist ((x1, fα,ε(x1)),Γα+1,ε) = (1 + o(1)) (fα+1,ε(x1)− fα,ε(x1)) .

By this lemma and (17.6), we obtain∫
Ωα,ε

(ϕε − ϕ̃ε)2 ≥
∫
{|x1|<Lε

2 ,
(1+δ)ρε

2 <x2<
3ρε
4 }

ϕ̃2
ε ≥

c(L)

ε
e
− (1+δ)

2

√
2+δ(b)+ C

L2
ρε
ε . (17.7)

As in the proof of Proposition 6.1, by combining (17.2), (17.7) and the stability of uε, we obtain

c(L)

ε
e
− (1+δ)

2

√
2+δ(b)+ C

L2
ρε
ε ≤ C.

By choosing δ, δ(b) sufficiently small, L sufficiently large (depending only on σ), this implies that

ρε ≥
√

2− σ
2

ε| log ε| − C(σ)ε,

which in view of Remark 17.5 finishes the proof of Proposition 17.1.

18. Toda system

18.1. Optimal approximation. As in Section 8, we still work in the stretched version, i.e. after the
rescaling x 7→ ε−1x. The analysis in Section 8 still holds, although now {u = 0} = ∪αΓα, where the
cardinality of the index set α could go to infinity.

Given a sequence of functions hα ∈ C2(−R,R), let (note here a sign difference with Section 9)

gα(y, z) := ḡ ((−1)α (z − hα(y))) ,

where (y, z) is the Fermi coordinates with respect to Γα. Define the function g(y, z;hα) in the following
way:

g(y, z;hα) := gα +
∑
β<α

(
gβ + (−1)β

)
+
∑
β>α

(
gβ − (−1)β

)
in Mα.

By the definition of ḡ and Proposition 17.1, the above sum involves only finitely many terms (at most 25
terms).

Similar to Proposition 9.1, we have
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Proposition 18.1. There exists (hα) such that for any |α| > 100, hα ≡ 0, while for any |α| ≤ 100, in
the Fermi coordinates with respect to Γα,∫ δR

−δR
[u(y, z)− g(y, z;hα)] ḡ′ ((−1)α (z − hα(y))) dz = 0, ∀y ∈ (−5R/6, 5R/6). (18.1)

Denote g∗(y, z) := g(y, z; h(y)), where h is as in the previous lemma. Let φ := u−g∗. As in Subsection
9.1, denote

g′α(y, z) = ḡ′ ((−1)α (z − hα(y))) , g′′α(y, z) = ḡ′′ ((−1)α (z − hα(y))) , · · · .

In the Fermi coordinates with respect to Γα, φ satisfies the following equation

∆zφ−Hα(y, z)∂zφ+ ∂zzφ (18.2)

= W ′(g∗ + φ)−
∑
β

W ′(gβ) + (−1)αg′α [Hα(y, z) + ∆zhα(y)]− g′′α|∇zhα|2

+
∑
β 6=α

[
(−1)βg′βRβ,1 (Πβ(y, z), dβ(y, z))− g′′βRβ,2 (Πβ(y, z), dβ(y, z))

]
−
∑
β

ξβ ,

where Rβ,1, Rβ,2 and ξβ are defined as in Subsection 9.1.

18.2. Estimates on φ. By (12.5) and Proposition 17.1, for any σ > 0 and |α| ≤ 90,

‖φ‖C2,1/2(Mα(r)) + ‖Hα + ∆α
0hα‖C1/2(−r,r) . ε

2−2σ + sup
(−r−K| log ε|,r+K| log ε|)

e−
√

2Dα . (18.3)

Substituting Proposition 17.1 into (18.3) gives a first (non-optimal) bound

‖φ‖C2,1/2(Mα(6R/7)) + ‖Hα + ∆α
0hα‖C1/2(B6R/7) . ε

1−σ, ∀|α| ≤ 90. (18.4)

By (13.6), we can improve the estimates on φy := ∂φ/∂y to

‖φy‖C1,1/2(Mα(6R/7)) . ε
7/6. (18.5)

18.3. A Toda system. Denote

Aα(r) := sup
(−r,r)

e−
√

2Dα .

By Proposition 17.1, for any r < 5R/6, Aα(r) . ε1−σ.
In (−6R/7, 6R/7), (10.2) reads as

f ′′α(x1)

[1 + |f ′α(x1)|2]
3/2

=
4

σ0

[
A2

(−1)α−1e−
√

2dα−1(x1,fα(x1)) −A2
(−1)αe

−
√

2dα+1(x1,fα(x1))
]

+O
(
ε7/6

)
. (18.6)

19. Reduction of the stability condition

In this section we show that the blow up procedure in Remark 14.1 preserves the stability condition.
More precisely, if u is stable, (fα) satisfies a kind of stability condition related to Toda system.

Fix a smooth function η3 defined on R satisfying η3 ≡ 1 in (−∞, 0), η3 ≡ 0 in (1,+∞) and |η′3|+ |η′′3 | ≤
16. Take a large constant L and define

χ(y, z) :=

η3

(
z−ρ+α (y)

L

)
, if z > 0,

η3

(
−z+ρ−α (y)

L

)
, if z < 0.

Clearly we have χ ≡ 1 in Mα, χ ≡ 0 outside {ρ−α (y) − L < z < ρ+
α (y) + L}. Moreover, |∇χ| . L−1,

|∇2χ| . L−2.
For any η ∈ C∞0 (−5R/6, 5R/6), let

ϕ(y, z) := η(y)g′α(y, z)χ(y, z).

The stability condition for u implies that∫
C5R/6

|∇ϕ|2 +W ′′(u)ϕ2 ≥ 0.

The purpose of this section is to rewrite this inequality as a stability condition for the Toda system (18.6).
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In the Fermi coordinates with respect to Γα, we have (Recall that now in (8.2), the metric tensor gij
has only one component, which is denoted by λ(y, z) here)

|∇ϕ(y, z)|2 =
∣∣∣∂ϕ
∂z

(y, z)
∣∣∣2 + λ(y, z)

∣∣∣∂ϕ
∂y

(y, z)
∣∣∣2.

19.1. The horizontal part. A direct differentiation leads to

∂ϕ

∂y
= η′(y)g′αχ− η(y)g′′αχh

′
α(y) + η(y)g′αχy.

Since c ≤ λ(y, z) ≤ C,∫
C5R/6

∣∣∣∂ϕ
∂y

(y, z)
∣∣∣2λ(y, z)dzdy .

∫ 5R/6

−5R/6

∫ δR

−δR
η′(y)2|g′α|2χ2 + η(y)2|g′′α|2χ2h′α(y)2 + η2|g′α|2χ2

y

.
∫ 5R/6

−5R/6

η′(y)2dy + ε2

∫ 5R/6

−5R/6

η(y)2dy

+
1

L

∫ 5R/6

−5R/6

η(y)2
[
e−2
√

2ρ+α (y) + e2
√

2ρ−α (y)
]
dy.

Here the last term follows from the following three facts:

• in {χy 6= 0}, which is exactly {ρ+
α (y) < z < ρ+

α (y) + L} ∪ {ρ−α (y)− L < z < ρ−α (y)}, |χy| . L−1;

• in {ρ+
α (y) < z < ρ+

α (y)+L} (respectively, {ρ−α (y)−L < z < ρ−α (y)}), g′α . e−
√

2ρ+α (y) (respectively,

g′α . e
√

2ρ−α (y));
• By (18.4) and Lemma 9.6, for y ∈ (−6R/7, 6R/7), h′α(y)2 . ε2−2σ.

19.2. The vertical part. As before we have

ϕz = ηg′′αχ+ ηg′αχz.

Thus by a direct expansion and integrating by parts, we have∫
C5R/6

ϕ2
zλ(y, z)dzdy =

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
|g′′α|2χ2λ+ 2g′αg

′′
αχχzλ+ |g′α|2χ2

zλdz

]
dy

= −
∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
W ′′(gα)|g′α|2χ2λ+ g′αξ

′
αχ

2λdz

]
dy

−
∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
g′αg
′′
αχ

2λz − |g′α|2χ2
zλdz

]
dy.

In the right hand side, except the first term, other terms can be estimated in the following way.

• Concerning the second term, because ξ′α = O(ε3),∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
g′α(y, z)ξ′α(y, z)χ(y, z)2λ(y, z)dz

]
dy = O(ε2)

∫ 5R/6

−5R/6

η(y)2dy.

• Concerning the third term, an integration by parts in z leads to

−
∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
g′αg
′′
αχ

2λzdz

]
dy

= 2

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
|g′α|2χχzλzdz

]
dy +

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
|g′α|2χ2λzzdz

]
dy

. ε

∫ 5R/6

−5R/6

η(y)2
[
e−2
√

2ρ+α (y) + e2
√

2ρ−α (y)
]
dy + ε2

∫ 5R/6

−5R/6

η(y)2dy,

where in the last line for the first term we have used the same facts as in Subsection 19.1 and the
estimate

λz = −2λ(y, 0)Hα(y, 0) (1− zHα(y, 0)) = O(ε).

For the second term we have used the fact that

λzz = 2Hα(y, 0)2λ(y, 0) = O(ε2).



36 K. WANG AND J. WEI

• By the same reasoning as in Subsection 19.1,∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
|g′α|2χ2

zλdz

]
dy .

1

L

∫
η(y)2

[
e−2
√

2ρ+α (y) + e2
√

2ρ−α (y)
]
dy.

In conclusion, we get∫
ϕ2
zλ(y, z)dzdy = −

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
W ′′(gα)|g′α|2χ2λdz

]
dy

+ O(ε2)

∫
η(y)2dy +O

(
1

L
+ ε

)∫
η(y)2

[
e−2
√

2ρ+α (y) + e2
√

2ρ−α (y)
]
dy.

Now the stability condition for u is transformed into

0 ≤ C

∫ 5R/6

−5R/6

η′(y)2dy + Cε2−2σ

∫ 5R/6

−5R/6

η(y)2dy + C

(
1

L
+ ε

)∫ 5R/6

−5R/6

η(y)2
[
e−2
√

2ρ+α (y) + e2
√

2ρ−α (y)
]
dy

+

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
(W ′′(u)−W ′′(gα)) |g′α|2χ2λdz

]
dy. (19.1)

It remains to rewrite the last integral.

19.3. The interaction part. Differentiating (18.2) in z leads to

∂

∂z
∆α
z φ−

∂

∂z
(Hα(y, z)∂αz φ) + ∂αzzzφ

= W ′′(u)

(−1)αg′α + φz +
∑
β 6=α

(−1)βg′β
∂dβ
∂z

− (−1)αW ′′(gα)g′α −
∑
β 6=α

(−1)βW ′′(gβ)g′β
∂dβ
∂z

− (−1)α
∂

∂z
[g′α (Hα(y, z) + ∆zhα(y))]− ∂

∂z

(
g′′α|∇zhα|2

)
(19.2)

−
∑
β 6=α

∂

∂z

[
(−1)βg′βRβ,1 (Πβ(y, z), dβ(y, z)) + g′′βRβ,2 (Πβ(y, z), dβ(y, z))

]
+
∑
β

∂ξβ
∂z

.

Multiplying this equation by η2g′αχ
2λ and then integrating in y and z gives∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR

[
∂

∂z
∆α
z φ−

∂

∂z
(Hα(y, z)∂αz φ)

]
g′αχ

2λdzdy +

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
∂αzzzφg

′
αη

2χ2λdz

]
dy

= (−1)α
∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR
[W ′′(u)−W ′′(gα)] |g′α|2χ2λdzdy +

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
W ′′(u)φzg

′
αχ

2λdz

]
dy

+
∑
β 6=α

(−1)β
∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR
[W ′′(u)−W ′′(gβ)] g′αg

′
β

∂dβ
∂z

χ2λdzdy

− (−1)α
∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR

∂

∂z
[g′α (Hα(y, z)−∆zhα(y))] g′αχ

2λdzdy

−
∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR

∂

∂z

(
g′′α|∇zhα|2

)
g′αχ

2λdz

]
dy

−
∑
β 6=α

(−1)β
∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR
g′αχ

2λ
∂

∂z

[
g′βRβ,1 (Πβ(y, z), dβ(y, z))

]
dzdy

−
∑
β 6=α

∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR
g′αχ

2λ
∂

∂z

[
g′′βRβ,2 (Πβ(y, z), dβ(y, z))

]
dzdy +

∑
β

∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR
g′αχ

2λ
∂ξβ
∂z

dzdy.

We need to estimate each term.

(1) Integrating by parts in z leads to∫ δR

−δR

∂

∂z
∆zφg

′
αχ

2λ(y, z)dz = −
∫ δR

−δR
∆zφ

∂

∂z

(
g′αχ

2λ(y, z)
)
dz.
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Using (18.5) and the exponential decay of g′α and g′′α, we get∣∣∣ ∫ δR

−δR

∂

∂z
∆zφg

′
αχ

2λ(y, z)dz
∣∣∣ . ε 7

6 .

(2) Integrating by parts and using the exponential decay of g′α and g′′α, we get∣∣∣ ∫ δR

−δR

∂

∂z
(Hα(y, z)φz) g

′
αχ

2λ
∣∣∣ =

∣∣∣ ∫ δR

−δR
Hα(y, z)φz

∂

∂z

(
g′αχ

2λ
) ∣∣∣ . ε sup

ρ−α (y)−L<z<ρ+α (y)+L

|φz(y, z)|

. ε2−σ.

(3) The second term in the left hand side and the second one in the right hand side can be canceled
with a remainder term of higher order. More precisely,∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
φzzzg

′
αχ

2λdz

]
dy

=

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
φz
(
g′′′α χ

2λ+ 2g′α
(
χ2
z + χχzz

)
λ+ g′αχ

2λzz
)
dz

]
dy

+

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
φz
(
4g′′αχχzλ+ 2g′′αχ

2λz + 4g′αχχzλz
)
dz

]
dy

=

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
φzg
′′′
α χ

2λdz + h.o.t.

]
dy

=

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
W ′′(gα)φzg

′
αχ

2λdz + h.o.t

]
dy.

In the above those higher order terms can be bounded by O(ε
3
2−2σ). We only show how to prove∫ δR

−δR
φzg
′′
αχχzλ = O(ε

3
2−2σ). (19.3)

In spt(χz), |χz| . L−1,

|g′′α| . e−
√

2|z| . e−
√

2
2 Dα(y) + ε . ε

1−σ
2 ,

|φz| . ‖φ‖C2,1/2(Mα(r)) . ε
1−σ.

Combining these three estimates we get (19.3). Similarly, other terms are bounded by O(ε2) +

O
(
|∇φ(y, z)|2L∞(Mα)

)
= O(ε2−2σ).

Next we show that∫ δR

−δR
[W ′′(u)−W ′′(gα)]φzg

′
αχ

2λdz = O
(
ε2−3σ

)
.

This is because in {χ 6= 0},

u = gα + φ+
∑
β<α

(
gβ − (−1)β

)
+
∑
β>α

(
gβ + (−1)β

)
,

hence this integral is bounded by∫ δR

−δR

|φ||φz|g′αχ2λ+
∑
β 6=α

|φz|g′βg′αχ2λ

 dz . ‖φ‖2C1,1/2(Mα(6R/7)) + sup
(−r,r)

D2
αe
−2
√

2Dα

. ε2−3σ.

(4) In {χ 6= 0},
W ′′(u) = W ′′(gα) +O(|φ|) +

∑
β 6=α

O
(
g′β
)
,

and for β 6= α,

W ′′(gβ) = W ′′(1) +O
(
g′β
)
.
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Hence∫ δR

−δR
[W ′′(u)−W ′′(gβ)] g′αg

′
β

∂dβ
∂z

χ2λdz =

∫ δR

−δR
[W ′′(gα)−W ′′(1)] g′αg

′
βλ(y, 0)dz + h.o.t.,

where higher order terms are controlled by∫ δR

−δR
|φ|g′αg′βχ2 +

∑
β 6=α

∫ δR

−δR
g′α
∣∣g′β∣∣2χ2 +

∑
β 6=α

∫ δR

−δR

∣∣∣g′α∣∣∣2g′β (1− χ2
)

+
∥∥∥∂dβ
∂z
− 1
∥∥∥
L∞(Mα(r))

∫ δR

−δR

∣∣g′α∣∣2g′βχ2 + ε

∫ δR

−δR
|z|
∣∣g′α∣∣2g′βχ2dz

. ε1−σDα(y)e−
√

2Dα(y) + e−
3
√

2
2 Dα(y) + εe−

√
2Dα(y)

. ε
3
2−3σ.

(5) Integrating by parts gives∫ δR

−δR

∂

∂z
[g′α (Hα(y, z) + ∆zhα(y))] g′αχ

2λdz

= −
∫ δR

−δR
g′α [Hα(y, z) + ∆zhα(y)]

[
g′′αχ

2λ+ 2g′αχχzλ+ g′αχ
2λz
]
dz

=
1

2

∫ δR

−δR

∣∣g′α∣∣2 ∂∂z [(Hα(y, z) + ∆zhα(y))χ2λ
]

− 2

∫ δR

−δR

∣∣g′α∣∣2 [Hα(y, z) + ∆zhα(y)]χχzλ−
∫ δR

−δR

∣∣g′α∣∣2 [Hα(y, z) + ∆zhα(y)]χ2λzdz

=
1

2

∫ δR

−δR

∣∣g′α∣∣2χ2λ
∂

∂z
[Hα(y, z) + ∆zhα(y)]

−
∫ δR

−δR

∣∣g′α∣∣2 [Hα(y, z) + ∆zhα(y)]χχzλ−
1

2

∫ δR

−δR

∣∣g′α∣∣2 [Hα(y, z) + ∆zhα(y)]χ2λzdz.

Because
∂

∂z
Hα(y, z) =

Hα(y, 0)2

1− zHα(y, 0)
= O

(
ε2
)
,

∣∣ ∂
∂z

∆zhα(y)
∣∣ . ε (∣∣h′′α(y)

∣∣+
∣∣h′α(y)

∣∣) . ε2−σ,

the first integral is bounded by O
(
ε2−2σ

)
.

In {χz 6= 0}, ∣∣g′α∣∣2 . ε2 + e−
√

2Dα . ε1−σ.

Because

Hα(y, z) + ∆zhα(y) = O(ε1−σ),

the second integral is bounded by O(ε2−2σ).
Because λz = O(ε), the third integral is bounded by O(ε2−σ).

(6) Integrating by parts in z and using (18.4) leads to∫ δR

−δR

∂

∂z

(
g′′α|∇zhα|2

)
g′αχ

2λdz = −
∫ δR

−δR
g′′α|∇zhα|2

∂

∂z

(
g′αχ

2λ
)
dz . |h′α(y)|2

. ε2−2σ.

(7) For β 6= α,∫ δR

−δR
g′αχ

2λ
∂

∂z

[
g′βRβ,1 (Πβ(y, z), dβ(y, z))

]
dz = −

∫ δR

−δR

∂

∂z

[
g′αχ

2λ
]
g′βRβ,1 (Πβ(y, z), dβ(y, z)) dz.

Because ∣∣∣Rβ,1 (Πβ(y, z), dβ(y, z))
∣∣∣ . ε1−σ,
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the above integral can be controlled by

ε1−σ
∫ δR

−δR
χe−

√
2(|dα(y,z)|+|dβ(y,z)|)dz . ε1−σDα(y)e−

√
2Dα(y) . ε2−3σ.

(8) Similarly, because |Rβ,2| . ε2−2σ, we have∫ δR

−δR
g′αχ

2λ
∂

∂z

[
g′′βRβ,2 (Πβ(y, z), dβ(y, z))

]
dz = −

∫ δR

−δR

∂

∂z

[
g′αχ

2λ
]
g′′βRβ,2 (Πβ(y, z), dβ(y, z)) dz

= O(ε2−2σ).

(9) Finally, by the defintion of ξβ ,∫ 5R/6

−5R/6

η(y)2

∫ δR

−δR
g′αχ

2λ
∂ξβ
∂z

dzdy = O(ε2)

∫ 5R/6

−5R/6

η(y)2dy.

Combining all of these estimates together, we obtain∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
[W ′′(u)−W ′′(gα)] |g′α|2χ2λdz

]
dy

=
∑
β 6=α

∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
[W ′′(gα)−W ′′(1)] g′αg

′
βdz

]
λ(y, 0)dy +O(ε

4
3 )

∫ 5R/6

−5R/6

η(y)2dy.

The last integral can be computed by applying Lemma A.1, which leads to∫ 5R/6

−5R/6

η(y)2

[∫ δR

−δR
[W ′′(u)−W ′′(gα)] |g′α|2χ2λdz

]
dy (19.4)

= −4

∫ 5R/6

−5R/6

η(y)2
[
A2

(−1)α−1e−
√

2dα−1(y,0) +A2
(−1)αe

√
2dα+1(y,0)

]
λ(y, 0)dy +O(ε

4
3 )

∫ 5R/6

−5R/6

η(y)2dy.

19.4. A stability condition for the Toda system. Substituting (19.4) into (19.1) we get

0 ≤ C

∫ 5R/6

−5R/6

η′(y)2dy + Cε
4
3

∫ 5R/6

−5R/6

η(y)2dy + C

(
1

L
+ ε

)∫ 5R/6

−5R/6

η(y)2
[
e−2
√

2ρ+α (y) + e2
√

2ρ−α (y)
]
dy

− c

∫ 5R/6

−5R/6

η(y)2
[
A2

(−1)α−1e−
√

2dα−1(y,0) +A2
(−1)αe

√
2dα+1(y,0)

]
λ(y, 0)dy. (19.5)

First we have the following estimates. Because dα(y, ρ+
α (y)) = dα+1(y, ρ+

α (y)), if they are smaller than√
2| log ε|, by Lemma 8.3,

dα(y, ρ+
α (y)) = dα+1(y, ρ+

α (y)) = −1

2
dα+1(y, 0) + o(1).

Hence
e−2
√

2ρ+α (y) . ε2 + e
√

2dα+1(y,0).

A similar estimate holds for e2
√

2ρ−α (y). From these we deduce that∫ 5R/6

−5R/6

η(y)2
[
e−2
√

2ρ+α (y) + e2
√

2ρ−α (y)
]
dy ≤ Cε2

∫ 5R/6

−5R/6

η(y)2dy + C

∫ 5R/6

−5R/6

η(y)2e−
√

2Dα(y)dy.

Substituting these estimates into (19.5) leads to(
c− C

L

)∫ 5R/6

−5R/6

η(y)2
[
A2

(−1)α−1e−
√

2dα−1(y,0) +A2
(−1)αe

√
2dα+1(y,0)

]
λ(y, 0)dy (19.6)

≤ C

∫ 5R/6

−5R/6

η′(y)2dy + Cε
4
3

∫ 5R/6

−5R/6

η(y)2dy.

By choosing L large enough, we get∫ 5R/6

−5R/6

η(y)2
[
e−
√

2dα−1(y,0) + e
√

2dα+1(y,0)
]
dy ≤ C

∫ 5R/6

−5R/6

η′(y)2dy + Cε
4
3

∫ 5R/6

−5R/6

η(y)2dy. (19.7)

Remark 19.1. With a little more work and passing to the blow up limit as in Remark 14.1, we get
exactly the stability condition for the Toda system (2.10).
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20. Proof of Theorem 3.6

In this section we prove

Proposition 20.1. For any α and y ∈ (−R/2, R/2), if |fα(y)| < 2δR, then

Dα(y) ≥ 4
√

2

7
| log ε|.

First let us use this proposition to prove Theorem 3.6.

Proof of Theorem 3.6. Substituting Proposition 20.1 into (18.3), we get

‖φ‖C2,1/2(Mα(R/2)) + ‖Hα + ∆α
0hα‖C1/2(BR/2) . ε

8/7. (20.1)

By Lemma 9.6,

‖Hα‖L∞(−R/2,R/2) . ‖φ‖C2,1/2(Mα(R/2)) + ‖Hα + ∆α
0hα‖C1/2(BR/2) . ε

8/7.

Then for any |y| < R/2 and |z| < δR,

|Hα(y, z)| . |Hα(y, 0)| . ε8/7.

In Mα(R/2),

∇u = (−1)αg′α

(
∂

∂z
− h′α(y)

∂

∂y

)
+∇φ+

∑
β 6=α

(−1)βg′β
(
∇dβ − h′β(Πβ(y, z))∇Πβ(y, z)

)
,

∇2u = −(−1)αg′αh
′′
α(y)

∂

∂y
⊗ ∂

∂y
− (−1)αg′αh

′
α(y)∇ ∂

∂y
+ (−1)αg′α∇

∂

∂z

+ g′′α

(
∂

∂z
− h′α(y)

∂

∂y

)
⊗
(
∂

∂z
− h′α(y)

∂

∂y

)
+

∑
β 6=α

(−1)βg′β(y, z)(Πβ(y, z))Rβ,3 +
∑
β 6=α

g′′β(y, z)Rβ,4 +∇2φ,

where in the Fermi coordinates with respect to Γβ ,

Rβ,3 = −h′′β
∂

∂y
⊗ ∂

∂y
− h′β∇

∂

∂y
+∇ ∂

∂z
,

Rβ,4 =

(
∂

∂z
− h′α(y)

∂

∂y

)
⊗
(
∂

∂z
− h′α(y)

∂

∂y

)
.

By the estimates on φ and hα we obtain

∇u = (−1)αg′α
∂

∂z
+O

(
ε8/7

)
,

∇2u = (−1)αg′′α
∂

∂z
⊗ ∂

∂z
+O

(
ε8/7

)
.

Using these forms we obtain, for any L > 0, in M0(R/2) ∩ {|z| < L}
|∇2u|2 − |∇|∇u||2

|∇u|2
≤ C(L)ε16/7.

For any b ∈ (0, 1), there exists an L(b) such that M0(R/2) ∩ {|u| < 1 − b} ⊂ M0(R/2) ∩ {|z| < L(b)}.
Therefore this estimates holds for this domain, too.

After a rescaling we obtain |B(uε)| ≤ Cε1/7 in {|uε| < 1− b} ∩ {|x1| < 1/2, |x2| < 1/2}, and Theorem
3.6 is proven. �

Recalling the definition of Aα(r) and Dα(y) in Section 8 and Section 14. Note that Aα(r) is non-
decreasing in r while Dα(r) is non-increasing in r.

To prove Proposition 20.1, we assume α = 0 and by the contrary

A0(R/2) ≥ ε8/7. (20.2)

This implies that for any r ∈ [R/2, 4R/5], A0(r) ≥ ε8/7.
We will establish the following decay estimate.
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Lemma 20.2. There exists a constant K such that for any r ∈ [R/2, 4R/5], we have

A0

(
r −KR 4

7

)
≤ 1

2
A0(r).

An iteration of this decay estimate from r = 4R/5 to R/2 leads to

A0(R/2) ≤ 2−CK
−1R−4/7

A0(4R/5) ≤ Ce−cε
−4/7

� ε2.

This is a contradiction with the assumption (20.2). Thus we finish the proof of Proposition 20.1, provided
that Lemma 20.2 holds true.

Now let us prove Lemma 20.2. Fix an r ∈ [R/2, 4R/5] and denote ε := A0(r). We will prove

A0

(
r −Kε−1/2

)
≤ ε

2
. (20.3)

By (20.2), ε ≥ ε8/7. Thus

Kε−1/2 ≤ Kε− 4
7 = KR

4
7 ,

and

A0

(
r −KR 4

7

)
≤ A0

(
r −Kε−1/2

)
≤ ε

2
,

which is Lemma 20.2.

To prove (20.3), we need to prove that for any x∗ ∈ [−r +Kε1/2, r −Kε1/2],

e−
√

2D0(x∗) ≤ ε

2
. (20.4)

After a rotation and a translation, we may assume x∗ = 0 and

f0(0) = f ′0(0) = 0. (20.5)

By the Toda system (10.2), for any y ∈ [−Kε−1/2,Kε−1/2],

|f ′′0 (y)| . e−
√

2D0(y) + ε7/6 . ε. (20.6)

We also have a semi-bound on f±.

Lemma 20.3.

f ′′−1(y) & −e−
√

2d−1(y) − ε7/6 & −ε, (20.7)

f ′′1 (y) . e
√

2d1(y) + ε7/6 . ε. (20.8)

Proof. By (18.6),

f ′′1

(1 + |f ′1|2)
3/2

=
4

σ0

[
A2

1e
−
√

2|d10| −A2
−1e
−
√

2|d12|
]

+O(ε7/6)

≤ 4A2
1

σ0
e−
√

2|d10| +O(ε7/6).

By Lemma 8.3, either |d1
0(y)| ≤

√
2| log ε| or

d1
0(y) = d1(y) +O(ε1/3).

The bound (20.8) then follows from (20.6). In the same way we get (20.7). �

By (20.5) and (20.6), for any y ∈ [−Kε−1/2,Kε−1/2],

|f ′0(y)| ≤ Cε|y| ≤ CKε1/2. (20.9)

Substituting these into the Toda system (18.6) we obtain in (−Kε−1/2,Kε−1/2)

f ′′0 =
f ′′0

(1 + |f ′0|2)
3/2

+O(ε2)

=
4

σ0

(
A2
−1e
−
√

2d−1 −A2
1e
√

2d1
)

+O(ε2) +O(ε7/6) (20.10)

=
4

σ0

(
A2
−1e
−
√

2d−1 −A2
1e
√

2d1
)

+O(ε49/48).
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Lemma 20.4. For y ∈ [−2ε−1/2, 2ε−1/2], if |d−1(y)| ≤
√

2| log ε|, then we have

e−
√

2|d−1(y)| = e−
√

2(f0(y)−f−1(y)) +O(ε49/48);

if |d1(y)| ≤
√

2| log ε|, then we have

e−
√

2|d1(y)| = e−
√

2(f1(y)−f0(y)) +O(ε49/48).

Proof. We only prove the second identity. The first one can be proved in the same way.
As in Lemma 8.3, if |d1(y)| ≤

√
2| log ε|, we have

sup
(y−1,y+1)

∣∣f ′1 − f ′0∣∣ . ε1/2| log ε|2 . ε1/4.

Because
∣∣f ′0∣∣ . ε1/2 in [−Kε−1/2,Kε−1/2], this implies that

sup
(y−1,y+1)

∣∣f ′1∣∣ . ε1/4.
As in Lemma 8.3, from this we deduce that

d̄1(y) = f0(y)− f1(y) +O(ε1/16).

Then

e
√

2d̄1(y) = e−
√

2(f1(y)−f0(y)) +O(ε17/16).

This finishes the proof. �

By this lemma and the fact that e−
√

2D0(y) ≤ ε, in (−2ε−1/2, 2ε−1/2), (20.10) can be rewritten as

f ′′0 (y) =
4

σ0

(
A2
−1e
−
√

2[f0(y)−f−1(y)] −A2
1e
√

2[f1(y)−f0(y)]
)

+O(ε1/48). (20.11)

Now define the functions in [−K,K],

f̃α(y) := fα

(
ε−1/2y

)
− α
√

2

2
| log ε|, α = −1, 0, 1.

They satisfy

• f̃0(0) = f̃ ′0(0) = 0.

• In (−K,K), |f̃ ′′0 | ≤ C, f̃ ′′1 ≤ C and f̃ ′′−1 ≥ −C.
• In (−2, 2),

f̃ ′′0 =
4

σ0

[
A2
−1e
−
√

2(f̃0−f̃−1) −A2
1e
−
√

2(f̃1−f̃0)
]

+O(ε1/48). (20.12)

By the stability we get

Lemma 20.5. ∫ 2

−2

[
e−
√

2(f̃0−f̃−1) + e−
√

2(f̃1−f̃0)
]
≤ C

K
+ CKε1/16. (20.13)

Proof. Take a function η̄ ∈ C∞0 (−K,K) satisfying η̄ ≡ 1 in (−2, 2) and |η̄′| . K−1. Taking the test
function η in (19.7) to be η̄(ε−1/2y), we obtain∫ 2

−2

(
e−
√

2d−1(ε−1/2y) + e
√

2d1(ε−1/2y)
)
dy ≤

∫ K

−K
η̄(y)2

(
e−
√

2d−1(ε−1/2y) + e
√

2d1(ε−1/2y)
)
dy

≤ Cε

∫ K

−K
η̄′(y)2 + Cε16/15

∫ K

−K
η̄(y)2

≤ C

K
ε+ CKε16/15.

After using Lemma 20.4 and a rescaling, the left hand side can be transformed into the required form. �

The following lemma establishes (20.3), thus completes the proof of Lemma 20.2.

Lemma 20.6. If K is large enough (but independent of ε), then

max
[−1,1]

(
e−
√

2(f̃0−f̃−1) + e−
√

2(f̃1−f̃0)
)
≤ 1

2
.
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Proof. By (18.6), in (−2ε−1/2, 2ε−1/2),

f ′′1 ≤
4A2
−1

σ0
e−
√

2(f1−f0)
(
1 + |f ′1|2

)3/2
+O

(
ε7/6

)
.

By the proof of Lemma 20.4,

• either f1 − f0 ≥
√

2| log ε|, which implies that

e−
√

2(f1−f0) . ε2;

• or |f ′1 − f ′0| ≤ ε1/4, which together with (20.9) implies that∣∣f ′1∣∣ ≤ 2ε1/4.

Therefore, because e−
√

2(f̃1−f̃0) ≤ ε, we obtain

f ′′1 ≤
4A2
−1

σ0
e−
√

2(f1−f0) +O(ε7/6).

After a rescaling this gives

f̃ ′′1 ≤
4A2
−1

σ0
e−
√

2(f̃1−f̃0) +O(ε1/16), in (−2, 2).

By (20.12), (
f̃1 − f̃0

)′′
≤

8A2
−1

σ0
e−
√

2(f̃1−f̃0) +O(ε1/16), in (−2, 2). (20.14)

Then

d2

dy2
e−
√

2(f̃1−f̃0) ≥ −
√

2e−
√

2(f̃1−f̃0)
(
f̃1 − f̃0

)′′
≥ −Ce−2

√
2(f̃1−f̃0) − Cε1/16e−

√
2(f̃1−f̃0).

By the estimate of Choi-Schoen [13], there exists a universal constant η∗ such that if∫ 2

−2

e−
√

2(f̃1−f̃0) ≤ η∗, (20.15)

then

sup
[−1,1]

e−
√

2(f̃1−f̃0) ≤ 1

4
.

In (20.13), we can first choose K small and then let ε be small enough so that (20.15) holds. Then the

claim follows by proving the same bound on sup[−1,1] e
−
√

2(f̃0−f̃−1). �

Appendix A. Some facts about the one dimensional solution

It is known that the following identity holds for g,

g′(t) =
√

2W (g(t)) > 0, ∀t ∈ R. (A.1)

Moreover, as t→ ±∞, g(t) converges exponentially to ±1 and the following total energy is well defined

σ0 :=

∫ +∞

−∞

[
1

2
g′(t)2 +W (g(t))

]
dt ∈ (0,+∞).

In fact, as t→ ±∞, the following expansions hold. There exists a positive constants A1 such that for
all t > 0 large,

g(t) = 1−A1e
−
√

2t +O(e−2
√

2t), (A.2)

and a similar expansion holds as t→ −∞ with A1 replaced by another positive constant A−1. Further-
more expansion (A.2) can also be differentiated.

The following result describes the interaction between two one dimensional profiles.
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Lemma A.1. For all T > 0 large, we have the following expansion:∫ +∞

−∞
[W ′′(g(t))−W ′′(1)] [g(−t− T ) + 1] g′(t)dt = −4A2

−1e
−
√

2T +O
(
e−

4
√

2
3 T
)
. (A.3)∫ +∞

−∞
[W ′′(g(t))−W ′′(1)] [g(T − t)− 1] g′(t)dt = 4A2

1e
−
√

2T +O
(
e−

4
√

2
3 T
)
. (A.4)

Proof. We only prove the first expansion.
Step 1. Note that ∣∣W ′′(g(t))− 2

∣∣ . g′(t).
Therefore the integral in (−∞,−3T/4) is controlled by∫ −3T/4

−∞
g′(t)2g′(−t− T )dt .

∫ −3T/4

−∞
e2
√

2tdt . e−
3
√

2
2 T .

Step 2. Similarly the integral in (3T/4,+∞) is controlled by∫ +∞

3T/4

g′(t)2g′(−t− T )dt .
∫ +∞

3T/4

e−3
√

2t−
√

2T dt . e−
3
√

2
2 T .

Step 3. In (−3T/4, 3T/4),

g(−t− T ) + 1 = A−1e
−
√

2t−
√

2T +O
(
e−2
√

2t−2
√

2T
)
.

Because∣∣∣ ∫ 3T/4

−3T/4

[W ′′(g(t))− 2] g′(t)e−2
√

2t−2
√

2T dt
∣∣∣ . e−2

√
2T

∫ 3T/4

−3T/4

g′(t)2e−2
√

2tdt . Te−2
√

2T

. e−
3
√

2
2 T ,

we have∫ +∞

−∞
[W ′′(g(t))− 2] g′(t)g′(t+ T )dt = A−1e

−
√

2T

∫ 3T/4

−3T/4

[W ′′(g(t))− 2] g′(t)e−
√

2tdt+O
(
e−

3
√

2
2 T
)
.

As in Step 1 and Step 2, we have∣∣∣ ∫ −3T/4

−∞
[W ′′(g(t))− 2] g′(t)e−

√
2tdt

∣∣∣ . e− 3
√

2
4 T ,

∣∣∣ ∫ +∞

3T/4

[W ′′(g(t))− 2] g′(t)e−
√

2tdt
∣∣∣ . e− 3

√
2

4 T .

Therefore∫ +∞

−∞
[W ′′(g(t))− 2] [g(−t− T ) + 1] g′(t)dt = A−1e

−
√

2T

∫ +∞

−∞
[W ′′(g(t))− 2] g′(t)e−

√
2tdt+O

(
e−

3
√

2
2 T
)
.

Step 4. It remains to determine the integral∫ +∞

−∞
[W ′′(g(t))− 2] g′(t)e−

√
2tdt.

Note that g′ satisfies
g′′′ − 2g′ = [W ′′(g(t))− 2]g′.

As in Step 1 and Step 2, we have∫ +∞

−∞
[W ′′(g(t))− 2] g′(t)e−

√
2tdt = lim

L→+∞

∫ L

−L
[W ′′(g(t))− 2] g′(t)e−

√
2tdt

= g′′(L)e−
√

2L +
√

2g′(L)e−
√

2L −
[
g′′(−L)e

√
2L +

√
2g′(−L)e

√
2L
]

= −4A−1 +O(e−2
√

2L).

Letting L→ +∞ we finish the proof. �

Next we discuss the spectrum of the linearized operator at g, i.e. L = − d2

dt2 + W ′′(g(t)). By a direct
differentiation we see g′(t) is an eigenfunction of L corresponding to eigenvalue 0. By (A.1), 0 is the
lowest eigenvalue. In other words, g is stable. By a contradiction argument, we have
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Theorem A.2. There exists a constant µ > 0 such that for any ϕ ∈ H1(R) satisfying∫ +∞

−∞
ϕ(t)g′(t)dt = 0, (A.5)

we have ∫ +∞

−∞

[
ϕ′(t)2 +W ′′(g(t))ϕ(t)2

]
dt ≥ µ

∫ +∞

−∞
ϕ(t)2dt.

Appendix B. Derivation of (10.2)

We only give estimates on a couple of terms in (10.1). Other terms can be estimated by integrating
by parts in z and applying (8.8)-(8.13).

B.1. Horizontal terms. Differentiating (13.2) twice leads to∫ δR

−δR

∂φ

∂yi
g′α + (−1)αφg′′α

∂hα
∂yi

= 0, (B.1)

∫ δR

−δR

∂2φ

∂yi∂yj
g′α + (−1)α

∂φ

∂yi
g′′α
∂hα
∂yj

+ (−1)α
∂φ

∂yj
g′′α
∂hα
∂yi

+ (−1)αφg′′α
∂2hα
∂yi∂yj

+ φg′′′α
∂hα
∂yi

∂hα
∂yj

= 0. (B.2)

Therefore∫ δR

−δR
∆0φ(y, z)g′α = (−1)α−1∆0hα

∫ δR

−δR
φg′′α + 2(−1)α

∫ δR

−δR
gij(y, 0)

∂φ

∂yi
∂hα
∂yj

g′′α − |∇0hα|2
∫ δR

−δR
φg′′′α .

(B.3)
Then by (8.13),∫ δR

−δR
∆zφ(y, z)g′α =

∫ δR

−δR
∆0φ(y, z)g′α +O (ε)

∫ δR

−δR

(
|∇2

yφ(y, z)|+ |∇yφ(y, z)|
)
|z|e−

√
2|z|dz

= (−1)α−1∆0hα

∫ 6| log ε|

−6| log ε|
φg′′α +O(|∇hα(y)|2)

∫ 6| log ε|

−6| log ε|
|φ(y, z)|e−

√
2|z|dz

+ O(|∇hα(y)|+ ε)

∫ 6| log ε|

−6| log ε|

(
|∇2

yφ(y, z)|+ |∇yφ(y, z)|
)

(1 + |z|) e−
√

2|z|dz (B.4)

= (−1)α−1∆0hα

∫ 6| log ε|

−6| log ε|
φg′′α

+ O(|∇hα(y)|+ ε) sup
(−6| log ε|,6| log ε|)

(
|∇2

yφ(y, z)|+ |∇yφ(y, z)|+ |φ(y, z)|
)
e−(
√

2−σ)|z|.

B.2. Interaction terms. To determine the integral∫ δR

−δR

W ′(g∗)−∑
β

W ′(gβ)

 g′α,
consider for each β, the integral on (−δR, δR) ∩Mβ , which is an interval (ρ−β (y), ρ+

β (y)). If β 6= α, by

Lemma 9.4, in (ρ−β (y), ρ+
β (y)),∣∣∣W ′(g∗)−∑

β

W ′(gβ)
∣∣∣ . e−√2(|dβ |+|dβ−1|) + e−

√
2(|dβ |+|dβ+1|) + ε2.

We only consider the case β > α and estimate∫ ρ+β (y)

ρ−β (y)

e−
√

2(|dβ |+|dβ−1|)g′α.

If |z|, |dβ | and |dβ−1| are all smaller than 6| log ε|, by Lemma 8.3,

dβ(y, z) = z + dβ(y, 0) +O(ε1/3), (B.5)

dβ−1(y, z) = z + dβ−1(y, 0) +O(ε1/3). (B.6)

Note that since β > α, z > 0 while dβ(y, 0) < dβ−1(y, 0) ≤ 0.
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We have∫ ρ+β (y)

ρ−β (y)

e−
√

2(|dβ |+|dβ−1|)g′α .
∫ ρ+β (y)

ρ−β (y)

e−
√

2(|z|+|z+dβ−1(y,0)|+|z+dβ(y,0)|)

.
∫ −dβ(y,0)

ρ−β (y)

e−
√

2(z+dβ−1(y,0)−dβ(y,0)) +

∫ ρ+β (y)

−dβ(y,0)

e−
√

2(3z+dβ−1(y,0)+dβ(y,0))

. e−
√

2(dβ−1(y,0)−dβ(y,0))−
√

2ρ−β (y) + e−
√

2(dβ−1(y,0)−2dβ(y,0)).

By definition, −dβ(y, ρ−β (y)) = dβ−1(y, ρ−β (y)). Thus by (B.5) and (B.6),

ρ−β (y) = −dβ−1(y, 0) + dβ(y, 0)

2
+O(ε1/3).

Substituting this into the above estimate gives∫ ρ+β (y)

ρ−β (y)

e−
√

2(|dβ |+|dβ−1|)g′α . e
−
√

2
2 (dβ−1(y,0)−3dβ(y,0)) + e−

√
2(dβ−1(y,0)−2dβ(y,0)).

If β = α+ 1, because dβ−1(y, 0) = 0, this is bounded by O(e
3
√

2
2 dα+1(y,0)).

If β ≥ α+ 2, this is bounded by O(e
√

2dα+2(y,0)).
It remains to consider the integration in (ρ−α (y), ρ+

α (y)). In this case we use Lemma 9.3, which gives∫ ρ+α (y)

ρ−α (y)

W ′(g∗)−∑
β

W ′(gβ)

 g′α (B.7)

=

∫ ρ+α (y)

ρ−α (y)

[W ′′(gα)− 2]
[
gα−1 − (−1)α−1

]
g′α + [W ′′(gα)− 2] [gα+1 + (−1)α] g′α

+

∫ ρ+α (y)

ρ−α (y)

[
O
(
e−2
√

2dα−1 + e2
√

2dα+1

)
+O

(
e−
√

2dα−2−
√

2|z| + e
√

2dα+2−
√

2|z|
)]
g′α.

Because g′α . e
−
√

2|z| and e−2
√

2dα−1 . e−2
√

2dα−1(y,0)−2
√

2z + ε2, we get∫ ρ+α (y)

ρ−α (y)

e−2
√

2dα−1g′α . ε2 + e−2
√

2dα−1(y,0)

[∫ 0

ρ−α (y)

e−
√

2zdz +

∫ ρ+α (y)

0

e−3
√

2zdz

]
. ε2 + e−2

√
2dα−1(y,0)−

√
2ρ−α (y)

. ε2 + e−
3
2

√
2dα−1(y,0).

Similarly, we have ∫ ρ+α (y)

ρ−α (y)

e2
√

2dα+1g′α . ε
2 + e

3
2

√
2dα+1(y,0),

∫ ρ+α (y)

ρ−α (y)

O
(
e−
√

2dα−2−
√

2|z| + e
√

2dα+2−
√

2|z|
)
g′α . e

−
√

2dα−2 + e
√

2dα+2 .

To determine the first integral in (B.7), arguing as above, if both g′α and gα−1− (−1)α−1 are nonzero,
then

gα−1(y, z) = ḡ
(

(−1)α(z + dα−1(y, 0) + hα−1(Πα−1(y, z)) +O(ε1/3))
)
.

Therefore ∫ ρ+α (y)

ρ−α (y)

[W ′′(gα)− 2]
(
gα−1 − (−1)α−1

)
g′α

=

∫ ρ+α (y)

ρ−α (y)

[
W ′′

(
ḡ
(
(−1)α−1(z − hα(y))

))
− 2
]
ḡ′
(
(−1)α−1(z − hα(y))

)
×
[
ḡ
(

(−1)α(z + dα−1(y, 0) + hα−1(Πα−1(y, z)) +O(ε1/3))
)
− (−1)α−1

]
dz

=

∫ +∞

−∞

[
W ′′

(
ḡ
(
(−1)α−1(z − hα(y))

))
− 2
]
ḡ′
(
(−1)α−1(z − hα(y))

)
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×
[
ḡ
(

(−1)α(z + dα−1(y, 0) + hα−1(Πα−1(y, z)) +O(ε1/3))
)
− (−1)α−1

]
dz

+ O(e−
3
√

2
2 dα−1(y,0))

= (−1)α4A2
(−1)αe

−
√

2dα−1(y,0) +O
(
|hα(y)|+ |hα−1(Πα−1(y, z))|+ ε1/3

)
e−
√

2dα−1(y,0)

+ O(e−
3
√

2
2 dα−1(y,0)).

In conclusion we get∫ δR

−δR

W ′(g∗)−∑
β

W ′(gβ)

 g′α
= (−1)α

[
4A2

(−1)αe
−
√

2dα−1(y,0) − 4A2
(−1)α−1e

√
2dα+1(y,0)

]
+O(ε2)

+ O
(
|hα(y)|+ |hα−1(Πα−1(y, z))|+ ε1/3

)
e−
√

2dα−1(y,0)

+ O
(
|hα(y)|+ |hα+1(Πα+1(y, z))|+ ε1/3

)
e
√

2dα+1(y,0)

+ O(e−
3
√

2
2 dα−1(y,0)) +O(e

3
√

2
2 dα+1(y,0)) +O(e−

√
2dα−2(y,0)) +O(e

√
2dα+2(y,0)).
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