FINITE MORSE INDEX IMPLIES FINITE ENDS

KELEI WANG AND JUNCHENG WEI

ABSTRACT. We prove that finite Morse index solutions to the Allen-Cahn equation in R? have finitely
many ends and linear energy growth. The main tool is a curvature decay estimate on level sets
of these finite Morse index solutions, which in turn is reduced to a problem on the uniform second order
regularity of clustering interfaces for the singularly perturbed Allen-Cahn equation in R™. Using an
indirect blow-up technique, in the spirit of the classical Colding-Minicozzi theory in minimal surfaces,
we show that the obstruction to the uniform second order regularity of clustering interfaces in R" is
associated to the existence of nontrivial entire solutions to a (finite or infinite) Toda system in R*~1.
For finite Morse index solutions in R?, we show that this obstruction does not exist by using information
on stable solutions of the Toda system.

1. INTRODUCTION

The intricate connection between the Allen-Cahn equation and minimal surfaces is best illustrated by
the following famous De Giorgi’s Conjecture [21].

Conjecture. Let u € C?(R") be a solution to the Allen-Cahn equation
~Au=u—u® inR" (1.1)
satisfying 0., u > 0. If n <8, all level sets {u = A} of u must be hyperplanes.

In the last twenty years, great advances in De Giorgi’s conjecture have been achieved, having been
fully established in dimensions n = 2 by Ghoussoub and Gui [37] and for n = 3 by Ambrosio and Cabre
[2]. A celebrated result by Savin [67] established its validity for 4 < n < 8 under an extra assumption
that

lim  wu(z',z,) = £1. (1.2)

Tp—>Eo00
On the other hand, Del Pino, Kowalczyk and Wei [24] constructed a counterexample in dimensions n > 9.

After the classification of monotone solutions, it is natural to consider stable solutions. Unfortunately
this has been less successful. The arguments in [2, 22, 37] imply that all stable solutions in R? are one-
dimensional. On the other hand, Pacard and Wei [63] found a nontrivial stable solution in R®. This is
later shown to be also global minimizer [58]. (For local minimizers or stable solutions in bounded domains
we refer to Modica [62], Kohn-Sterberg [49], Le [55], Sternberg-Zumbrun [72], Tonegawa-Wickramasekera
[75] and the references therein.)

In this paper we consider a more difficult problem of classification of finite Morse index solutions
in R2. Finite Morse index is a spectrum condition which is hard to use to obtain energy estimate. In
the literature, another condition—finite-ended solutions—is used. Roughly speaking a solution is called
finite-ended if the number of components of the nodal set {u = 0} is finite outside a ball. (In fact more
restrictions are needed, see del Pino, Kowalczyk and Pacard [23], Gui [41].) Analogous to the structure
of minimal surfaces with finite Morse index ([35, 43, 44]), a long standing conjecture is that finite Morse
index solutions to the Allen-Cahn equation in R? have linear energy growth and hence finitely many ends
(see [41, 25]). In this paper we will prove this conjecture by establishing a curvature decay estimate
on level sets of these finite Morse index solutions.

This curvature estimate is similar to the one for stable minimal surfaces established by Schoen in [70].
However, the key tool used in minimal surfaces is the so-called Simons type inequality [71] which has
no analogue for semilinear elliptic equations. (The closest one may be the so-called Sternberg-Zumbrun
inequality [72] for stable solutions.) Here an indirect blow up method will be employed in this paper. Our
blow-up procedure is inspired by the groundbreaking work of Colding and Minicozzi on the structure of
limits of sequences of embedded minimal surfaces of fixed genus in a ball in R? ([14, 15, 16, 17, 18, 19]).
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We prove the curvature estimate by studying the uniform second order regularity of clustering interfaces
in the singularly perturbed Allen-Cahn equation. It turns out the uniform second order regularity does
not always hold true and the obstruction is associated to the existence of nontrivial entire solutions to
the Toda system

—Afy = e~ V2(fari—fa) _ e*‘/i(f“*f“*l), in R"71. (1.3)

This connection between the Allen-Cahn equation and the Toda system was previously used in [23, 25,
27] to construct solutions to the Allen-Cahn equation with clustering interfaces. The analysis of clustering
interfaces started in Hutchinson-Tonegawa [46]. It is shown that the energy at the clustered interfaces is
quantized. In [73, 75], the convergence of clustering interfaces as well as regularity of their limit varifolds
were studied. However, the uniform regularity of clustering interfaces (see [74]) and precise behavior of
the solutions near the interfaces and the connection to Toda system (except some special cases such as two
end solutions in R3 studied in [42]) are still missing. In this paper we give precise second order estimates
and show that when clustering interfaces appear, then a suitable rescaling of these interfaces converge
to the graphs of a solution to the Toda system. It is through this blow up procedure we reduce the
uniform second order regularity of interfaces to the non-existence of nontrivial entire stable solutions to
the Toda system. We also show that the stability condition is preserved in this blow up procedure. Then
using results on stable solutions of the Toda system, we establish the uniform second order regularity of
interfaces for stable solutions of the singularly perturbed Allen-Cahn equation, and then the curvature
estimate for finite Morse index solutions in R2.

For other related results on De Giorgi conjecture for Allen-Cahn equation, we refer to [1, 8, 31, 32, 33,
34, 38, 48, 69, 76] and the references therein.

2. MAIN RESULTS
We consider general Allen-Cahn equation
Au=W'(u), |ul <1, in R" (2.1)
where W (u) is a double well potential, that is, W € C3([—1,1]) satisfying
e W>0in(—1,1) and W(£1) = 0;
o W/(£1)=0and W"(-1)=W"(1) =2
e there exists only one critical point of W in (—1, 1), which is assumed to be 0.
A typical model is given by W (u) = (1 — u?)?/4.
Under these assumptions on W, it is known that there exists a unique solution (up to a translation)
to the following one dimensional problem

'O =W(gt), g0)=0 and lim g(t)==+. (22)

After a scaling u.(z) := u(e~1x), we obtain the singularly perturbed version of the Allen-Cahn equa-
tion:

eAu, = }W'(us) in R"™. (2.3)
€

2.1. Finite Morse index solutions. We say a solution u € C?(R") has finite Morse index if there is
a finite upper bound on its Morse index in any compact set. By [28], this is equivalent to the condition
that u is stable outside a compact set, that is, there is a compact set K C R™ such that

Qp) = / Vo2 + W (w)e? > 0, Vo € CF(R™\ K).
]Rn

Classifying finite Mores index solutions is in general a difficult task, even in dimension n = 2. In
R? we know that stable solutions (Morse index 0) are one dimensional, i.e. after rigid motions in R?
u(zy,x2) = g(x2). Since the finite Morse index is a difficult condition to use, another class of solutions—
finite-ended solutions—has been introduced by del Pino, Kowalczyk and Pacard [23], which we recall
here.

Definition 2.1. A solution u is said to be a finite-ended solution to the Allen-Cahn equation (2.1) in
R? if there exist k oriented half lines {aj - x +b; =0},j =1,....k, (for some choices of a; € R?, |a;| =1
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and b; € R), such that along these half lines and away from a compact set K containing the origin, u is
asymptotic to g(a;x + b;), that is, there exist positive constants C,c > 0 such that

k
lu(z) =Y (1) g(aja + b)) Lo i) < Ce™eI7, (2.4)

Jj=1

The set of k—ended solutions is denoted by My. A simple counting of nodal domains shows that &
must be even. In [23], it is shown that L? convergence implies (2.4). Furthermore it was shown [23]
that My, is a smooth k-dimensional Banach manifold in neighborhoods of u satisfying nondegeneracy
conditions.

Gui ([40, 41]) showed that if the nodal sets {u = 0} is finite outside a compact set, and each component
is contained by a non-overlapping cone, then u € Mj. Moreover he also derived the Halmitonian identity
and proved that the following balancing condition holds

k
> a;=0. (2.5)

All two-ended solutions are one-dimensional. Near each end the solution approaches to the one-
dimensional profile exponentially, see Del Pino-Kowalczyk-Pacard [23], Gui [40] and Kowalczyk-Liu-
Pacard [50, 51, 52]. The existence of multiple-ended solutions and infinite-ended solutions to Allen-Cahn
equation in R? have been constructed in [3, 26, 53, 54]. The structure and classification of four end
solutions have been studied extensively in [41, 23, 50, 51, 52]. It is shown that the four-ended solutions
have even symmetries and the moduli space of four-ended solutions is one-dimensional.

A long standing and important question is
Question: Does finite Morse index solution have finite ends?
Our first main result gives a positive answer to the above question:

Theorem 2.2. Suppose u is a finite Morse index solution of (2.1) in R%. Then there exists k € N such
that w € My, i.e., u is a finite-ended solution. Moreover, u has linear energy growth, i.e., there exists a
constant C' such that

1
/ [|Vu|2 + W(u)] <CR, VR>1. (2.6)
Br(0) 2

As a byproduct of our analysis, for solutions with Morse index 1 we can show that
Theorem 2.3. Any solution to (2.1) in R? with Morse index 1 has four ends.

Remark 2.4. The linear growth condition (2.6) implies that the nodal set {u = 0} has finite length at
0o. In R™ the analogue energy bound

1
/ {|Vu|2 + W(u)} <C R VR>1 (2.7)
Br(0) 2

is a classical assumption in the setting of semilinear elliptic equations (see e.g. Hutchinson-Tonegawa
[46]). It is satisfied by minimizers or monotone solutions satisfying (1.2). This is precisely the use of
(1.2) in Savin’s proof of De Giorgi’s conjecture ([67]). (See also Ambrosio-Cabre [2] and Alberti-Ambrosio-
Cabre [1].) In dimensions 4 and 5, condition (2.7) is also an essential estimate in Ghoussoub-Gui [38].
A similar area bound for minimal hypersurfaces seems to be also crucial for the study of Stable Bernstein
Conjecture when the dimension is larger than 3. (Only three dimension case has been solved in [29, 36].
See also [11, 56, 57].)

Remark 2.5. In a recent paper [59], Mantoulidis showed that for 2m-ended solutions the Morse indez is
at least m — 1.

The main tool to prove Theorem 2.2 is the following curvature estimate on level sets of u (see Theorem
3.5 and Theorem 3.8 below):
Key Curvature Estimates (Theorem 3.5): For any solution of (2.1) in R? with finite Morse index
and b € (0,1), there exist a constant C' and R = R(b) such that

[V2u(@)? = [V[Vu(2)]?
[Vu(z)? '

||

|B(u)(z)| < < for x € {|u| <1 —=b} N (Bgrr(0))°,  where |B(u)(z)| = \/
(2.8)
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This curvature decay is similar to Schoen’s curvature estimate for stable minimal surfaces [70], however
the proof is quite different. This is mainly due to the lack of a suitable Simons type inequality for
semilinear elliptic equations. Hence an indirect method is employed, by introducing a blow up procedure
and reducing the curvature decay estimate to a second order estimate on interfaces of solutions to (2.3),
see Theorem 3.6 below.

2.2. Second order estimates on interfaces. It turns out that our analysis on the uniform second
order regularity of level sets of solutions to the singularly perturbed Allen-Cahn equation (2.3) works in
a more general setting and any dimension n > 2. In Part II of this paper we give precise analysis in the
case of clustering interfaces. More precisely we assume that
(H1) wu. is a sequence of solutions to (2.3) in C, = By~ x (=1,1) C R", where £ — 0;
(H2) there exists @ € N, b € (0,1) and t. € (—1+4b,1—1b) such that {u. = t.} consists of Q connected
components

Fa,fs:{xn:fa,a(x/)a z' = (x17"' 7xn) GBg_l}, a=1,--- 7Qa

where —1/2 < f1. < for < -+ < fo. <1/2;
(H3) for each «, f, . are uniformly bounded in Lip(Bj ') and they converge to the same limit f., in
Cioc(By™1).

Here @ is called the multiplicity of the interfaces. Analyzing clustering interfaces is one of main
difficulties in the study of singularly perturbed Allen-Cahn equations. See e.g. [46, 73, 75, 74]. In
particular, it is not known if flatness implies uniform C? regularity when there are clustering interfaces
(i.e. the Lipschitz regularity in the above hypothesis (H3)).

Under these assumptions, it can be shown that f., satisfies the minimal surface equation (see [46])

vfoo _ in n—1
v (W) =0 R™™. (2.9)

Because fo is Lipschitz, by standard elliptic estimates on the minimal surface equation [39, Chapter 16],
foo € Ci(By7H).
We want to study whether f, . converges to f in C?

2 (By~1). Tt turns out this may not be true and
the obstruction is related to a Toda system

Afq(z') = Ale*ﬁ(fa(x’)*fa—l(ﬂ?')) _ AQE*\/E(faH(I')*fa(ﬂE/)), reR"E 1<a<@, (2.10)
where Q' < @, A; and A are positive constants.
More precisely, we show

2 (By™1), then a suitable rescaling of them converge
to a nontrivial entire solution to the Toda system (2.10).

Theorem 2.6. If f, . does not converge to fo in C?

For the multiplicity one case Q = 1, we get the following uniform C?? estimate.

Theorem 2.7. If {u. =0} = {z, = fo(x1, - ,xn_1)}, then for any 0 € (0,1), f. are uniformly bounded
in CEO(ByY).

loc

These results answer partly a question of Tonegawa [74] and improves the uniform C'? estimate in
Caffarelli-Cordoba [10] to the second order C2¢ estimate.

The main idea in the proof of these two theorems relies on the determination of the interaction
between I', .. To this aim, we introduce the Fermi coordinates with respect to I', . and near each I', .
we find the optimal approximation of u. along the normal direction using the one dimensional profile g
and the distance to I'y .. More precisely, we use an approximate solution in the form

<diStFa_E — ha@)
gl —=——" .
g

Here hq . is introduced to make sure that this is the optimal approximation along the normal direction
with respect to I', .. With this construction, using the nondegeneracy of g, we can get a good estimate on
the error between u. and these approximate solutions, which in turn shows that the interaction between
I'y ¢ is exactly through the Toda system

A foa,e=Ffa—1, A fat1,e—fa,e
167\/5% _ 7267\/5%

Afge=— 5 + high order terms.
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Using this representation, we show that the uniform second order regularity of f, . does not hold only if
the lower bound of intermediate distances between I'y, . is of the order

V2
2
(Here the constant v/2 = \/W”(1).) Moreover, if this is the case, the rescalings

elloge| + O(e). (2.11)

1

~ 1 1 \/504
fae(@) = gfa,s (s?x’) — ?| log |

converges to a solution of (2.10).

In other words, if intermediate distances between I',, . are large (compared with (2.11)), the interaction
between different interfaces is so weak enough that it does not affect the second order regularity of f, ..
In particular, if there is only one component and hence no interaction between different components, we
get Theorem 2.7.

In Theorem 3.6, the situation is a little different where more and more connected components of
{ue = 0} could appear. However, the above discussion still applies. This is because, by using the stability
condition, we can get an explicit lower bound on intermediate distance between different components of
{us = 0} which is just a little smaller than (2.11). To get a lower bound higher than (2.11), we use the
stability of f, . (as a solution to the approximate Toda system) inherited from u.. By this stability and

foe—Fa—1e | . .
a classical estimate of Choi-Schoen [13], we get a decay estimate of e V2 === in the interior. In

7\/§fay€’fa—1.5
e

some sense e replaces the role of the curvature in minimal surface theory.

We also would like to call readers’ attention to the resemblance of pictures here (especially when we
consider R? and not only R?) with the multi-valued graph construction in seminal Colding-Minicozzi
theory [14, 15, 16, 17, 20]. When the number of connected components of {u. = 0} goes to infinity and
we do not assume the stability condition, the blow up procedure as in Theorem 2.6 produces a solution to
the Toda lattice (i.e. in (2.10) the index « runs over integers Z). The difference is that, different sheets of
minimal surfaces do not interact (in other words, interact only when they touch) while different sheets of
interfaces in the Allen-Cahn equation have an exponential interaction. It is this exponential interaction
leading to the Toda system. We notice that in a recent paper [47], Jerison and Kambrunov also performed
a similar blow-up procedure for the one-phase free boundary problem in R2. The difference is again that
different sheets of free boundaries do not interact.

Organization of the paper. This paper is divided into three parts. Part I is devoted to the analysis of
finite Morse index solutions, by assuming the curvature decay estimate. In Part IT we study the second
order regularity of interfaces and prove Theorem 2.6 and Theorem 2.7. Techniques in Part II are modified
in Part IIT to prove the curvature decay estimate needed in Part I. Some technical calculations in Part
IT are collected in the Appendix.

Acknowledgement. The research of J. Wei is partially supported by NSERC of Canada and the Cheung-
Kong Chair Professorship. K. Wang is supported by NSFC no. 11631011 and “the Fundamental Research
Funds for the Central Universities”. We thank Professor Changfeng Gui for useful discussions and
Dr. Mantoulidis for some suggestions. K. Wang is also grateful to Yong Liu for several enlightening
discussions.

Part 1. Finite Morse index solutions

In this part we study finite Morse index solutions of (2.1) in R? and prove Theorem 2.2 and Theorem
2.3, by assuming the curvature decay estimates Theorem 3.5 and Theorem 3.8, which is based on Theorem
3.6 whose proof is given in Part III. Throughout this section we always assume that n = 2 and that w is
a finite Morse index solution to (2.1).

3. CURVATURE DECAY

The following characterization of stable solutions is well known (see for example [2, 22, 37]).

Theorem 3.1. Let u be a stable solution of (2.1) in R?, then there exists a unit vector € € R? andt € R
such that u(x) = g(z - &€ —t), Vo€ R2

Since u has finite Morse index, u is stable outside a compact set. As a consequence we then obtain
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Lemma 3.2. For any b € (0,1), there exist ¢(b) > 0, R(b) > 0 such that, for x € {|u| <1—-0b}\ Brw)(0),
|Vu(z)| > c(b).

Proof. If the claim were false, there would exist a sequence of z; € {|u| <1 —b}, z; — oo, but
|Vu(z;)] — 0. (3.1)

Let u;(z) := u(z;+x). By standard elliptic estimates and the Arzela-Ascoli theorem, up to a subsequence,
u; converges to a limit ue in C7_(R?). Because u is stable outside a compact set, un is stable in R?.
Then by Theorem 3.1, us is one dimensional. In particular, [Vus| # 0 everywhere. However, by passing
to the limit in (3.1), we get

[Vueo (0)| = lim |Vu;(0)] = lm |Vu(z;)| =0.

i——+00 i——+00

This is a contradiction. O

The proof also shows that u is close to one dimensional solutions at infinity.

The following lemma shows that the nodal set {u = 0} cannot be contained in any bounded set.

Lemma 3.3. For any solution of (2.1) in R? with finite Morse index, if u is not constant, then {u = 0}
s unbounded.

Proof. Assume by the contradiction, u > 0 outside a ball Bg(0). By Lemma 3.2 and the fact that the
only positive solution to the one dimensional Allen-Cahn equation is the constant function 1, we see
u(z) — 1 uniformly as |x| — +o00. For u near 1, W'(u) < —¢(1 — u) for some positive constant ¢ > 0.
Thus by comparison principle we get two constants C' and R such that, for any = € B§,

|z|—-R

u(z) >1—-Ce” " . (3.2)

Then by standard elliptic estimates or Modica’s estimates ([61]),

IVu(z)| < /2W(u) < Ce™ e (3.3)

Recall that the Pohozaev type equality on ball B,.(0) is

/BT 2 () = r/aBT %|Vu|2 W () (g:“f)z.

For r > R, substituting (3.2) and (3.3) into the right hand side, we get

/ 2W(u) < Cre="o".
B,

Letting r — 400 leads to
W(u) = 0.
R2
Hence either u =1 or u = —1. O

If |[Vu(x)| # 0, denote
Vu(zx)
v(r) == ———=, and B(u)(z)= Vv(z). 34
(@)= o) (w)(@) = V( (3.4
If [Vu(z)| # 0, locally {u = u(x)} is a C? curve, thus its curvature H is well defined. Then
Viu(a)|? — |V2u() - v(z)?
B 2 — |
B(w)(x) —

= H(x)? +|Vr log [Vu(z)|]%, (3.5)

where Vr is the tangential derivative along the level set of u, see [72, 73].

Corollary 3.4. For any b € (0,1), |B(u)(x)|? is bounded in (R* \ Br()(0)) N {|u| < 1 —b}. Moreover,
for x € (R?\ Bre)(0)) N {|u| <1 =0}, if v — oo, |B(u)(z)]?> — 0.

Proof. The first claim follows from the fact that |V?u|? is bounded in R? and the lower bound on |Vu| in
Lemma 3.2. The second claim also follows from Lemma 3.2, by noting that for one dimensional solutions
|B(g)| = 0. O

Now we give the following key estimate on the decay rate on |B(u)(z)| at infinity.
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Theorem 3.5. For any solution of (2.1) in R? with finite Morse index and b € (0,1), there evists a
constant C' such that

|B(u)(x)| < |i|, for x € {|u| <1 -0} N Bre)(0)°.

To prove this theorem, we argue by contradiction. Take X’ to be the complete metric space {|u| < 1—b}

with the extrinsic distance and I' := X' N Br;)(0). Assume there exists a sequence of X}, € A\ T,
| B(X})|dist(X,T") > 2k. By the doubling lemma in [64], there exist Y}, € X \ T" such that

[B(Yi)| = [B(X)l,  [B(Yg)|dist(Y,I') > 2k,
|B(Z)| < 2[B(Yy)| for Z € By p(vi) -1 (Yk).
Let ¢, := |B(Y%)| and define uy(z) := u(yy, + &, 'x). Note that
dist (Y, T) > 2k|B(Yy)| ™ . (3.6)

By Corollary 3.4, |Yi| — +o0 and e — 0.
In B (0), uy is a solution of (2.3) with the parameter ¢;. By (3.6), uy is stable in By (0).
For X € Bk(O) n {|uk| <1- b},

|B(ur)(X)] < 2. (3.7)
On the other hand, by the above construction we have
|B(ux) (0)] = 1. (3.8)

The bound on |By| implies that, for any X € {|ux| < 1 — b} N Bk(0), {ur = ux(X)} N By/s(X) can be
represented by the graph of a function with a uniform C'! bound, cf. [20, Chapter 2, Lemma 2.4].
The following theorem leads to a contradiction with (3.8) and the proof of Theorem 3.5 is thus finished.

Theorem 3.6. Suppose u. is a sequence of stable solutions to (2.3) in C1(0) satisfying for some constant
be (0,1) and C > 0 independent of €,

IB(u.)| < C, in {|uc| < 1—b}n By (0).

Then for all € small,
sup |B(u.)| < Cel/7.
{luel<1-b}NB1/2(0)

The proof will be postponed to Part II1. Here we only note that under the assumptions of this theorem,
locally the level set of u. is a family of graphs. For example, after a rotation, assume that the connected
component of {u. = u.(0)} N By/3(0) passing through 0 (denoted by X.) is represented by the graph
{z2 = fo(x1)}, where f.(0) = f.(0) = 0. By the curvature bound (3.7), |f/| < 32 in [-1/8,1/8]. By
these bound, after passing to a subsequence, we can assume f. converges to fs, in C*([—1/8,1/8]).

There are two cases.

e Case 1. {x5 = f.(z1)} is an isolated component of {u. = u-(0)}. In other words, there exists
an h > 0 independent of & such that {u. = u.(0)} N Bp(0) = {z2 = f-(x1)}.
e Case 2. There exists a sequence of points on other components of {u. = u.(0)}NB;/5(0) disjoint
from Y., converging to a point on ..
The following simple lemma can be proved by combining the curvature bound (3.7) with the fact that
different connected components of {u. = u.(0)} are disjoint. (This fact has been used a lot in minimal
surface theory, in particular, in [15].)

Lemma 3.7. There exist two universal constants h and C(h) such that if a connected component T' of
{ue = u:(0)} N Bys(0) (other than X.) intersects By(0), then I'N By (0) can be represented by the graph
{2 = fe(21)}, where || felcr1(j—2n,2n)) < C(h).

Using this lemma, we deduce that under the assumptions in Theorem 3.6, the nodal set of u. is given

by Ua{z2 = fac(21)}, where |fy .(1)| < 64 for every a and z; € (—1,1). Here the cardinality of the
index set « could remain uniformly bounded or go to infinite.

In the above we do not use the full power of Theorem 3.6. In fact, we can improve Theorem 3.5 to a
higher order decay rate.

Theorem 3.8. There exists a constant C such that

C
B < e Jorw € {Jul < 1= bE 1 By 0"
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Proof. Take an arbitrary sequence X € {|u| < 1 —b} — co. Denote ¢j, := |B(u)(X})|, which converges
to 0 as k — oo. Let ug(z) := u(Xy, + &5 ' @), which is a solution of (2.3) with parameter e
By Theorem 3.5, x| X| < C and for any = € {|u| <1 —b} N Bx,|/2(Xk),
c 2C
|B(u)(z)] < 7] < X < 2C¢y,.
Thus after a scaling, there exists a constant p € (0,1/2) independent of k such that in B,(0), uj satisfies
the assumptions of Theorem 3.6. Note that for all k large, u is stable in B‘XH/Q(X;C). Hence uy is stable

in B,(0). Applying Theorem 3.6 gives |B(ux)(0)| < 0511/7’ Rescaling back we get the desired bound on
| B(u)(Xk)| A

4. LIPSCHITZ REGULARITY OF NODAL SETS AT INFINITY

First using Theorem 3.8 and proceeding as in [77], we can show that there are at most finitely many
connected components of {u = 0}. This is achieved by choosing the smallest ball centered at the origin
which contains a bounded connected component of {u = 0} and comparing their curvatures at the contact
point.

In the following we take a constant Ry > R(1/2) so that u is stable outside Br,(0). We first give a
chord-arc bound on {u = 0}.

Lemma 4.1. Let ¥ be a unbounded connected component of {u = 0} \ Bg,(0) and X (t) be an arc length
parametrization of 3, where t € [0,400). Then there exists a constant ¢ such that for any t large,

|X (&) = clt].

Proof. Because ¥ is a smooth embedded curve diffeomorphic to [0, 4+00), if t — 400, | X (¢)| — +o0.
By direct differentiation and applying Theorem 3.8, we obtain

d? 2 dX |2 d>X C
L x :2‘— 2X(t)- L) 32— ——_>1,
dt2| ol al T ®) dt? )2 | X (t)]1/8 —
for all ¢ large. Integrating this differential inequality we finish the proof. 0

Keeping assumptions as in this lemma, we can further show that

Proposition 4.2. The limit
e i= lim X'(t)

t——+oo

exists. Moreover, for all t large,
C
|X/(t) - eoc‘ < m

Proof. Combining the previous lemma with Theorem 3.8 we obtain

C

|X"(t)] < Y

Integrating this in ¢ we finish the proof. O
The direction e., obtained in this proposition is called the limit direction of the connected component
3.
5. ENERGY GROWTH BOUND: PROOF OF THEOREM 2.2

First using the stability of u outside Bg,(0), we study the structure of nodal set of direction derivatives
of u at infinity. The following method can be compared with those in [22, 68].

Proposition 5.1. For any unit vector e, every connected component of {u. := e - Vu # 0} intersects
with BRO (O)

Proof. Assume by the contrary there exists a unit vector e and a connected component 2 of {u, # 0}
contained in Bpg,(0)°. Let ¢ be the restriction of |u.| to Q, with zero extension outside it. Hence 1 is
continuous, and in € it satisfies the linearized equation

A = W (u)p. (5.1)
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For any R > Ry, let

1, x € Bgr(0),
nr(x) =42 — lﬁ)gg‘;‘, z € Br2(0) \ Br(0),
0. v € B 0.

Multiplying (5.1) by 1n% and integrating by parts leads to

C
L9 e P w7 ) o) = [ 02(9nal? < (52

where we have used the fact that || < |[Vu| < C.
Take an X € 0 such that 9 is smooth in a neighborhood of X. By a suitable compact modification
of ¥ in a small ball By, (X), we get a new function ¢ and a constant § > 0 so that

[ I Wt < [ A W“(UW] -4 (53
By (X) 2 Bi(x) 2
Combining (5.2) and (5.3) we get an R such that
19 (ne) P+ w7 w) (nm) <0,
R2
This is a contradiction with the stability condition of u outside Bg,(0). O

The following finiteness result on the ends of u can be proved by the same method in [77], using
Proposition 5.1 and Proposition 4.2.

Proposition 5.2. By taking a large enough Ry > 0, there are only finitely many connected components
of {u = 0} N B, (0)°.

The main idea is as follows.

(i) By choosing a generic direction e, using Proposition 4.2 we can show that for each connected

component of {u =0} N Br, (0)¢, u. has fixed sign in an O(1) neighborhood of it.

(ii) If two connected components of {u = 0} N Bg, (0)¢ are neighboring and the angle between their
limit directions are small, u. has different sign near these two connected components.

(iii) If there are too many connected components of {u = 0} N By, (0)¢, we can construct as many
connected components of {u, # 0} N Bg, (0)¢ as we want. On the other hand, by Proposition
5.1, the number of connected components of {u, # 0} N Bg, (0)¢ is controlled by the number of
connected components of {u. # 0} N dBg, (0). This leads to a contradiction.

With this proposition in hand, we can proceed as in [40, 77] to obtain the linear energy growth bound
in Theorem 2.2. The main idea is to divide R? \ Bg,(0) into a number of cones with their angles strictly
smaller than 7 and {u = 0} is strictly contained in the interior of these cones, and then apply the
Hamiltonian identity of Gui [40] in these cones separately.

Once we have this linear energy growth bound, there are many ways to show that the solution has
finitely many ends in the sense of [23] and the refined asymptotic behavior of u at infinity, see for example
[23, 30, 40, 78].

6. MORSE INDEX 1 SOLUTIONS: PROOF OF THEOREM 2.3

In this section we study solutions with Morse index 1 in detail. We use nodal set information to show
that these solutions have only one critical point of saddle type.

First we establish a general estimate on the number of nodal domains for direction derivatives of u, in
terms of the Morse index bound.

Proposition 6.1. Suppose the Morse index of u equals N. For any unit vector e, the number of connected
components of {u, # 0} is not larger than 2N.

Proof. First recall some basic facts about the nodal set {u. = 0} (see [7]). Because u. satisfies the
linearized equation (5.1), it can be decomposed into sing(u.)Ureg(ue ), where sing(u.) consists of isolated
points and reg(u.) is a family of embedded smooth curves with their endpoints in sing(u.) or at infinity.

Assume by the contrary, the number of connected components of {u, # 0} is larger than 2N. Without
loss of generality, assume {u. > 0} has at least N + 1 connected components, Q;,i =1,--- ,N + 1. By
the strong maximum principle, u, > 0 on the other side of regular parts of 9€2;.
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Let 1); be the restriction of |u.| to Q;, with zero extension outside §2;. Hence v; is continuous, and in
{1p; > 0}, it satisfies the linearized equation (5.1).

For any R > Ry, choose the cut-off function ng as in the previous section. Multiplying (5.1) by wmz%z
and integrating by parts on ; leads to

/ IV (i) 2+ W () (i) / BRIVl < (6.1)

Take an x; belonging to the regular part of 9€2;. There exists h; > 0 so that Bhi (x;) is disjoint from
Q;, for any j # i. (For example, u, < 0in By, (z;)\;.) Let ¢; equal v; outside By, (x;), while in By, (x;)
it solves (5.1). By this choice, we get a constant §; > 0 such that

1 - i 1
[ IR Wit < l [ S (6.2)
Bh, (%) 2 Bh, () 2
Combining (6.1) and (6.2) we get an R such that
- ~ 2
/ v (Wm) 2+ W (u) (me) <0, Wi=1,---,N+1 (6.3)
]RZ

Note that ;0 € H}(BRg) are continuous functions satisfying

YinrYnr =0, Y1<i#j<N+L

Hence they form an orthogonal basis of an (N + 1)-dimensional subspaces of Hg(Bg). By (6.3), Q is
negative definite on this subspace. This is a contradiction with the Morse index bound on . g

Remark 6.2. It seems to be more interesting to establish a relation between the number of ends and the
Morse indez, as in minimal surfaces [12, 45, 65]. Recently Mantoulidis [59], by a combinatorial analysis
of the nodal domain structure of u., showed that the number of ends is at most 2N+2.

As a corollary we get

Corollary 6.3. Given a solution u with Morse index 1, for any direction e, the nodal set {u. =0} is a
single smooth curve. In particular, Vu, # 0 on {u. = 0}.

Proof. First recall that reg(u.) are smooth embedded curves where Vu, # 0, and sing(u.) = {u. =
0,Vu, = 0}. Moreover, for any X € {u. = 0, Vu, = 0}, in a neighborhood of X, {u. = 0} consists of
at least 4 smooth curves emanating from X. See [7]. Hence if there is a singular point on {u, = 0}, by
Jordan curve theorem there exist at least three connected components of {u. # 0}, a contradiction with
Proposition 6.1. Therefore there is no singular point on {u. = 0} and they are smooth curves.

If there are two connected components of {u, = 0}, they are smooth, properly embedded curves. Hence
they are either closed or unbounded. By Jordan curve theorem, there are at least three components of
{ue # 0}, still a contradiction with Proposition 6.1. O

Corollary 6.4. Given a solution u with Morse index 1, any critical point of u is nondegenerate.

Proof. Suppose X is a critical point of w. For any direction e, we have u.(X) = Vu(X) - e = 0, that is,
X € {u. = 0}. By the previous corollary, V?u(X) - e = Vu.(X) # 0. Since e is arbitrary, this means

V2u(X) is invertible. O
Denote
P:=W(u) - %|Vu|2. (6.4)
By the Modica’s inequality [61], P > 0 in R2. By the proof of Lemma 3.2, we also have
Ith—r>IJlroo P(x) =0

Lemma 6.5. VP =0 if and only if Vu = 0.

Proof. Since
VP =W'(u)Vu — V*u - Vu,
we see that VP = 0 if Vu = 0.
On the other hand assume that Vu(X) # 0. Without loss of generality, take two orthonormal basis
{e1,e2} and assume u.,(X) = |[Vu(X)|, ue, (X) = 0. Note that locally {u.,/u., = 0} coincides with



FINITE MORSE INDEX 11

{te, = 0}, which is a smooth curve by Corollary 6.3. Since both u., and wu., satisfy the linearized

equation (5.1), we infer that
div <u§2vuel> =0,
Uey

which implies that V==L (X) # 0.
e
By a direct calculation we get
VP =2, JV-,
U
€2

where J is the 7/2-rotation in the anti-clockwise direction. Therefore VP(X) # 0. O

At a critical point of P, since Vu = 0, we have
V2P = W' (u)V?u — Vu - Viu = AuV?u — Vu - V2,
where - denotes matrix multiplication. Since V2w is invertible at this point, by a direct calculation we see

both of the eigenvalues of V2P equal detV2u. Thus every critical point of P is either a strict maximal
or a strict minimal point.

Proposition 6.6. There is only one critical point of P.

Proof. Since P > 0 and P — 0 at infinity, the maxima of P is attained, which is a critical point of P.
Denote this point by Xj.

Assume there exists a second critical point of P, Xs. By the previous analysis, X5 is either a strict
maximal or minimal point.

Case 1. If X5 is a strict maximal point, take

T:={y € H'([0,1],R?) : 4(0) = X1,7(1) = X>}.

Define

1= in P(~v(t)).
C 1= o min (v(t))

Clearly c. < min{u(X7),u(X2)}. Since P — 0 at infinity, by constructing a competitor curve, we see
cx > 0. By the Mountain Pass Theorem, c, is a critical value of P. Moreover, there exists a curve v, € T
and t, € (0,1) such that

P(1.(t)) = min P(3.(t)) = c.

and VP (v.(t+)) = 0. Therefore -, () cannot be a strict local maxima. If it is a strict local minima, by
deforming v, in a small neighborhood of v, (t.), we get a contradiction with the definition of ¢,. This
contradiction implies that X5 cannot be a strict maximal point of P.

Case 2. If X5 is a strict local minimal point, take

T := {7 € H'((0,+00), ) : 7(0) = Xa, lim _~(t) = +oc}.

Define

« 1= mi P(~(t)).
Cei=Imin max (v(®))

As in the first case we get a critical point of P, which is of mountain pass type. This leads to the same
contradiction as before.
These contradictions show that X7 is the only critical point of P. O

By Lemma 6.5, v has only one critical point, too. Denote this point by X. Since this point is the
maximal point of P, detV?u(X) < 0. Thus it is a nondegenerate saddle point of u.

Remark 6.7. Let ¥ := g~ ou be the distance type function. The Modica inequality [61] is equivalent
to the condition that |V¥| < 1. The above method can be further developed to show that VU is a
diffeomorphism from R? to By(0). In particular, for any v > 0,

Vu
deg (22 0B.(X)) =1 or —1,
o oB0) =1 o

Compare this with [9].

Lemma 6.8. {u = u(X)} is composed by two smooth curves diffeomorphic to R, intersecting exactly at
X.
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Proof. Since X is the only critical point of w, {u = u(X)} is a smooth embedded curve outside X.
Because X is nondegenerate and of saddle type, in a small neighborhood of X this level set consists of
two smooth curves intersecting transversally at X.

Denote this connected component of {u = u(X)} by X. ¥ does not enclose any bounded domain,
because otherwise u would have a local maximal or minimal point in this bounded domain, which is a
contradiction with Proposition 6.6. Hence we can write ¥ = ¥; U X5, where ¥; and Y5 are smooth
properly embedded curves diffeomorphic to R. Moreover, ¥; and X5 intersect at and only at X.

If there exists a second connected component of {u = u(X)}. Denote it by 3. Similar to the above
discussion, ¥ is a smooth embedded curve diffeomorphic to R. ¥ and ¥ bound a domain €. Without
loss of generality, assume u > u(X) in €.

Let ~

T:={y e H'([0,1],R?) : 74(0) € £,7(1) € =},
and

« 1= i t)).
c gggggfﬁ%ﬁ( )

By choosing a competitor curve, we see ¢, < 1. Hence by Lemma 3.2, ¢, is attained by a curve v, € T.
Because ¥ and ¥ are separated,
max_ u(7v.(t)) > u(X).

te[0,1]
By the Mountain Pass Theorem, there exists t. € (0, 1) such that w(y.(t.)) = ¢« and 7. (t.) is a critical
point of u. This is a contradiction with Proposition 6.6. Therefore {u = u(X)} = %. O

Combining this lemma with Theorem 2.2, we see there are exactly four ends of u. This completes the
proof of Theorem 2.3.

Part 2. Second order estimate on interfaces

In this part we study second order regularity of clustering interfaces and prove Theorem 2.6 and
Theorem 2.7. Recall that u. is a sequence of solutions to (2.3) satisfying (H1) — (H3) in Section 2.2.

7. THE CASE OF UNBOUNDED CURVATURES

By standard elliptic regularity theory, u. € C}t (C2). Concerning the regularity of f, ., we first prove
that different components are at least O(e) apart.

Lemma 7.1. For any a € {1,---,Q} and x. € 'y NCs/9, as e — 0, G () := u:(x. + ) converges to
a one dimensional solution in C% _(R™). In particular, for any o € {1,--- ,Q},
Jatic = Jae — 400 uniformly in B;’/El. (7.1)
€

Proof. In B.-1/5, . (x) satisfies the Allen-Cahn equation (2.1). By standard elliptic regularity theory,

e () is uniformly bounded in Cl2 O’f(R”). Using Arzela-Ascoli theorem, as € — 0, it converges to a limit
function ue, in CZ_(R™). For each B € {1,---,Q}, either (fgc(2) +ex’) — fac())) /e converges to a
limit function fz 00 in Cloe(R™ 1) or it converges to +oo uniformly on any compact set of R"~1.

Assume t. — too. Then {us = too} consists of @ < @ connected components, I'y o0, 1 < a < Q.
Each T o is represented by the graph {z,, := fa.0o(z')}. In R"™1 |V f, o] < C for a universal constant
Cand f1 00 < - < fr 00

By applying the sliding method in [6], us(z) = g(x - €) for some unit vector e. In particular, Q' =1
and for any 3 # a, (fs.c(@. +€x') — fa,c(7))) /€ goes to oo uniformly on any compact set of R*~1. [

A consequence of this lemma is

Corollary 7.2. Given a constant b € (0,1),
(i) there exists a constant c(b) > 0 depending only on b such that

Oou. c(b )
7, > %, in {|uc| <1 —=b}NCs)o;

(ii) for anyt € [-1+4b,1—b] and all € small, {u. =t} is composed by Q Lipschitz graphs
{In: otz,s(xl)}v a=1---,Q.
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By the implicit function theorem, f, . belongs to Cl2 0’2 (B5~1), although we do not have any uniform
bound on their C*? norm but only a uniform Lipschitz bound.

Now v ()
vel) = )]

is well defined and smooth in {|uc| < 1 —b}. Recall that B(u.)(z) = Vv.(z). We have
|B(ue)(@)* = |Ac(2)[* + |V log [Vue ()],

where A.(x) is the second fundamental form of the level set {u. = u-(x)} and V1 denotes the tangential
derivative along the level set {u. = uc(x)}.
Assume as ¢ — 0,

sup |B(ue)(x)] — +oo.
Cin{luc|<1—b}

Let z. € C1 N {Juc| < 1 — b} attain the following maxima (we denote z = (2, zy,))

3

2 B : 7.2
cs/zm{nl[fl{<1b}<2 '] | 1B (ue) ()] (7.2)

Denote
3

LE = |B(U€)(x5)|7 Te 1= (2 — |'T/E > /2 (73)

Then by definition
1
L.r. > = sup | B(u:)(z)| = +oo. (7.4)
Cin{juc|<1-b}
In particular, L. — +o0.
By the choice of r. at (7.3), we have (here C,_(2}) := B () x (=1,1))

T £

| B(ue)(2)| < 2Le. (7.5)

max
2€Ch, (xL)N{|uc|<1-b}

Let € := L.¢ and define uc(z) := uc(z. + LZ12). Then u, satisfies (2.3) with parameter € in By,_,_(0).

For any t € [—1 + b,1 — b], the level set {u. = t} consists of @ Lipschitz graphs
{an = fé,e(x/) = L. [fé,e(x:s + Ls_lx/) - é,e(mé)] } )

where « is chosen so that x. lies in the connected component of {|u.| <1 — b} containing I’ ..

By (7.5), we also have

|B(ue)| <2, forz e Cn{jul <1-—b}.
Without loss of generality, by abusing notations, we will assume in the following

(H4) There exist two constants b € (0,1) and C' > 0 independent of € such that |B(u.)| < C for any
$€C2ﬁ{|u5| Sl—b}

8. FERMI COORDINATES

8.1. Definition. For simplicity of presentation, we now work in the stretched version and do not write
the dependence on ¢ explicitly.

By denoting R = ™!, u(z) = u(ex) satisfies the Allen-Cahn equation (2.1) in Cop := By ' x (—R, R).

Its nodal set {u = 0} consists of @ connected components, I',,, 1 < o < @, which is represented by
the graph {z, := fo(2)}. In Bg}gl, there is a constant C' independent of € such that

‘vfoz‘ < Oa |v2fa‘ < Ce. (81)

By (H2), —R/2< f1 <--- < fg < R/2.

The second fundamental form of T, with respect to the parametrization y — (y, fo(y)) is given by

v o[ 1 o
VIV @ 0% | V14V ia()l” v
The Fermi coordinate is defined by (y, z) — x as = (y, fa(y)) + 2Na(y), where
V' fo(2),1
Naty) - (Lol

VIF IV fa(@)?

Aij (ya O)

()] -
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Note that here z is nothing else but the signed distance to I, which is positive above I',. By (8.1), there
exists a constant ¢ € (0,1/2) independent of & such that, the Fermi coordinate is well defined and C* in
the open set {|y| < 3R/2,|z| < dR}.
Define the vector field
9 | ON, ‘& ]
For any z € (—0R,0R), let T, , := {dist(z,T',) = z}. The Euclidean metric restricted to I'y_, is denoted
by 9ij(y, 2)dy" @ dy’, where

=1

9ii(y,2) = < Xi(y,2),X;(y,2) > (8:2)
n—1 n
= 9 (1,0) =22 ) A(,0)gx (4, 0) + 2> > gra(y, 0)Air(,0) Aju(y, 0).
k=1 k,l=1
Here
1 Ofa, \0fa }
i (Y,0) = ————— |6 + — (y) =— . 8.3
500 = o | A WG ) (53)
The second fundamental form of I', has the form

Ay, z) = (I - zA(y,0)) ™" A(y,0). (8.4)

8.2. Error in z. In this subsection we collect several estimates on the error of various terms in z. Recall
that € is the upper bound on curvatures of level sets of u, see (8.1).
By (8.1), |A(y,0)| < e. Thus for |z| < dR, |A(y, z)| S e. We also have

Lemma 8.1. In ng/lz,

IVA(y,0)] + V2 A(y,0)] S e. (8.5)

Proof. By Corollary 7.2, [Vu| > ¢(b) > 0 in {|u| < 1 — b}, where ¢(b) is a constant depending only on b.
Hence v = Vu/|Vul is well defined and smooth in {|u| < 1 —b}.
By direct calculation, we have
—div (|Vu|*Vv) = |Vul*|Vy|*v. (8.6)
Recall that B = Vv. Differentiating (8.6) gives the following Simons type equation
—div (|Vu|*VB) = |Vul?| BB + |Vu|*V|B]* ® v + |B|*V|Vu|* ® v + |Vu|*V? log |Vu|* - B.  (8.7)

For any = € {|u| < 1 — 2b}, there exists a constant h(b) such that Bapp(x) C {|u] < 1 —b}. Because
|Vu|? has a positive lower and upper bound and it is uniformly continuous in Bay(z), by standard
interior gradient estimate,

sup |[VB| < sup |B|+ sup [div (|[Vu]*VB)| Se.

B (v Ban(v) Ban ()
The bound on |V2B| is obtained by bootstrapping elliptic estimates. O
By (8.4),

[Aly, 2) — Ay, 0)] S [2[|A(y, 0)* S €[] (8.8)

Similarly, by (8.2), the error of metric tensors is
1965 (y> 2) = 915 (y, 0)| S €lz], (8.9)
19 (y,2) — 97 (3, 0)] S elzl. (8.10)

As a consequence, the error of mean curvature is
|H(y,2) — H(y,0)| < %|z]. (8.11)

By (8.1) and (8.5), for any |z| < R,
Vy9ii (4, 2)| + V9" (y,2)| S e. (8.12)
The Laplacian operator in Fermi coordinates has the form

Ay = A, — H(y, 2)0, + 0,2,
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where
N e — ° (aetlon e 21
i,j=1 det gl] Y,z 8:1}] 6?];
n—1 B 82 n—1 )
e ) 7
Z 97y 2)5 o0 +Zb (y,2)
3,7=1 =1
with

Zg” (y, logdet(gm (y, 2))-

By (8.10) and (8.12), we get

Lemma 8.2. For any function @ € CZ(BQR/IQ)

IA0(y) — Dop)| S elzl (IV2e(y)] + IVey)]) . (8.13)

8.3. Comparison of distance functions. For each «, the local coordinates on I'y, is fixed to be the
same one, y € B3R/2, which represents the point (y, fo(y)). The singed distance to 'y, which is positive
in the above, is denoted by d,. Given a point X, if (y, fg(y)) is the nearest point on I'g to X, we then
define IIg(X) = y.

If o # 8, we cannot expect IL,(X) = II3(X). However, the following estimates on their distance hold,
when I', and I'g are close in some sense.

Lemma 8.3. For any X € BgR/12 (=0R,0R) and a # B, if |do(X)| < K|loge| and |dg(X)| < K|loge|,

then we have

distr, (I 0 I, (X), (X)) < C(K)e'/?|loge|*/?, (8.14)

|dg (T1o(X)) + do (Tg(X)) | < C(K)e"/?|loge[*/?, (8.15)

\da(X)—dﬁ(XHda (Mo (X)) | < C(K)e'?|loge*/2, (8.16)
|do(X) — dg(X) — do (TT5(X)) | < C(K)e'/?|logel*?, (8.17)
1 — Vda(X) - Vds(X) < C(K)e?|loge[*/?, (8.18)

Proof. We divide the proof into three steps.

Step 1. After a rotation and a translation, assume II,(X) = 0, the tangent plane of T, at (0,0) is
the horizontal hyperplane and X = (0,7). Since the curvature of Iy, is of the order O(e), I', NCsr is a
Lipschitz graph {z,, = fo(2’)}. By the above choice, f,(0) = Vf,(0) = 0.

Because |dg(0)] < K|loge|, I'y and I'g are disjoint and their curvature is of the order O(e), we can
show that I's N Csg is also a Lipschitz graph {x,, = f3(z')}, see Lemma 3.7.

By this Lipschitz property of f, and fg,

£3(0) = fa(0)| < Clds(0)| < C(lda(X)| + |ds(X)]) < 2CK|logel.
Since fg — fo # 0 and [V2(fs — fa)| < € in By '(0), by an interpolation inequality we get
IVf3(0)] = IV (fs = fa)(0)| S Vellogel.

Step 2. Because I's N Cax|10gc| belongs to an O(eg|log el?) neighborhood of the hyperplane Pg :=
{zn = f5(0) + Vf5(0) - 2},

dg(X) = T — f3(0)+ O(v/¢|loge||T|) + O(e|loge|?) (8.19)
T — f5(0) + O(c"/*|loge|*/?).

Similarly,

ds(Ia (X)) = fa(0) = f3(0) + O("/?|loge[*/?). (8.20)
Interchanging the position of «, 8 gives

da(I15(X)) = f5(0) = fa(0) + O /| loge[*/?). (8.21)

Combining (8.19), (8.20) and (8.21), we obtain (8.15)-(8.17).
Step 3. In our setting, we have

1= Vdyo(X) - Vds(X) =1— 0

(0,7).
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For any t € (0, f3(0)), let (2'(t), f3(«’(t)) be the unique nearest point on I'g to (0,t). By definition, we
have

' (t) + [fa(2'(8)) — t] Vfa(2'(t)) = 0. (8.22)
Differentiating this identity in ¢ leads to
/ d d_,
[+ Vs )] 2 () + [fs(2'(£) =] V2 fa (' () - 7' (t) = Va (' (t))-
As in Step 1, we still have |V f5(2/(t))| < C(K)e'/?|loge|'/2. Together with the fact that |V2fs| < e, we
get
‘%x’(t)’ < C(K)eY?|loge| V2. (8.23)

Integrating this in ¢ on [0, T gives (8.14).
Note that (8.22) also implies that

|2/ (t)] < C(K)e'/?|loge|*/?. (8.24)
Because
ds(0,8) =\l (1) + (ol (£)) — 1)%,
we have
d fa(a'(t) —t a'(t) + (fa(a'(t) =) Vfp(a'(t) d
—dg(0,t) = — + - —dg(0,1)
at Ve + (fa@ @) - 0° I @F + (@) —0* @
— 1+ 0(F@)+0 (‘;ta:’(t)‘)
= —-140 (61/2| log5\3/2) ,
which gives (8.18). O

8.4. Some notations. In the remaining part of this paper the following notations will be employed.

e Given a point on T',, with local coordinates (y,0) in the Fermi coordinates, denote
Da(y) = min{|da—1(y,0)|, |da+1(y,0)[}.

For A > 0, let
MY = {|da] <|da_1|+ A and |do| < |dai1| + A}.

In this Part II we take the convention that dy = —0R and dg4+1 = 6 R.
In the Fermi coordinates with respect to I, there exist two smooth functions p (y) such that

MY ={(y,2) : pa(y) <z < pf (W)}

e For any r > 0, let
Mo (r) == {(y,2) e M, y| <r}.
In this Part II we denote

D(r) = U MQ(r).

The covariant derivative on I', with respect to the induced metric is denoted by V..

9. THE APPROXIMATE SOLUTION

9.1. Optimal approximation. Fix a function ( € C§°(-2,2) with ¢ =1 in (-1,1), |[¢'| +|¢"| < 16.
Let
g(x) = ¢(3[logelx)g(x) + (1 = ¢(3[logelx)) sgn(x), = € (=00, +00).
Then g is an approximate solution to the one dimensional Allen-Cahn equation, that is,
g =w(g)+¢ 9.1)

where spt(£) € {3|loge| < |z| < 6|loge|}, and [£] + €] + |€"| < 3.
We also have (for the definition of o see Appendix A)

/+OO g (t)*dt = og + O(e?). (9.2)

—00
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Without loss of generality assume v < 0 below I';. Given a tuple of functions h := (h1(y),- - , ho(y)),
for each «, in the Fermi coordinates with respect to I'y, let

9a(y,2) =g (=) 1z = ha(y))) = G (=) (da(y, 2) — ha(y))) -
Then we define

D@ +1
9(y, 2 h) Zga 7.
For simplicity of notation, denote

9o =9 (D)= ha(®), ga=9"((-)"'(z— ha(¥)),

Proposition 9.1. There ezists h(y) = (ha(y)) with |ho| < 1 for each o, such that for any a and
y€ By,

SR
/ [y, 2) — gy 2 W] (—1)* (= — ha(y))) dz = 0, (9.3)

—6R
where (y, z) denotes the Fermi coordinates with respect to T'y,

Proof. Denote

—0R

oR
F(hla e ahQ) = </ [’U,(y,Z) - g(y,Z,h)]gl ((71)a71(z - h’a(y))) dZ) )

which is viewed as a map from the Banach space X := C°(B}1(0))? to itself.
Clearly F is a C! map. Furthermore,

OR
(DFW), = (1% [ [dh0n2)° = (ly.2) = o0, 250) o 0]

—0R

R
+ > (—1)%&s(Tp(y, ))/wg; (y,2) 95 (y,2) Vdg (y,2) - Vda (y, 2) dz.
B#a -

By Lemma 7.1, there exists a § > 0 such that for any ||h||x < J,

OR
[ (009 = )~ gz g (02) de = B

—0R

[\)

SR
‘/wg; (y,2) 95 (y, 2) Vdg (y, 2) - Vda (y, 2) dZ’ < 1.

Thus in this ball DF(h) is diagonal dominated and invertible with |[DF(h)~!||x» < C. By Lemma
7.1, for all € small enough, ||F(0)||x << 1. The existence of h then follows from the inverse function
theorem. O

Remark 9.2. The proof shows that ||hHLoo(Bz—1) = o(1). By differentiating (9.3), we can show that
1l 1y = ol1):

Denote g.(y, z) := g(y, z; h(y)), where h is as in the previous lemma. Let

O :=u— gs.
In the Fermi coordinates with respect to I'y,
Ago = go—(-1)*TgLH* — (=1)* g\ ALhe + g1V ha|?

W' (ga) + o + (=1)*90Ra1 + gaRa 2,
where
Ealy,2) =E((-1)* " (z = ha(v))) ,
Rai(y,2) == H*(y,2) + Azha(y) and  Ran(y, 2) := [V.ha(y)*.

In the Fermi coordinates with respect to I',, the equation for ¢ reads as

A ¢—Ha(y7 ) z¢+azz¢

= Wi(g.+¢)— Z W'(gs) = (=1)%g4 [H(y, 2) + Azha(y)] — ga|Vzhal? (9.4)
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— > (=Dg5Rax (Ma(y, 2), ds(y, ) + g5 Ra2 (s, 2), dp(y, 2))] = > &

B#a 8
Q
= W)+ R(@B) + |W'(g.) = D> W(gs)| — (=194 [H* (Y, 2) + Azha(y)] — g4IV -hal®
B=1
- Z [(-1)°ghRp1 (Mp(y, 2),ds(y, 2)) + g4Ra2 (Maly, 2),ds(y, 2 Zéﬁ
BFa

In the above we have denoted
R(¢) == W' (gu + &) = W'(g:) = W"(g.)9 = O(¢).

9.2. Interaction terms. In this subsection we establish several estimates on the interaction term be-
tween different components, W'(g.) — Z§:1 W'(gg)-

Lemma 9.3. In M2,
> Wigs) = W"(ga) = 2lga-1 = (1) + W (ga) = 2] [ga+1 + (~1)°] (9-5)

L0 (efzx/éda_l + ezﬁda+1> ) (efﬁda_r\/ﬂdd n e\/idanﬂ/é\da\) _

Proof. In M%,

9+ = ga + Z [gﬂ - (_1>B_1] + Z [95 + (_1)6_1} :

B<a B>a

By Lemma 7.1, gg — (=1)?~! (for B < a) and gg + (—=1)?~! (for B > a) are all small quantities.
By the Taylor expansion,

W(g) = Wiga)+W" (ga) | D (95— (D) + > (g5 + (1))

B<a B>«
+> 0(lgs = (=)' P) + D0 (lgs + (=1)° ).
B<a B>a

On the other hand, for 5 < a,

W'(gs) =2 (95 — (1)) + O (lgs — (=)',

and for 8 > a,

W'(gs) =2 (95 + (=1)°") + O (lgs + (=)' ).

Combining these expansions we get

Q
S W) = 3 () 2 (g5 — (1P )+ 30 (lgs - (-7
B=1

B<a B<a
+ 3 W (ga) — 2 (98 + (- +> 0(lgs + (1) 71P).
B>a B>a

Using the fact that
W (ga) = W'D 1= g% S e V21l

and similar estimates on gg, we get the main order terms and estimates on remainder terms in (9.5) . O

The following upper bound on the interaction term will be used a lot in the below.

Lemma 9.4. In M%),

Q
‘ "(g.(y, 2 Z (95(y, 2 e—\/iDa(y) + &2,

Proof. We need to estimate those terms in the right hand side of (9.5). To simplify notations, assume
(-1t =1.
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e There exists a constant C depending only on W such that
(W(9a) = 2] (gar +1) | S €720 mVEI,
Note that d,_1 > 0 in M2. If one of d,_1 and |d,| is larger than V2| logel|, we have
eﬂ/ida_l—\/ﬂda\ < 52,

and we are done.
If both d,_; and |d,| are not larger than v/2|loge|, by Lemma 8.3,

da—1(y, 2) = da—1(y,0) + da(y, 2) + O(e'/?).

Therefore
67ﬁd&71 7\/5‘(1,1 | S 26*\/§da71 (y,O) .

e In the same way we get

[W"(ga) = W (1)] (gas — 1) | S eVt VoIl g 2 V2ot 000),

o If |doy1(y,2)] > |loge|, then e 2V2datt < 2 If |dyiq(y,2)| < |loge|, we also have |z| =
|da(y, 2)| < |loge| + 4. Hence by Lemma 8.3,

da+1(y7 Z) = doz-‘rl(yv O) + da(y7 Z) + 0(61/3)'
Because |dy(y, 2)| < |da+1(y, 2)| + 4, we get
1
dat1(y,2) < 5da+1(y,0) +4.

Therefore
62\/§da+1 (y,2) < 646\/§da+1 (:0)

e Similarly
e~ 2V2da_1(y,2) <24 eto—V2da—1(y,0)

e As in the first two cases,
e~ V2da—2—V2|da| + eV2dat2—V2|dal < e2 4 e~ V2da—1(y,0) + oV2da+1(,0)
Putting all of these together we finish the proof. 0
The Hélder norm of interaction terms can also be estimated in the following way.
Lemma 9.5. For any (y,z) € M3,

< sup e V2D 4 2
Co(B1(y,2)) ~ By(y)

[w(g.) - i(—l)ﬁlvv’(gm\

p=1

Proof. We only need to notice that, for any (y,2) € M3 and any 8 € {1,---,Q},
195 = Ules 020 S 195 = Ulzip(zuan S e V2@, (96)

Then we can proceed as in the previous lemma to conclude the proof. O

9.3. Controls on h using ¢. The choice of optimal approximation in Subsection 9.1 has the advantage
that h is controlled by ¢. This will allow us to iterate various elliptic estimates in the below.

Lemma 9.6. For each a,
ha@)] < 6(9.0)] + e~ VEPa®),

[Vha(y)| S [Ve(y,0)[ + 0 (e*ﬁDa@/)) ,

V2ha(y)| < [V26(y,0)] + o (e*ﬁDa(y)) ’

HVzhO‘HCG(Bl(y)) S ||V2¢||CG(Bl(y,o)) + sup e~ V2Da,

B1(y)
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Proof. Fix an a € {1,--- ,Q}. In the Fermi coordinates with respect to I, because u(y,0) = 0,

¢(y,0) = =g (-1)ha(v)) — > [3((-1)"" (ds(y,0) — hs(Is(y,0)))) — (=1)° ]

B<a
— > a1 (ds(w,0) — he(Tla(y,0))) + (~1)°71] . (9.7)
B>a
Note that for 5 # «, |hg(Ilg(y,0))| < 1. Thus
ha @) S 16(y.0)] + Y V200 < 4(y,0)] + V2P, (9.8)
B#a
Differentiating (9.7), we get
Vod(y,0) = (=1)°T'g (=1)*ha(y)) Voha(y) + Y (=1)7gh(y,0)Vo [ds(y, 0) — hs(Ils(y,0))],
B#a
and
Vio(y,0) = (1) (-1)%ha(®)) Viha(y) — 7" (=1)ha(y)) Voha(y) ® Voha(y)
+ Y (=1)75(y, 0)V5 [ds(y, 0) — hs(TT5(y, 0))]
B#a
— > g5y.0)Vo [ds(y.0) — hs(s(y,0))] @ Vo [ds(y, 0) — hs(Is(y, 0))] .
B#a

Note that |Vhg| = o(1) and by Lemma 8.3, if §'(dg(y,0) — h (Hg(y,())) # 0,

|Vods| = /1 — Vdg - Vd, = O(e'/9).

Thus
Voha() £ Vod(y, 0)] + O + [Vhs(ILs(y, 0))O (V2400 4 =V w0))
[Vos(y. 0)| +o (V2P0 (9.9)

Similarly, because |V2hg| = o(1) and recalling that V2dg is the second fundamental form of I'g .,
[V3ds| < [V2ds| = O(e),

A

we have

Viha(W)l S IV56(5,0) + [Voha(y)f* +eV2P=0 b 3 7 sup (IV2hsl +[Vhs)
B £1/3

[V36(5,0)| + [Voha(y)l? + o (e7V2P ). (9.10)

A

Finally, by the above formulation and (9.6), we get a control on [|[V2ha || co(p, () using V29l ce (5, 4.0
and supp, ) e~ V2D O

10. A ToDA SYSTEM

In the Fermi coordinates with respect to I',, multiplying (9.4) by g/, and integrating in z leads to

R
/ A= (1. 2)gl0-0 -+ 6400
—0R

oR

SR
= /_m (9« + ) — ZW (95) g;—(—l)“/ [H(y, 2) + Azha(y)] gh(2)? (10.1)

—0R
OR

SR R R
- /6 IugnlVhal® = > (*1)5/6 9hgsRe1 — / 949aRs2 — ) /5 E89n-
—0R —0R
5

B#a - B
By the calculation in Appendix B, we obtain

Ha(y,()) —+ AOha(y) = - |:A( 1)a67\/§d°‘*1(y’0) _ A%_l)w—lefda+1 y,0) :| +O( )
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O (Ihaly)] + a1 (s (y, 2)| +£1/2) Va1 00)
+ 0 (Iha@)] + lhas1 (Mas (3, 2))] +/F) ¥/ Hen 00 (10.2)
_ 32

n O(e 22da71(y70)>+O(e¥da+l(y7o))+O(e—\/§da72(y70))+O(e\/§da+2(y70))

+ Z|d5(y,0)|eﬂdﬁ(y’0)[ sup |H? + Abhg|+  sup Vh[g|2]
BEa B_1/3(y) B_1/3(y)

+ sup (IV20(y, 2)|> + [Vyo(y, 2)|* + |y, 2)[?) -
(—6|logel,6] logel|)

By this equation we get an upper bound on H*(y,0) + Agha(y)-

Lemma 10.1.

sup |[H*(y,0) + Aoha(y)| S sup e~V2Da 4 g2 4 ||¢H202,8('D7_+1) + Z sup {|Hﬁ + APhgl? + e_QﬂDB} )
r r+l Bta Br+1

(10.3)
Proof. In the right hand side of (10.2), those terms in the first four lines are bounded by O (e‘ﬁD @ 4 82) .
If dg(y,0) > 2|loge|, the terms in the fifth line is controlled by O(£?). If dg(y,0) < 2|loge|, using the
Cauchy inequality, they are controlled by
|ds(y, 0)[2e 2Vl @Ol 4 sup  |HP + Alhgl> + sup |Vhg|*
B_1/3(y) B_1/3(y)
< e VAWl L sup [HP + Alhg)?+ sup |Vl

B_1/3(y) MG (r+1)

where we have used the fact that |dg(y,0)| > 1, Lemma 9.6 and the fact that Bfl/g (y,0) € MY(r+1)
(by Lemma 8.3).

Finally, the term in the last line of (10.2) is controlled by ||¢||2C2’9(Dr+1)' O
11. CYY ESTIMATE ON ¢
In this section we prove the following C*? estimate on ¢.
Proposition 11.1. There exist constants L > 0, o(L) < 1 and C(L) such that
[olcremamy < o(Ddlle2oerary + C(L)e? +C(L) JSup e~ V2D (11.1)
r+4L
Q
+ o(L) Z sup ’HB + Agh5| +C(L) Z sup e 4V2Ds,
B=1 Briar(y) Bt Byjar

To prove this proposition, fix a large constant L > 0 and define
NE(r):={-L <do <L} M%r), and NZ(r):={do > L/2} N M(r).
We will estimate the C¢ norm of ¢ in A} (r) and N?(r) separately.

11.1. C*? estimate in N?2(r). In N2(r), by using (8.8)-(8.13) and Lemma 9.4, the equation for ¢ can
be written in the following way.

Lemma 11.2. In N2(r),
As¢— H(y,2)0:0+ 0.2 = (24 0(e™h)) ¢+ EL,
where
B2(y,2)] S &+ e V2P0 1 [VEha(y)]* + [Voha)? + e H(y,0) + Aoha (y)]

+ Y sw [|Hﬂ+A§hB|2+|Vh5|4+|v2h5|4}.
67&&351/3(11)
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By standard interior elliptic estimate, we deduce that, for any r» > 1,

Pllcro a2y

S el mzrrmngivi=r+Ly) T €Nl Lo gyl <rtLz=r/a3) F € FNBl Lo ((y1<rtmpt () 41))

+ osup e V2P 2 4 sup ([V2ha(9)) + [Voha(§)[?)

Brir Brir
+ e °F sup |H* 4+ Aohg| + sup [|HB + AGhsl® + [Vhgl* + |V2hﬂ|4} '
Brir Brir

Substituting (10.3) into this estimate, after simplification we obtain

[ollcrenzay < o(L)9llezodtry + C(L) sup e V2Ps 1 C(L)e? (11.2)
Bryr(y)
Q
+ o(L) Z sup ‘HB —|—Agh3| +C(L) Z sup e 4V2Ds,
B=1 Br+L(y) 5750[ Br+L

Here o(L) S e~ °F 4 maxg | H® + A hg||lp~ < 1.

11.2. C1? estimate in M!(r). In Ml(r), similar to Lemma 11.2, the equation for ¢ can be written in
the following way.

Lemma 11.3. In ./\/01((7")7
A — H(y,2)0:0 + 0220 = W (ga)¢ + O(6%) — (=1)%g,, [H*(y,0) + Doha(y)] + ES,

where
[EA(9.2)] S V2P0 4 2 4 (IV%ha ()] + | Vha(y)?) eV,

Take a function n € C§°(—2L,2L) satisfying n = 1 in (=L, L), |n'| £ L7 and |n”| < L72. Let
ba(y, 2) == ¢y, 2)n(z) and ¢a(y, 2) := ¢a(y, 2) — ca(y)ga(y, 2), where
6R
L 0av: )00y, 2)dz (11.3)

6R

= | oy, 2) (n(2) — 1) go(y, z)dz. (by (9.3))

caly)

Therefore we still have the orthogonal condition
SR _
Pa(y, 2)galy, 2)dz =0, Vye By . (11.4)
—0R

Lemma 11.4 (Estimates on ¢,). There exists a constant o > 0 small such that

lcaW)| S et sup e V2Elg(y, 2)), (11.5)
L<|z|<6]loge|
Vealy)| Se o sup e V2l (6(y, 2)| + [Vy6(y, 2)]), (11.6)
L<|z|<6]|loge]|
V2a) Se™ o sup e V2Ol (jg(y, 2)| + [Vyo(y, 2)| + [V26(y, 2)]) - (11.7)

L<|z|<6|loge|

Proof. By (11.3) and the definition of 7,

+oo
lca(y)] 5( sup 6_(ﬁ_”)|z|¢(y,z)> /L e~%dz

L<|z|<6]|loge|

S et s e (VBB 0)).
L<|z|<6]loge|
Differentiating (11.3) gives
SR SR
Vea(y) = /m Vyd(y, 2) (0(2) = 1) go(y; 2)dz + (=1)*Vha(y) i ¢y, 2) (n(2) = 1) ga(y, 2)dz.

(11.6) follows as above. The derivation of (11.7) is similar. O
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In the Fermi coordinates with respect to I'y, the equation satisfied by 50( reads as

Ao — HY (Y, 2)0:00 + 02200 = W (ga)da + 0(da) + Ca(y)gh + Ea, (11.8)
where
Ca(y) = (=1)* " [H(y,0) + Aoha(y)] — Aoca(y),
while

|Eu(y, 2)| 2 4 e V2Pa Wy 4 o=V2EL (W20, ()2 + [Vha(y)?) 0
16(y, 2)lca(y)gh + ga|1 — n||[H*(y,0) + Aoha(y)]

6] [eln’] + 10"[] + |o= 11|

eL [Jea®)| + |Vea )| + [V2ea(y)]] eV

lca@Wléal + lea®)] [[V2ha@)] + [Vha(y)]] e V2L

Combining this expression with Lemma 11.2 and Lemma 11.4, we obtain

+ o+ + + A

Lemma 11.5 (L? estimates on E,). For any y,

1Ea(y: 3o snsm S Let+ Le V2P 4 [W2h (y)|* + [Vha(y)|*

T s (192 + 16:(,2))
L<|z|<2L

—20 — —o)lz 2
+ el sup e V2Rl (g(y, 2)| + [V (y, 2)| + [V20(y, 2))” -
L<|z|<6]loge|

+ e V2L HY(y,0) + Aoha(y)|” +

Next we prove an L? estimate on (}5

Lemma 11.6. For any r > 0,

sup [|6a (@, )Mz srony < € sup ¢a(@ iz(_spsry + Lt + L sup e=2V2De
yEB, yEBer yeB'r+L
+ eV sup |H® 4 Agha|” (11.9)
YEBr 4L
1
+ 7 oswo (9P H[VeP)+ L7 sup  ([Viglt £ [Vyel)
BT+LX{L<‘Z‘<2L} BT+L><{|Z|<2L}
+ et sup e 22 (1] + V0] + V39])
B,y x{L<|z|<6|loge|}
Proof. Multiplying (11.8) by aa and integrating in z, we obtain
+oo . - - +00 - . o
[ 0utbut H 0210000+ 0usbain = | W92+ 032) + Eude

Integrating by parts and applying Theorem A.2 leads to

e Y oo 2 " T2 2 ~ ~ 10H® ~,
¢O‘AZ¢O‘ = / |62¢a| +W (ga)gba + O(¢a> + Eagba + §W¢a
+oo +oo
> %“/ o2 —C E2.

On the other hand, by direct differentiation we also have

1 +oo +oo - -
1A, / PR / Fo (1 2) Doda(y 2) + [Voda(y, 2)|2dz

400 . . . 3 +oo +o0
> / (Ao¢a—Az¢a)¢a+Z”/ ¢§_c/ %
po[ree 72 T 2 e 2 27 2 gy 2
> b decf Ei-ct 2 (9o + VGl 2 d

This inequality implies that

sup (100 (7, M iz —srsny S € sup 6a(@ )i snomy + sup 1Ba(@)L2—srsn)
YyEB;- YEBr 1L JEBryL
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400
2 2 27 |2 T2
+ ¢ BTSFLIEy)/—oo z (|V bal” + [Voa] )dz. (11.10)
Note that
V20a(y,2) +1Vya(y,2)] S [V20(y, 2)In(2) + [Vy oy, 2)n(2) + (lea®)] + [Vea(®)] + [V2ea(y)]) eV
S IViely, 2)[n(z) + [Vyé(y, 2)In(2)
+ eV sup e VR (g(y, 2)] + [Vye(y, )] + [ Vid(y. 2)]) -

L<|z|<6|loge]|
Therefore
e 2 27 2 e 2
[ 2 (V2.2 + 19,0u(0.2)) dz

— 00

< L s, (IV2o(y, 2)I* + [Vyo(y, 2)|*)
z|<

+ el sup e 2Vl (jg(y, 2) 2 + [V 6y, 2) P+ [V26(y, 2) ) -
L<|z|<6]|loge]|

Substituting this and Lemma 11.5 into (11.10) gives

sup [eN2 Nizcorsry S €0 sup | (7, N2 (—srom) + Le* + L sup e2V2Pe
yeB, YEB, 1L B.yL
+sup [|V2hal* + [Vhal*] +e2V2E sup [HY + Agh,|” (11.11)
By Brir
1
+ 7 osw (9P H6) + L% sup (Vi + [Vyel?)
B,y x{L<|z|<2L} B, x{|z|<2L}
—20 - —0o)|z 2
+ ek sup e 222 (19| 4V, 0] + | V29])” .

Bryrx{L<|z|<6|loge|}

The terms involving h, can be estimated by using Lemma 9.6, while by the Cauchy inequality we have

LP¢? S, (IV5o(y, 2)” + [Vyo(y, 2)°) < Le* + L° S (IVyo(y, 2)|* + 1Vyo(y. 2)*) -
z|< z|<

Substituting these into (11.11) we get (11.9). O
By standard elliptic estimates we deduce that

||¢a ||le9(Bl(y)>< (—=3L/4,3L/4))

S Nallz2 B w)x(—L,L)) + 1A¢all Lo (BL ()% (~L,L))
S LT et sup [6al@ )z smomy + LT 2+ LT sup e VZPe
JEBar (y) Bar (y)

+ LT sup |H®+ Aoho| + LT sup (I6] + V)

Bar(y) Bopr (y)x{L<|z|<2L}

n+6

+ L sup (IV2ol® + Vy0l*)

By x{|z|<2L}
+ Lie ok sup e V2l ((6(y, 2)| + |V 6(y, 2)| + [V2e(y, 2)]) -

B (y)x{L<|z|<6|logel|}

By using (10.3) we get a bound on supg,, (, |H°‘ + tha|. Hence we have

Pallcro (s, (y)x(—3L/4,3L/4))

< [l sup || + L= 2+ L™ sup e V2Po
Bar (y)x(—2L,2L) Bsr(y)
+ L"T sup Z DyeV2Pe [|Hﬁ + Afhg| + ‘Vhﬂﬂ
Bar(¥) g+q
+ L s (@[ +[VeD L sup (|9 + |Vl
B (y) < {L<|z|<2L} Bav(y)x(=2L,2L)
+ Lse oL sup e~ (V2-0)lzl (I¢l + [Vyo| + [Viol) -

B3 (y) x{L<|z|<6|loge|}
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Since this estimate holds for any y, it implies that

lolcroaey < Ce*  sup  [¢|+ CL™F 2+ L™ sup e V2P0
° B, 431, x(—2L,2L) Bsr(y)

+CL'T sup 3 Do 200 (|7 + Ay +Vhal

BrisL B#a

n—2

+ CL= sup (Io(y, 2)| + |V (y, 2)])

Brysr x{L<|z|<2L}
+ L s (V2P + (Vo)

B, 431 x(—2L,2L)

+ CL%e L sup e~ (V2-0)lzl (|¢‘ +|Vyol + |V§¢|) :
Bri3r x{L<|z|<6|loge|}

As before, this can be written as
[olcrowiey < oDlellc2eerary + CISE20(p(rrary
+ C(L)e* +C(L) sup e~ V2Daly)

Briar
+ CL"T sup ZDae_*/iD" |HB+Agh5\+|Vh/3|2}
BBL(Z/),375(X
n—2
+ CL= sup  ([o(y, 2)| + [Vo:(y, 2)]) .
L<|z|<2L

The last term can be estimated by (11.2). After simplification this estimate is rewritten as

[pllcrenigy < U(L>||¢||c2~0(p(r+4L)+C(L)52+C(L)BSUP e V2P (11.12)
44l
Q
+ U(L)Z sup ‘HB Aﬂh3|+0 Z sup e~4V2Ds,
p=1 Br+ar(y) Bt Briar

Combining (11.2) with (11.12) we obtain (11.1).

12. C?Y ESTIMATE ON ¢

In the equation of ¢, (9.4), the coefficients before ¢ have a universal Lipschitz bound. Concerning the
Holder bounds on the right hand side of (9.4), we have the following estimates.

Lemma 12.1. For any (y,2) € M,

1A¢ = W (g )llco s, 5(5,2)) S €+ sup eV 4 161220 (5, (4,2

Bi(y)

o~ V22l | H* 4 Aohallco (B, (y,0))

+ e V2ds(y2)l ( + bup e 2\/§D6>
Ba(y)

4 e VAWl BB 4 AP ohsllco B8 g0

+

||¢Hc2 B(Bﬂ (y,0))

)

The proof is similar to the one for Lemma 11.2 and Lemma 11.3, but now we use Lemma 9.5 instead
of Lemma 9.4.
By Schauder estimates, for any (y,2) € M%(r),

[BllczoB, nwey S NDllcoB, sz + 180 =W (g )dllco B, (.2

S e P13 VP 180180 (5, (y,29) 12205, 0)
1

+ e VENHY + Aghal|cos, (y.0))

+ Y eV ) (IIQSIICH piwoy TSP 62‘/§Dﬁ>
B#a 2(y)
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s e~ V2lds w2 | 8 4 Aghﬂ\lce(Bf(y,O))'

B#a
Because in MO, either e~ V2d8(4:2)l < ¢ or ¢ V2da®:2)l < o= DPa(®) from this we deduce that
plczomoy S €+ sup e TV2Pa 1612, ooy T IH® + Bohallco s, 1) (12.1)
r+L
+ Z ||Hﬁ JFA hﬁ||CG(BT+L) + SUP em4V2Ds 4 ||¢’Hc2 o (MY (r+L))
B#a
Adding in « leads to
Q
1dllczeey S €+ Z sup e~ V2Pa 4 allollezo(p,, ) (12.2)
a=1"r+L
+ |[H* + Achallco s,y + Y 1H? + AGhslIZas, )
BF#o
Concerning the Holder norm of H* + Agh,, we have
Lemma 12.2. There exist 0 < 1 and L > 1 such that
Q
IH* + Aohallco(s,) < Ce*+C Y sup eV2P0 1 5||¢)| c20(p,. 1) +O > IIHg+AGhsllcos, ) (12.3)

g Bret p=1
Proof. First by (10.1) and (B.1)-(B.3), we have

R SR R B 8¢ 6ha
|- toagr et ([ ogr) daha v 20t [ glgip0) 52 e
—8R —6R —4R Yi OYj

OR OR OR
( | oo ) VohaW)P+ [ HOw 2o+ [ &0
—0R —0R —0R

OR OR
= [ W)= Waldo+ [ R,

—0R

SR Q SR )
+ / W(g*)_;w(gﬁ) 9o — (=1) (/5 Iga|>[H (y,0) + Aoha(y)]

—0R

OR

IR
~ (e / 1P U 02) = H(00) = (1) / 160 [Boho5) = Acho )
]. 0R 5' Z] 8ho¢ aha
+ 5 (/5 |ga|282 (%@) 9y Ty]

R R SR
- Z(*l)ﬁ/(S gagaRﬁﬁZ/ 9h94R s — Z/ 9n&s.

BFa N B#a” B#a” —
We can estimate the Holder norms of these term one by one, by using (8.8)-(8.13) and Lemma 9.5,
which gives

[H" + Aohallcos,(y) < e+ SU(P) emV2Da 61122, 0(Ba(y)x (—6] log e],6] log €])
2\Y

> l|¢||é2’9(35(y,0)) 7 + Aghs., B oy TSP e 12D

Ba B (3,0)
Hence
[H* + thocHC"(Br) S e+ Bsup e VD + H¢||202'3(D7‘+L) + Z ”Hﬁ + AghBHQC"(BML) + Z Sup € SHveDs
L Ba pa B2W)
< Cet+ C’Z;up e~V2Ds 4 allpllczep,, ) + O'Z | H? + AgthCe(BHL). (12.4)
B otk B

(12.3) follows after some simplification. O



FINITE MORSE INDEX 27

Combining (12.2) with (12.3) we obtain

Pl 2.0 () +IH*+A0hallcos,) < 0524'02;1113 e V2P 45 | |l czo(p,, ) + > OIH + Abhgllcos,, )
gtk B

An iteration of this inequality from r 4+ K|loge| to r (with K large but depending only on L and o) gives

Illc2ocp,y + D I1H? + Alhallooqs,) < Ce*+C 0 sup  eV2Pn, (12.5)
B B r+K|loge|

13. IMPROVED ESTIMATES ON HORIZONTAL DERIVATIVES

In this section we prove an improvement on the C1¢ estimates of horizontal derivatives of ¢, ¢; :=
8¢/0y;. 1<i<n—1.
Differentiating (9.4) in y;, we obtain an equation for ¢; := ¢,,,

Az +0:20i = W (ga)di — (=1)%gn [Hi(y, 0) + Aohai(y)] + Ei, (13.1)

where hq i (y) := % and the remainder term

Ei = (8:0i—0,A.9)

" gf (y:2)0= + H* (4, 2)0:6y, + W (g, + ) = W (9)] &1
+ (=D [V (g + ¢) = W (ga)] g;ha,i(y)

oL
+ Y (VP W (g +6) — W (gp) g | 5 th (Tg(y, 2 )ay- (y,2)
B
 Ghas(0) [ (5, 2) + Achay)] — (-1l [(;j(y,z) - G 0:0) % 5 (Acha(y)) = Bohas(v)

= (=19 |Vzhal*hai(y) — V2ha?

gaa

- > a?, [(=1)Pg5Ra1 gy, 2),ds(y, 2)) + g5Rs.2 (Ma(y, 2),da(y, 2))]
Ba 7"

n—1 8Hj
- Zf% Z hg,; (Ls(y, 2)) Ty?(y, 2).
B j=1 i

Compared with the orthogonal part in the equation of ¢, the order of E; is increased by one due to
the appearance of one more term involving horizontal derivatives of ¢. More precisely, we have

Lemma 13.1. In M2(r),

|EZ‘ S g +||¢||CQQ(D(T+1))+ Supe 2[Do< +Z sup ’H’B’J'_Aﬁh | +€1/5gup€ \/§Da
B= 1B r+1

e
+ (Sup 6_2’2D°‘> Z sup VHgs+ Aﬁth‘ + Z sup e 2V2Ps 4 ||¢|| ce. 8(D(r41))
Bria B#a B r+1 B#a erl

We do not give detailed calculations here but only show a commutator estimate needed in the proof
of this lemma.

Lemma 13.2. For any ¢ € C’z(BI’%_l),
0
afy_Azw —Api = 0(e) (IV2e ()| + Ve(y)l) -

Proof. Because |V f,| < C, |V2f,| < e and 9ij(y,0) = 8;j + fa,i(y) fa,;(y), we have

Vy9:(4,0)| S e
By Lemma 8.5, we see
V97 (y.2)| + V397 (y. 2)| = O(e).
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a n—1 a n—1 k aso
e zsoﬂrkzl:l(a g (y, )> aykayl +;<8yzb y, 2 >6yk(y)

= A.pi+0(e) (IV?e() + Vo)) . O

By differentiating (9.3) we obtain

6R 6R
bigodz = ha,i(y) ng”dz = <|¢||201(D(r)) + S}Blp 62‘/§D‘1) , VyeBy

Take a large constant p so that W27p embeds into C*?. By noting that

OR OR
[ o= tooa| 5 e[ (90w + 90l ) el
—0R —0R

Nl=

—0R

OR
< 5[/ (|v2¢i(yvz)|+|v¢i(y,z))26\/§|de‘|

proceeding as in Section 10 we obtain for any y € B,.,

IH + AohasillLe i) S I EillLee(mz (r42))

/ / (IV2¢i(y, 2)| + |V iy, 2)|)" eI |dz]
Ba(y)

/ / (IV26i(y, )| + [Voily, 2)[)" e=7* 'dz]
B2 (y)

On the other hand, for any (y, 2) € ML (r), by standard elliptic estimates, we have

+ €

Gillw2r(Bayz)) S NBillLr(Bso(y,2)) + 18200 + Ozzill Lo (By 0 (y,2))
S N6ill L (Byw,my + eV HR + Agh

~

Substituting this into (13.3) leads to, for any y € B,.,
Z HHf + Aghﬁ,iHLr(Bl(y)) < o sup Z IIHﬂ + Aﬁh@ i

3 yeBa(y) "3
Q
+ CZ sup e 2fDB+CZ sup ’Hﬁ—l-AﬁhB’
p=1Ba(y) 5=1B5 ()

Q

+ Ce/? Z sup e~ V2Ds + C[9llc2.0(D(r+4)) SUP ¢ % Da

g=1DB1) Bria

An iteration of this estimate gives

Q
sup ZHHB—FA hgillr (i) S 52—1-2 sup e_QﬁDB—i—Z sup HB—i-Aghﬁ’Q

YyEB,. B B=1 B'r‘#»K\lugs\ B=1 Br+K\log5|
Q
—V2D
+ s Z sup e V2Pr 4 9llc26 (Dr+K|10g2]))  SUP
B=1 Br+K\loga\ r+K|loge|
Substituting (12.5) into this we obtain
Q Q

vz 5
sup Z||Hﬂ+A hg.illLe (B (y)) S € +Z sup e~ 52 Ds Jrgl/oz sup e~ V2Ds

yEB, 3 =1 B2k loge| ﬁ:13r+2Kllogs\

Then using Lemma 13.1 and (13.2) and proceeding as in Section 11, we obtain

||¢i||01f9(/\/lg(r))§52+z sup e ¥ Ds +51/5Z sup e V2Ds,

B2k loge| 3 B2k loge|

(M2 (r+3))-

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)



FINITE MORSE INDEX 29

14. A LOWER BOUND ON D,
Define

Q
Ay (r) :=sup e V2Pa  and A(r) = Z An(r).

B a=1

By (9.10) and (13.6),
sup [Agh®(y)] < €2+ A(r + K|loge|)? + /5 A(r + K|log ).
B,

By (10.2), in B,

4
H(y,0) = o A? e V2o @0) _ A%_l)a_leﬁdw(ym] + 0 (Ao (r + K|logel)) + O(e*/3).

Because H* = O(g), an induction on « from 1 to @ gives
1
A(r) < Ce+ §A(r + K|logel).
An iteration of this estimate from r = R to r = 5R/6 gives
A(BR/6) S e.
In particular, for any y € Bsg/s and a = 1,---,Q,

2
Du5) = L2 Jloge| - .

With this lower bound at hand, (12.5) can now be written as

Q
Iollczo sz + D NH® + Aohallcosy,.) S &

a=1
and (13.6) reads as
s .
pillcrepryay S5, Vi=1,---,n—1

Therefore by Lemma 9.6 we get
Q

6
> 1Ackallco (5,0 S €5

a=1

Now (10.2) reads as

. V/aly) _ 4 [A?,l)afle—ﬂda-l‘y) _A%_l)ae—\/ﬁdaﬂ(y)} +o(s?). (14.1)
1+[V/a(y)l

A remark is in order concerning whether we can improve this lower bound.

Remark 14.1. If there exists a constant M, o € {1,--- ,Q} and y. € By such that

V2
da+1(y670) S 7|10g5‘ +M

After a rotation and translation, we may assume y. = 0 and f,(0) =0, Vf,(0) = 0.
Define
V2

fﬁ(y) = fﬁ(sil/zy) - 9 (5 - O[)|10g€|, Vﬂ € {17 o aQ}
By the curvature bound on Ty, and Lemma 8.3, for any 8 € {1,--- ,Q}, if fg(O) does not go to oo, then

n B]’;;/ls,
|V fs] S et.
Subsisting this into (14.1) and performing a rescaling we obtain

. 4 . . i .
Afs(y) = o [A%il)aile_\/i(fﬁ(y)_fﬂ—l(y)) _ A%_l)ae—ﬂ(fﬁﬂ(y)—fﬂ(y))] +O@EYS), in B

Moreover, as € — 0, fg converges in C2_(R*™1) to fg, which is a nontrivial entire solution to (2.10).

This blow up procedure will be employed in Section 20.
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15. MULTIPLICITY ONE CASE

If there is only one connected component of {u = 0}, the estimates can be simplified a lot. For

example, now (12.5) reads as
1llo20par/ay) + I1H + Aohllge(pr1y S e2.

On the other hand, by Lemma 9.6 we get

||hH02v9(B;};/14) 5 52.
Hence
||H||09(B§I;/14) Sel

After a scaling, this is equivalent to the condition that

1-6

iy S €
co (B

]
| ———

L+ [Vfe[?
Because supp, P |V fo| < C, by standard elliptic estimates on mean curvature equations [39, Chapter 16],
we get

||fe||c2,€(B;/—31 <C,

where the constant C' is independent of €. This completes the proof of Theorem 2.7.

16. ARBITRARY RIEMANNIAN METRIC

In the previous analysis the background metric is an Euclidean one. Now we consider an arbitrary
Riemannian metric. Since we are concerned with local problems, we will work in the following setting.
Assume B;(0) C R" is equipped with a C® Riemannian metric g = g;j(z)dz’ ® dz?. We assume the
exponential map is a globally defined diffeomorphism.

Assume

e u. € C3(By) is a sequence of solutions to the Allen-Cahn equation
1 !/
eAgu, = gW (ug).
e The nodal set {u, = 0} consists of @) components,

Lae= {({E/, fa,E(x/))}v a=1,--,Q,

where f175 < f275 << fQ7E.
e For each «, the curvature of I, ¢ is uniformly bounded as ¢ — 0.

By this curvature bound, the Fermi coordinates with respect to I', . is well defined and C? in a 4-
neighborhood of I', . In the Fermi coordinates, the Laplace-Beltrami operator A, has the same expansion
as in Section 8, for more details see [27, Section 2]. By denoting H, . the mean curvature of I', ., we get
the following Toda system

4 _v3 _v3 1
Hoe= (A pyarem Fdomre — a2 emFdonc] 4 0 (eF). (16.1)
If I'y . collapse to a same minimal hypersurface I's, this system can be written as a Jacobi-Toda system
on ', as in [27].

Now we come to the proof of Theorem 2.6.

Proof of Theorem 2.6. First by results in Section 7, we can assume f, . are uniformly bounded in
CY(By™1). Hence we can assume they converge to fo, in CM?(By~') for any 0 € (0,1). Assume
there exists a € {1,---,Q} such that f, . do not converge to fo, in C?(B}1).

Using the Fermi coordinates (y, z) with respect to I'n := {2, = foo(2’)}, T c is represented by the
graph {z = f,.(y)}, where f, . converges to 0 in C' but not in C%. Assume |V?f, c(yc)| does not
converge to 0, then we can preform the same blow up analysis as in Remark 14.1, with the base point at
Ye. This procedure results in a nontrivial solution of (2.10). O
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Part 3. Second order estimate for stable solutions: Proof of Theorem 3.6

This part is devoted to the proof of Theorem 3.6 which in turn implies Theorem 3.5 and Theorem
3.8. Throughout this part we are in dimension two and u. denotes a solution satisfying the hypothesis
of Theorem 3.6. We shall use the stability condition of u. to prove the uniform second order estimates.

17. A LOWER BOUND ON THE INTERMEDIATE DISTANCE
In this section we use the stability condition to prove

Proposition 17.1. For any o > 0, there exists a universal constant C (o) such that for any o, x1 €

(—5/6,5/6) and fo.(x1) € (=5/6,5/6),

V2 -0
2

The idea of proof is to choose a direction derivative of u. to construct a subsolution to the linearized
equation and perform a surgery as in Lemma 5.1.

dist (21, fa,e(21)): Tat1,e) > e|loge| — C(o)e.

17.1. An upper bound on Q(y.). Without loss of generality, assume u. > 0 in {fq(21) < 22 <
fa+1,:(1)} N Cs/7. Recall that Lemma 7.1 still holds. Hence near {zo = fo-(z1)}, 2% > 0, while near

) Oxo
{r2 = fayre(a1)}, G <.
Let Dy e be the connected component of {g?; > 0} N Cg7 containing {xs = fo(71)}. Let ¢ be the
gg; to this domain, extended to be 0 outside. After such an extension, ¢, is a nonnegative

continuous function and in {¢. > 0} it satisfies the linearized equation

restriction of

1
eAp, = gW”(uE)goe. (17.1)
Concerning D, . we have
Lemma 17.2. D, N {|uc| <1 —0b} NCg/7 belongs to an O(e) neighborhood of {xs = fa.(x1)}.

Proof. By Lemma 7.1, {|u:| <1 — b} NCg/7 belongs to an O(e) neighborhood of {z3 = fa (1)}, where
% > 0. On the other hand, since g;‘z < 0 in a neighborhood of {z2 = fa+1,:(71)}, Da,c N Cq/7 belongs
to the set {fo—1c <22 < fat1,}- O

Choose an arbitrary point x. € {2 = fa,c(21), |21| < 5/6,|z2| < 5/6}. Take an 11 € C§°(By/100(2<)),
satisfying 7y = 1 in By j900(<) and [V < 1000. Multiplying (17.1) by ¢.n7 and integrating by parts
leads to

IN

C ep?  (17.2)
Bl/loo(ws)

C.

1
/ eIV (pem) I + =W" (ue)p2ni = / e? |V |?
Bi/100(xe) € Bi/100(ze)

IN

In the above we have used the following fact.

Lemma 17.3. There exists a universal constant C such that

/ apg < (.
31/100(905)

Proof. We divide the estimate into two parts: {|us| <1 — b} and {|uc| > 1 — b}.
Step 1. There exists a universal constant C' such that

Ou, |2

<C. 17.
ool <C (17.3)

Da,eM{|uc|<1=b}NB1 /50 (2e)

Because |Vu.| < e7 !, this estimate follows from the fact that
‘Dw N {Juc| <1 - b} 006/7’ < Ck,

which in turn is a consequence of Lemma 17.2; the co-area formula and the following two facts: (i) for
any t € [-1+b,1—0], {ue =t} is a smooth curve with uniformly bounded curvature and hence its length

is uniformly bounded; (ii) by Lemma 7.1, gz; >cetin {Jue| < 1—b}.
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Step 2. There exists a universal constant C' such that
/ ep? < C(b). (17.4)
{lue|>1-b}NB1 /100 (x<)

In order to prove this estimate, take a cut-off function 7y € C§°(B1 /50(x<)) with 12 = 1 in By /100(ze)
and | V2| < 1000, and ¢ € C°(—1,1) with ¢ =1in (=1, -1+ b) U (1 —b,1), C=0in (—1 + 25,1 — 2b)
and |¢’| < 2b1. Multiplying (17.1) by ¢.n3¢(u.)? and integrating by parts leads to

1
/ IV (e (ue)) > + 27 () 203 (u2)?
Bi/s0(e) €

[ e e P
By /s0(ze)

: /B oy 292 [VRPCe)? o 2mC () V[ Ve] 73 (e Ve ]
1/50(Ze

1
S 5/ QD? + */ 5057
By s0(ze) € J{1-2b<|uc|<1-b}NB1 50 (<)

where we have substituted the estimate |Vu.| < e71 in the last line.
Since W (uz) > ¢(b) > 0 in {|u.| > 1 — b}, we obtain

/ o< e[ W)’
{lue[>1=b}NB1 /100 (Te) Bi/so(ze)

< 053/ |Vu|* + Ce/ o2
By /so(ze) {1-2b<|uc|<1-b}NBy /50 ()
< C
Combining Step 1 and Step 2 we finish the proof. d

17.2. A surgery on ¢.. Next we use the smoothing modification in the proof of Proposition 6.1 to
decrease the left hand side of (17.2).

Without loss of generality, assume fo-(0) = 0, fo41.(0) = p. and p. < ¢|loge|. By Lemma 7.1,
pe > €. For any fixed constant L > 0, ue > 1 — b in Qq . := {|21| < Le, Le < x3 < p. — Le}. Let @, be
the solution of

~ 1 ~
eAp. = =W"(u)@e, in Qqp,
€
Pe =@z, 0N Oy .

By the stability of u., such an @, exists uniquely.
A direct integration by parts gives

1 - 1 -
[/ E|V(p5|2 + W//(ue)@?‘| - [/ 5|v908|2 + 7W”(u£)(pa2:
Qa,s € (9} g

a,e

/ E|V (e — %55) ‘2 + EWH(UE) (‘Pe - @6)2 (17'5)
Qo e €

c ~ \2
6/9ng ((PE 905) .

Because ue > 1 —0bin Qq ¢, 2 —6(b) < W”’(us) < 2+ (b) in Q4 -, where §(b) is constant satisfying
limy,_,¢ 6(b) = 0. Therefore,

Y

~ 244(b) - .
A(pa S T()Wsa mn Qme-

On 09y N{x2 = Le}, by Lemma 7.1,

o)

~ o Ue
Pe = Pe = 075

>

(LN

By constructing an explicit subsolution, we obtain

. _ C wp—Le . L 3
Pe(x1,20) > ge V20 + £z = , in {|a:1 < ;,% <xy < ZE} (17.6)
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. . - 6 = £
Lemma 17.4. For any § fized, if € is small enough, . =0 in {|z1| < %, % <19 < SZ 1.

Proof. Let € :=¢/p. < 1 and u.(x) := u.(p- 12), which is a solution of (2.3) with parameter e.
The nodal set of ue has the form Ug{zy = fgﬁe(xl)}, where fg’e(xl) = fg.e(pex1)/pe. Thus for any
w1 € (=pztip2 ), ) i
|fc/x/5($1)| < 4pe, |fg+1,e(xl)| < 4pe.
and fa,e(o) = N;,E(O) = Ov fa+1,6(0) =1
Since p. — 0, fa,e — 0 uniformly on any compact set of R. Because different components of {u. = 0}

do not intersect, fot1,e — 1 uniformly on any compact set of R.
Consider the distance type function W, which is defined by the relation

e
Ue = g ? .

By the vanishing viscosity method, in any compact set of {|za| < 1}, ¥, converges uniformly to
1—|1‘2|, I221/2,
Voo (21, 22) := 1 T9, —1/2 <@y < 1/2,
—1—|£L’2|, l'2§—1/2

Moreover, because W, is C in {|z1| < 1, (1+0)/2 < x5 < 3/4}, ¥, converges in C*({|z1] < 1,(146)/2 <
29 < 3/4}). In particular, for all € small,

Que _ 1, (W) 0% | |<11+6< U3
= — — m T —_— x — .
81‘2 Eg € 81172 ’ ! ’ 2 2 4

Rescaling back we finish the proof. O

Remark 17.5. The above proof also shows that
dist (21, fa,e(71)): Tatr1.e) = (1 +0(1)) (fat1,6 (1) = fa,e(21)) -
By this lemma and (17.6), we obtain
- N L) _a+d T pe
/ (0= — 32)° 2/ = oAL) 2 oro 22 (17.7)
Qa,e {|I1|<%77(1+§)p5 <I2<3p5 €

4

As in the proof of Proposition 6.1, by combining (17.2), (17.7) and the stability of u., we obtain

o) -2\ o)+ 5 & <c
€
By choosing 4, 6(b) sufficiently small, L sufficiently large (depending only on o), this implies that
V2 -0
2
which in view of Remark 17.5 finishes the proof of Proposition 17.1.

pe > elloge| — C(o)e,

18. TODA SYSTEM

18.1. Optimal approximation. As in Section 8, we still work in the stretched version, i.e. after the
rescaling z + £~ 12. The analysis in Section 8 still holds, although now {u = 0} = U,I',, where the
cardinality of the index set « could go to infinity.

Given a sequence of functions h, € C?(—R, R), let (note here a sign difference with Section 9)

9a(y,2) =g ((=1)* (z — ha(y))) ,
where (y, z) is the Fermi coordinates with respect to I',,. Define the function ¢(y, z; h,) in the following
way:
9z ha) = ga+ > _ (95 + (D7) + D (95— (1)  in Mq.
B<a B>«
By the definition of g and Proposition 17.1, the above sum involves only finitely many terms (at most 25

terms).
Similar to Proposition 9.1, we have
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Proposition 18.1. There exists (hy) such that for any |a| > 100, h, = 0, while for any |a| < 100, in
the Fermi coordinates with respect to Ty,

OR
/ﬂm [u(y,2) = 9(y, 2 ha)] ' (1) (2 = ha(y))) dz =0, Vy € (-5R/6,5R/6). (18.1)

Denote ¢« (y, 2) := g(y, z; h(y)), where h is as in the previous lemma. Let ¢ := u—g,. As in Subsection
9.1, denote

9a(y:2) =g (=1)* (z = ha(¥))),  ga(y,2) = 7" (=1)* (z = ha(¥))),

In the Fermi coordinates with respect to I'y, ¢ satisfies the following equation

A — H(y,2) z¢+8zz¢> (18.2)
= g*+¢ ZW, gﬁ -1° g; [H*(y, 2) + Azha(y)] *gg‘vzhozﬁ
55504

where Rg 1, Rs,2 and g are defined as in Subsection 9.1.
18.2. Estimates on ¢. By (12.5) and Proposition 17.1, for any o > 0 and |a| < 90,

[Dllc2are(mairy) + IHY + Afhallcre - S 727 + sup emV2Pe, (18.3)
(—r—K]loge|,r+K|logel)

Substituting Proposition 17.1 into (18.3) gives a first (non-optimal) bound
6l c21/2 (Mo rymy) + IHS + AShallcr2 (s, Set77, Vlal < 90. (18.4)
By (13.6), we can improve the estimates on ¢, := 0¢/0dy to
Ipyllcraremorym) S €75 (18.5)
18.3. A Toda system. Denote

By Proposition 17.1, for any r < 5R/6, A, (r) < el=e.
n (—6R/7,6R/7), (10.2) reads as

fo (@) _ 4 [Az i Va1 fa@) _ g2 ae_mw(xl,fa(xm} 10 (57/6). (18.6)
[+ Sl oo 1Y oY

19. REDUCTION OF THE STABILITY CONDITION

In this section we show that the blow up procedure in Remark 14.1 preserves the stability condition.
More precisely, if w is stable, (f,) satisfies a kind of stability condition related to Toda system.

Fix a smooth function 73 defined on R satisfying n3 = 1 in (—o00,0), 73 = 0 in (1, +00) and |n4|+ 0% | <
16. Take a large constant L and define

ns (2= p“(y) if z >0,

)

Xy, 2) = .
03 7+£‘* (y)) , ifz<0.

Clearly we have y = 1 in M,, x = 0 outside {p_, (y) — L < 2z < pt(y) + L}. Moreover, |[Vx| < L1,
Vx| S L2
For any n € C§°(—5R/6,5R/6), let

ey, 2) == n(y)ga(y, 2)x(y, 2).
The stability condition for v implies that

/'|vw+wwmwzo
Csr/6

The purpose of this section is to rewrite this inequality as a stability condition for the Toda system (18.6).
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In the Fermi coordinates with respect to I',, we have (Recall that now in (8.2), the metric tensor g;;
has only one component, which is denoted by A(y, z) here)
Op 2
Vot = 5202 4202 )
IVe(y, 2)I" = |57 W:2)| + Ay, 2 oy U ? )

19.1. The horizontal part. A direct differentiation leads to

dp
By 0 (1) gaX — 1Y) gaxhe y) + 1(y)gaXy-
Since ¢ < Ay, 2) < C,
Oy 2 5R/6 277 2 20 1122
a*(y,z)) My, z)dzdy S ¥)2190 X%+ 1(w)?190 Xl (0)* + 0P gL X5
Csrye —5R/6
5R/6 5R/6
< / n’(y)Qdere?/ n(y)*dy
—5R/6 —5R/6

1 [5R/6 N -
+f/ n(y)2 [6—2\/§pa W) 4 o2V20, (y)} dy.
—~5R/6

Here the last term follows from the following three facts:
o in {), # 0}, which is exactly {p3 (y) < z < pf(y) + L} U{pz(y) —L <=z <pg ()} Ixyl S L7
o in {pf(y) < = < pi (y)+ L} (respectively, {p (y)—L < = < ps (5)}), gl S e~ V2 (respectively,
gl S eV W),
e By (18.4) and Lemma 9.6, for y € (—6R/7,6R/7), hl,(y)? < e272.
19.2. The vertical part. As before we have
Pz = NgaX + N9 X

Thus by a direct expansion and integrating by parts, we have

5R/6 SR
/ OIN(y, 2)dzdy = / n(y)? [/ L9012 XN + 205,900 + |9;|2x§>\d21 dy
Csr/e —5R/6 SR
5R/6 6R
= /5R/6n(y)2 V o W”(ga)lg;|2><2A+9;£;><2Ad21 dy
5R/6 6R
/53/677(11)2 Vﬁ Ingmx*A. — Ig&|2x3AdZ] dy.

In the right hand side, except the first term, other terms can be estimated in the following way.
e Concerning the second term, because &, = O(e?),
5R/6

5R/6 SR
/ n(y)? V gg<y,z>£;<y,z>x<y,z>2x<y,z)dz] dy = O(e?) / n(y)*dy.

—5R/6 —6R —5R/6

e Concerning the third term, an integration by parts in z leads to

5R/6 SR
- / n(y)? / ghgax>A.dz | dy
—5R/6 SR

5R/6 6R 5R/6 SR
= 2/ n(y)? / AW E dy+/ n(y)? / 0123, dz | dy
—5R/6 —6R —5R/6 —6R
5R/6

5R/6 ~

6/ n(y>2 [6—2\/592(9) +€2\/§p“ (y)} dy +52/ n(y)Qdy,
—5R/6 —5R/6

where in the last line for the first term we have used the same facts as in Subsection 19.1 and the

estimate

A

Az = —2X(y,0)H"(y,0) (1 — zH"(y,0)) = O(e).
For the second term we have used the fact that
Asz = 2H(y,0)°A(y,0) = O(c”).



36 K. WANG AND J. WEI

e By the same reasoning as in Subsection 19.1,
PR/6 2 o 2.2 1 2 2v2pF 2v2p7;
/ n(y) / |96 x3Adz | dy < Z/n(y) [e‘ Pal) e "Q(y)} dy.
—5R/6 —6R
In conclusion, we get

5R/6 SR
/soﬁA(y,z)dzdy = */ n(y)* [/5 W”(ga)|g;|2x2)\dz] dy
—6R

—5R/6
1 —
+ 0(e?) /n(y)Qdy +0 (L - a) /n(y)2 |e72V20d ) . 2V20 )] ay,

Now the stability condition for w is transformed into

5R/6 5R/6 1 5R/6 B
0 < C/ )2y + Ce*~ 2"/ n(y)*dy + C ( + 5) / n(y)? [e—zﬁp;(y) + e2V2Pa (y)} dy
5R/6 5R/6 L —5R/6
5R/6 SR
s [ / (W () — W (ga)) g Px2Adz | dy. (19.1)
—5R/6 —6R

It remains to rewrite the last integral.

19.3. The interaction part. Differentiating (18.2) in z leads to

0 0
5,050 = 5, (H(y,2)07¢) + 02..¢

0z
— W) [( Go+ 6+ (-1)° /ﬁ%df] (=1)*W"(9a)g0 — Z(*l)ﬁwu(gﬁ)gg%
= Ba
B (—1)“8%[g; (H*(y, 2) + Asha(y))] — 62( 1V hal?) (19.2)
-y % [(—1)°g5Ra1 (Ma(y, 2), ds(y, 2)) + g5Rs.2 (s (y. 2), ds(y, 2))] +Za@i§'
Ba ’

Multiplying this equation by 7%g/, x>\ and then integrating in y and z gives

5R/6 ) OR b b ) 5R/6 ) OR 2
/ n(y) / {a AT~ 5~ (H(y, )3?</>)] 9o X Adzdy+/ n(y) mqﬁg& Adz | dy
—5R/6 z —5R/6

5R/6

5R/6 SR
= 07 [ aw? [ )~ W) g PPAdedy + [
—5R/6 —6R ~5R/6

R
n(y)? [ / W”(U)qﬁzg&xgx\dZ] dy

—0R

B SR/6 2 o " " ’ /ad,ﬁ’ 2
X ED [ [ ) - W) gl ¢ Ny

e —5R/6 —0R
5R/6 SR b
= e [P [ Sl (O (02) ~ M) gl Adady
—5R/6 SR U%
5R/6 R g
- / n(y)” / 57 (G2IV=hal?) gix?Adz| dy
—5R/6 oR
5R/6 6R 9
= [P [ dathg [oRan (. 2).dal,2)] dady
Bza —5R/6 -8R Z
5R/6 oR 0 5R/6 oR o€
- Z/ n(y)Q/ 9 X* A5 [95Rs.2 (s (y, 2), ds(y, 2))] dzdy+2/ y)2/ G X A5 dzdy.
e —BR/6 —6R 5R/6 —6R z
We need to estimate each term.
(1) Integrating by parts in z leads to
SR ) OR )
/ A= ALbgn XMy, 2)dz = — Azp—— (9o XMy, 2)) dz.
_sr 0z R 0z
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Using (18.5) and the exponential decay of g/, and g/, we get

‘/ —A.bgo XAy, 2) d2‘<€%
sr 0z

Integratlng by parts and using the exponentlal decay of ¢/, and g/}, we get

N

£ sup 9= (y, 2)]
pa (v)—L<z<pl (y)+L

< 52 o

~

‘/ Raz (H*(y,2)0-) gax2/\‘ = ‘/m H(y, 2 )¢z ~ (9o /\)‘

(3) The second term in the left hand side and the second one in the right hand side can be canceled
with a remainder term of higher order. More precisely,

5R/6 [ f6R
/ 77(3/)2 ¢zzzg;X2>\dZ dy

—5R/6 |/ -6R
5R/6 SR

= / n(y)* / b2 (9PN + 290 (02 4 XXz2) A+ gaXAzz) dz | dy
—5R/6 —6R

5R/6 SR
+ / n(y)? / ¢ (4900 + 290N + 49X 2) dZ] dy
—5R/6 —6R

5R/6 SR
= / n(y)? ¢-9"\*Mdz + h.o.t.| dy

—5R/6 —6R

5R/6 SR
= / n(y)? W (ga)B=guX Az + h.o.t
—5R/6 |/—oR

dy.

In the above those higher order terms can be bounded by 0(63*20). We only show how to prove

R 5
¢zgaXXz)\ =0(e27%). (19.3)

In spt(x), [xz| S L7,
9" < e f|\<e 2D (U)+5<5 7

b

1—0o

|¢z\ S ||¢HC’2’1/2(M(,(7’)) Se
Combining these three estimates we get (19.3). Similarly, other terms are bounded by O(g?) +
O (1961, 2) e (aa) ) = O2729).
Next we show that
OR
[ w) = W) dugxadz = 0 (75).

—6R

This is because in {x # 0},
u=got+o+ 3 (95— (D7) + D (95 + (1)),
B<a B>«

hence this integral is bounded by

R
/ [6110:1g6x A+ D 16:1g590x°A | dz S 101/, omymy + sup Dae V2P
R At (=mr)
< 82_30.

(4) In {x # 0},
W (u) = W"(ga) + O(I8]) + >_ O (g}) ,
B#a
and for 3 # a,

W (gs) = W"(1) + 0 (gh) .
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Hence

" " " / /adﬁ 2 o 7 " I,
/5 (W7 (u) = W7 (95)] 9agp X Adz = /5 (W"(ga) = W' (1)] go95M(y,0)dz + h.o.t.,
SR —0R

where higher order terms are controlled by

/m |619595x> +Z/ i lgb|x +Z/

ga

8d5 12 9 0R S e
* H H |9a| gpX" +e 2]\ 90| ghx>dz
=(Ma() J_sr sn
5 6170D (y)effDa(y)Jre*S—‘Q/EDa(y)Jrsef\/ﬁDQ(y)
S 5%—30

(5) Integrating by parts gives

OR 9
[ Sl (7 02) + Acha()) g
0R

R
- —/mg; [H(y, 2) + Azha ()] [90X° A + 2900002 + ghx* 2] dz

SR
- ;/_m‘ga\ggz [(H*(y, 2) + Asha(y)) X*A]

SR R
~ / 10 [H (5, 2) + Asha ()] o0 — / 102 [ (5, 2) + Asha(y)] X hedz

1 [9F )
= 5/6R|g§1| sza [H*(y,2) + Azha(y)]

OR 1 OR
- / }ga’ Ha(yv ) + Azha(y)] XXZ/\ - 5 / |ga’ [Ha(yv ) + Azha(y)] XQ)\zdz-
—0R

Because
0 _ Ha(ya 0)2 _ (52)
1—zH*(y,0) ’

0
|5z Acha®)| S & (Ha@)]| + o)) S 7,

the first integral is bounded by O (52_2").
In {x. # 0},
ol S % 4 emVE0n g1
Because
H(y,2) + Asha(y) = O(e'7),
the second integral is bounded by O(g2727).

Because A, = O(g), the third integral is bounded by O(£279).
(6) Integrating by parts in z and using (18.4) leads to

SR g SR P
/ (94|V 2 hal )ggxz)\dz = —/ GV he|* = (g;X2)\) dz
SR 0z —4R 0z

A
=
=

A
™
)
b
q

(7) For 8 # «,

R SR
B) B
/5 gnX QAa* [95Rs.1 (Hp(y, 2),ds(y, 2))] dz = —/m@ [9aX3A] g5Ra1 (Ma(y, 2), da(y, 2)) dz.

Because

[Ro (Ts(y,2), sy, 2)) | S 17
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the above integral can be controlled by

6R
51—0/ e V2 da @ AW g < 1m0 p (y)eV2Paly) < 2730
OR

(8) Similarly, because |Rg2| < 2729, we have
SR SR
2 9 9 "
SR gozX )‘67 [g R,B 2 (H,B(y7 ) dﬂ(y7 Z))] dz = - s 82 [gax >\] gﬁR,B,Q (H,B(y7 Z)a dﬁ(y7 Z)) dz
= 0(e7%).

(9) Finally, by the defintion of &g,
5R/6 SR ¢ 5R/6
/ n(y)Q/ G XA ddy = 0(62)/ n(y)>dy.
—5R/6 —6R z —5R/6
Combining all of these estimates together, we obtain

5R/6 6R
/ n(y)® [ / (W (u) = W (ga)] g;2x2kdz] dy

—5R/6 —6R

5R/6 SR . [BR/6
= Z/ n(y)* [/ (W (ga) = W"(1)] ggg’gdZ] A(2~/70)dy+0(6§)/ n(y)*dy.

e/ —5R/6 —6R ~5R/6

The last integral can be computed by applying Lemma A.1, which leads to

5R/6 SR
[ | [ W) - W) g xads | d (19.9
—5R/6 -8R
5R/6 v v . [5R/6
_ _4/ 77(1/)2 [A?_l)afle_ 2do—1(y,0) +A%,1)ae 2da+1(y70)j| )\(%O)dy_,_o(gg)/ n(y)Qdy.
—5R/6 —5R/6
19.4. A stability condition for the Toda system. Substituting (19.4) into (19.1) we get
5R/6 5R/6 1 5R/6 N -
0 < C/ V2dy + Ces / n(y)2dy + C ( + 5) / n(y)? [6—2\/5% W) 4 o2V20, (y)} dy
5R/6 —5R/6 L —5R/6
5R/6 v V3
~ [ 53/677@)2 [Af,l)a,le* a1 W0) 4 A2 e 2da+1<y’°>} Ay, 0)dy. (19.5)

First we have the following estimates. Because do(y, p (v)) = da+1(y, pt (y)), if they are smaller than
V2| loge|, by Lemma 8.3,

4aly, PE W) = dass (9, PE(9) =~ 5daca(4:0) + (1)

Hence
72\/>pa < c _|_efda+1(y 0).

A similar estimate holds for €2V2Pa %) From these we deduce that
5R/6 N - 5R/6 SR/6
/ ()2 [672\5% W) 4 (2203 <y)} dy < C&2 / )2y + C / J2e—VEDal) gy
—5R/6 75R/6 5R/6
Substituting these estimates into (19.5) leads to

C 5R/6 B
<c L) /SR/6n(y)2 [Af,l)a_le V2da_1(y,0) +A%_1)ae\/§da+1(y,0)} My, 0)dy  (19.6)
5R/6 ., [BR/6
< of L orerascst [ i
5R/G ~5R/6

By choosing L large enough, we get

5R/6
/ n(y)? [e*ﬁda*(y’o) + e‘@da“(y’o)] dy < C/
—5R/6 —5R/6

5R/6 5R/6

4

n’(y)2dy+063/ n(y)*dy.  (19.7)
—5R/6

Remark 19.1. With a little more work and passing to the blow up limit as in Remark 14.1, we get

exactly the stability condition for the Toda system (2.10).
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20. PROOF OF THEOREM 3.6
In this section we prove

Proposition 20.1. For any a and y € (—R/2,R/2), if | foa(y)| < 20R, then
4v2
Da(y) = T|10g5|~

First let us use this proposition to prove Theorem 3.6.
Proof of Theorem 3.6. Substituting Proposition 20.1 into (18.3), we get
¢l czarzma(ry2y) + IH® + AGhallor/z(g,.) S e8/7. (20.1)
By Lemma 9.6,
[H Lo (= r/2,r/2) S 10llc2arz(ma ry2)) + IH® + Afhallcrzsy, ) S 87,
Then for any |y| < R/2 and |z| < R,
[H(y,2)| S [H*(y,0)] S %7

In M,(R/2),
0 0
Vi = (107, (55~ 1) g )+ To 3 (-1)70) (Vs = Kl ) V)
B#a
0 0 0 0
2 — (=1 o ! i — (WA N} a / i
Vi = (D) © 5 (KW 5+ (<)Y 5
w0 00 o ., 0
+ ol (G- twg) e (5 -y
+ Y (—1)Pgh(y, 2)Tp(y, 2)Res + Y 94, 2)Rpa + V70,
B#a BFo
where in the Fermi coordinates with respect to I'g,

8 0 0

Rps = — ) —h a
8= gy Vg t Vo

)
“ oy
Rpa= (aaz — W (y )5) ® (;Z —h;(y)aay) .

By the estimates on ¢ and h, we obtain
0
— 1\, 8/7
Vu = (1) 5+ 0 (7)),
0 0
2 — (1), -~ 8/7
V2= (1)l 6 o +0( )
Using these forms we obtain, for any L > 0, in My(R/2) N{|z| < L}
[V2ul? — [V [Vul”
[Vul?
For any b € (0,1), there exists an L(b) such that Mo(R/2) N {|u| < 1 —b} C Mo(R/2) N {|z| < L(b)}.
Therefore this estimates holds for this domain, too.

After a rescaling we obtain |B(u.)| < Ce'/7 in {|u.| <1 —b} N {|z1| < 1/2,|x2| < 1/2}, and Theorem
3.6 is proven. O

< C(L)e/7,

Recalling the definition of A,(r) and D,(y) in Section 8 and Section 14. Note that A,(r) is non-
decreasing in r while D, (r) is non-increasing in r.
To prove Proposition 20.1, we assume « = 0 and by the contrary
Ag(R/2) > &8/7. (20.2)

This implies that for any r € [R/2,4R/5], Ag(r) > &%/7.
We will establish the following decay estimate.
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Lemma 20.2. There exists a constant K such that for any r € [R/2,4R/5], we have

1
AO (7“ - KR%) S 5140(7")
An iteration of this decay estimate from r = 4R/5 to R/2 leads to
Ao(R/2) < 27 CK BT A (4R /5) < Cem T « €2

41

This is a contradiction with the assumption (20.2). Thus we finish the proof of Proposition 20.1, provided

that Lemma 20.2 holds true.

Now let us prove Lemma 20.2. Fix an r € [R/2,4R/5] and denote € := Ay(r). We will prove

Ay (r— Ke_l/Q) < g

By (20.2), € > £%/7. Thus
Ke /2 < Ke 7 = KR7,
and
Ao (r - KR%) < Ay (r - Ke_1/2) <3
which is Lemma 20.2.
To prove (20.3), we need to prove that for any z, € [—r + Ke'/2,r — Ke'/?],

e~ V2Do(z.) < E
-2
After a rotation and a translation, we may assume z, = 0 and
fo(0) = f3(0) = 0.
By the Toda system (10.2), for any y € [-Ke /2, Ke~1/?],
)] S emV2Pew) 4 7/0 S e

We also have a semi-bound on f.

Lemma 20.3.
f2i(y) 2 —em V) = £T0 2

() S eV?hW) 470 S e,

~

Proof. By (18.6),

"
T 2 [AgeA4l - 42 e~V 1 0TI
+ | f1 0
4A2
< U—Je—ﬂ'd5'+0(g7/6).

By Lemma 8.3, either |d}(y)| < v/2|loge| or
dy(y) = di(y) + O(').
The bound (20.8) then follows from (20.6). In the same way we get (20.7).
By (20.5) and (20.6), for any y € [-Ke /2 Ke /2],
[fo(y)] < Cely| < CKe2.
Substituting these into the Toda system (18.6) we obtain in (—Ke /2, Ke~1/?)

1

1 0 2
= 0@
’ (1+1f5)2)°
= (A2 ) o) + O
o

= 4 (flz_lcf\/id*1 — A%eﬁdl) + 0(649/48).
o0

(20.3)

(20.4)

(20.5)

(20.6)

(20.7)
(20.8)

(20.9)

(20.10)
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Lemma 20.4. Fory €[22 2¢71/2] if |d_1(y)| < V2|loge|, then we have
e~ V20da W)l = o=V2(fon)—f-1(v) 4 O(*9/48);
if |di(y)| < V2|logel, then we have
e~ V2L W = —V2(h (W) foly) L O(e9/%%).
Proof. We only prove the second identity. The first one can be proved in the same way.

As in Lemma 8.3, if |d; (y)| < v/2|loge|, we have

sup | ff — fo| S€'/?|logel® S €'/t
(y—1,y+1)

Because |f}| < €'/? in [-Ke /2, Ke~1/2], this implies that

1/4
sup [fi] S e/t
(y—1,y+1)

As in Lemma 8.3, from this we deduce that

di(y) = foly) — fi(y) + O(e/1°).

Then
V() = ~VEHW—FoW) 4 O(l7/16),

This finishes the proof. O
By this lemma and the fact that e~ V2Po®¥) < ¢ in (—2¢1/2,2¢71/2), (20.10) can be rewritten as
U(y) = 4 (Az_le—ﬂ[fo@)—f_l(yn _ A%e\/?[fl(y)—fo(y)]) +O(18), (20.11)

00
Now define the functions in [— K, K],

_ V2
faly) = fa (e Uzy) 7047|10g6|, a=-1,0,1.

They satisfy

e o(0)=fe0)=0.
e In (—K,K), |fl1<C, fi/ <Cand ', >-C
e In (—2,2),

- 4 - ; oz
== {Agleﬂ/?(frffl) - Afefﬁ(fﬁfo)] + O(!/48), (20.12)
0
By the stability we get
Lemma 20.5.

2
/ [e—ﬁ(fo—ffﬂ +e_\/§(f1_f0):| < % + CKel/16, (20.13)
—2

Proof. Take a function 7 € C§°(—K, K) satisfying 77 = 1 in (—2,2) and |/| < K~!. Taking the test
function 7 in (19.7) to be 7(¢~/2y), we obtain

2 K
/ (e—ﬂd_ﬂe*l/zy) n e\/ﬁdl(eflny)) dy < / ﬁ(y)2 (e—\/id_l(efl/zy) + e\/ﬁdl(e*l/zy)> dy
—2 —-K

K K

< Ce / 7 (y)? + Ce'o/1s / (y)?
-K -K

< %e—l—CKelﬁ/w.

After using Lemma 20.4 and a rescaling, the left hand side can be transformed into the required form. O
The following lemma establishes (20.3), thus completes the proof of Lemma 20.2.
Lemma 20.6. If K is large enough (but independent of €), then

max (e-ﬁ(fo—f,l) n e—\/i(ﬁ—fo)) <L
(-1,1] 2
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Proof. By (18.6), in (—2¢=1/2,2¢71/2),
4A%, _ 3/2
f < e IR (L A1) 4 0 (7°).
0o
By the proof of Lemma 20.4,
e cither f; — fo > v/2|loge|, which implies that

e*\/i(flffo) < 62;

e or |f{ — f3| < €/4, which together with (20.9) implies that

1] < 26V/4,
Therefore, because e_ﬂ(fl_f°> < ¢, we obtain
1< 4”;(2)16_\/§(f1_f0) + O(79).
After a rescaling this gives
< 41;131 ~Vv2(fi—fo) +O(61/16)7 in (—2,2)
0
By (20.12),
(f1 - fo)ﬁ < &:(j‘leﬂ(flfo) +O(/19), in (=2,2). (20.14)
Then

ISH
]
|
S
—
Shy
,_.
|
=
~
IV

R N N\
_\/ie—\/i(fl—fo) (fl _ fO)
> _06—2\/5();1—];0) _ 061/166_\/5(]?1_];0).

By the estimate of Choi-Schoen [13], there exists a universal constant 7, such that if

2 L
/ e VAFi=fo) < . (20.15)
-2
then
sup e~ V2(Fi-Fo) < 1
[—1,1] 4

In (20.13), we can first choose K small and then let € be small enough so that (20.15) holds. Then the
claim follows by proving the same bound on sup;_ j e~ V2(fo=f-1), O

APPENDIX A. SOME FACTS ABOUT THE ONE DIMENSIONAL SOLUTION
It is known that the following identity holds for g,
g (t) = /2W(g(t)) >0, VteR. (A1)
Moreover, as t — 00, g(t) converges exponentially to +1 and the following total energy is well defined
+o0 1 Vo
oo = /_Oo {29 (02 + W(g(t)| dt € (0, +00).

In fact, as t — o0, the following expansions hold. There exists a positive constants A; such that for
all £ > 0 large,

g(t) =1— Aje V2 4 O(e™2V?), (A.2)
and a similar expansion holds as t — —oo with A; replaced by another positive constant A_;. Further-
more expansion (A.2) can also be differentiated.

The following result describes the interaction between two one dimensional profiles.
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Lemma A.1. For all T > 0 large, we have the following expansion:

/+°° W"(9(6)) = W ()] [g(—t = T) + 1] g/ (})dt = —4A2,e™V?T 10 (7 T) . (A3
/ " W g - W] [9(T — £) — 1] (t)dt = 442~ 1 0 (7). (A4)

Proof. We only prove the first expansion.
Step 1. Note that
(W (g(t) = 2| S g'(t).
Therefore the integral in (—oo, —37'/4) is controlled by

—3T/4 —3T/4 v
/ g (t)%g (=t — T)dt < / V2t < e T

— 00 o0

Step 2. Similarly the integral in (37'/4, +00) is controlled by
+o0 +oo
/ g )% (—t —T)dt < / e 3V2—VRT gy < e T
3T/4 T/4
Step 3. In (—37'/4,3T/4),

g(—t — T) + 1= A_le_\/it_\/iT + O (8_2\/§t_2\/§T) .

Because

3T/4 3T /4
[ W)~ 2 e I g e [ e Vi g pe T
—3T/4 —3T/4

2\
@
%
~

we have

teo 3T/4 .
/ [W//(g(t)) - 2] gl(t)g/(t -+ T)dt = A_leiﬁT/ [W”(g(t)) _ 2] g/(t)e*\/gtdt + 19) (efoT) .

oo —3T/4
As in Step 1 and Step 2, we have

| / ey -2 g (e at| g e T,

‘ W" —2] g’(t)eiﬁtdt’ < e ST
3T/4
Therefore
—+oo —+oo 33
| va) 2ot = 1)+ 1) 0t = AV [T W g(0) ~ 2 (0P a0 (e T

Step 4. It remains to determine the integral

+o0
/ W (g(t)) — 2 g/ (e~ VP dt.

Note that ¢’ satisfies
9" —2¢" = [W"(g(t)) — 2"
As in Step 1 and Step 2, we have

+oo I
[ W) - Ag 0 = [0 a0) 2 0 ar
—+o0 J_7,

= g(L)e V2 4 VoG (L)em V2 — g (~L)evE + Vg (—L)eV?*]

— —4A_, +0(e2Vh),
Letting L — +o00 we finish the proof. 0

—00

Next we discuss the spectrum of the linearized operator at g, i.e. £ = —% + W"(g(t)). By a direct
differentiation we see ¢’(t) is an eigenfunction of £ corresponding to eigenvalue 0. By (A.1), 0 is the
lowest eigenvalue. In other words, g is stable. By a contradiction argument, we have
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Theorem A.2. There exists a constant > 0 such that for any p € H'(R) satisfying

+oo
[ e(t)g (t)dt =0, (A.5)
we have
+o0 +oo
| ar s wraoeeraza [ ek

APPENDIX B. DERIVATION OF (10.2)

We only give estimates on a couple of terms in (10.1). Other terms can be estimated by integrating
by parts in z and applying (8.8)-(8.13).

B.1. Horizontal terms. Differentiating (13.2) twice leads to

SR
a¢ / //aha
-g, + (—=1)%¢g, = =0, B.1
/—6R oy’ 1) oy (B.1)
SR o2 2
%0 0¢ ,, 0hg, 0o, 0hgy , 0%hg, 1 Ohe Ol
— ) —g,— 4+ (-1 : 1) — : - =0. (B.2
| st (0 G ot + (<) Sl G+ (F1) 0l o + ogll GG~ 0. (B
Therefore
oR A I a—lA oR " 1\« o ij 6¢ 8hoz "no_ 2 oR "
0¢(yvz)ga - ( 1) Oha (bga + 2( 1) g (:%O) i j 9o |V0ha| ¢ga :
—6R —6R —6R dy* Oy —6R

(B.3)
Then by (8.13),

SR SR IR
Ab(y,2)gh / Nod(y, 2)gh + O (€) / (IV26(y, 2)| + |V 8(y. 2)|) |2]e V2l dz
R R —0R

6| loge]|

6g" + O(Vha(y)?) / 6y 2)le~21d2

—6|loge|

6| log €|

(*1)a71tha/

—6]loge|

6] loge]| s
+ O(|Vha(y)| +2) / N |(|v§,<z><y,z>|+\vy¢<yyz>|)<1+|z|>e- Wlgz (B4
—6|loge
6| log |
= (~1)*Agha / O
—6|loge
+ O(IVha(y)+2)  sup  (IV26(y,2)| + [Vyol(y, )] + by, 2)]) e (V2-)l=l,

(—6|loge|,6|loge|)

B.2. Interaction terms. To determine the integral

5R

/ W (g.) =Y W'(gs)| gh

-8R 3
consider for each B, the integral on (—dR,dR) N Mg, which is an interval (pj (y),p;;(y)) If 8 # «, by
Lemma 9.4, in (p3 (y), pf (%)),

‘W/(g*) = W/(gﬂ)‘ < e~ V2(dal+ldaa) | o=VE(dal+daal) 4 o2
B

We only consider the case f > « and estimate
S @)
/pﬂ Y VAl sl g
P ()
If |2], |dg| and |dg_1| are all smaller than 6|loge|, by Lemma 8.3,
ds(y,2) = =+ ds(y, 0) + O(1/%),

dg—1(y,2) = 2 +dg_1(y,0) + O(e'/?).
Note that since 8 > a, z > 0 while dg(y,0) < dg_1(y,0) <O0.

—_ o~
@ @
D
= =
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We have

W) HO
/’Jﬂ Y e Vasl s g < /pﬂ VAl 1 (1.0 + s (1,0)])
p p

5 (V) 5 (V)

A

—dg(y,0 +
/ M Betds 0 -daw0) 4 /p"(y) s )
pg (y) —dg(y,0)

< e*\/i(d/i—l(y,O)*dﬁ(y,O))*ﬁPE(y)+e—\/ﬁ(dﬁf1(y70)—2dﬁ(y»0))_

By definition, —dg(y, p5 (y)) = ds—1(y, p5 (y)). Thus by (B.5) and (B.6),

pg(y) _ _dﬂ—l(ya 0)2+ ds(y,0) + O(El/3>.

Substituting this into the above estimate gives
P ()
/ T e VR s ) g < o B (s (5:0) =35 (4:0)) g o=V 1 (4,0) =245 (4,0)).
rs (y)

If 8 = o + 1, because dg_1(y,0) = 0, this is bounded by O(e*¥*da+1(:0).
If B> a + 2, this is bounded by O(e¥2da+2(¥:0)),
It remains to consider the integration in (p, (y), pt(y)). In this case we use Lemma 9.3, which gives

pd ()
/_() W'(g:) =D W'(gs) | g (B.7)
Pa Y B
P& ()
= ) =2 fges = ) gV (g0) s + (1)

+
. /Pa (y) [O (672\/@1&71 + 62\/§du+1) +0 (eiﬁdu—Zf\/i‘Z‘ + 6\/§d(,4+2*\/§|2|>i| 91/1.
pa (y)

Because ¢/, < e V22l and e=2V2da—1 < =2V2dam1(4.0)-2V22 | 22 we get

+ 0 +
/pa(y) e,gﬁdwlg,a 2 +672\/§d071(y,0) / e\/§2d2+//’a(y) VA,
pa (y) pa (y) 0

£2 4 ¢ 2V2da—1(y,0)~V2p7 (v)

AN

S
< 52 + e—%\/ida—l(yvo).

Similarly, we have

pE W) Vs 5 s
/ e? 2da+1g(’l 5824-65 2da+1(y70)7
p

o (¥)

+
/Pa @ 9] (ef\/ﬁda,zf\/ﬂﬂ + e\/ida+27\/§|2|> g/ < e*\@dafz + e\/id(wrz
a ~ *
o« (v)

To determine the first integral in (B.7), arguing as above, if both ¢/, and g,_1 — (—1)*~! are nonzero,
then

ga-1(y:2) = 7 ((=1)°(z + dam1 (4 0) + ham1 (oo (3,2)) + OE) ).
Therefore

T (y)
W (ga) = 2] (gae1 — (=1)*7) g,

o (y)

W (7 (17 (= = ha()))) = 2] 7' (=1)*7'(z = ha(y)))

/p (v)
(( 1)*(z + da-1(y, )+ha,1(Ha71(y,2))+0(51/3))) _(_1)(1_1} &

+oo
= [ DT = ) ~ A (1 b))

— 0o
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%[5 (=17 + dac1(9,0) + ha 11 (9, 2)) + O(/2))) = (~1)* 1] d
+ O(e Frdamrw0)
= (~1)™447 e V200 4 O (| (9)] + ha-1 (a1 (y, 2))| + /%) €7 V2 00)
—+ O(ei¥da71(yro)).

In conclusion we get

R
/ W'(g.) = > W'gs)| ga
5

—0R
= (-1)% [442_ e V200 g2 | eV @0)| 4 O(c?)
(1@l + a1 (TMai (g, 2))| + /) e V2oms (00

0]
+ 0 (Iha(®)] + Ihas1 (Masa(y, 2))] +/7) e/2don (00

3v2

+ O(e” ZZdQ,l(y,o)) + O(e¥da+1(y70)) + O(efﬂdafz(y,O)) + O(e\/ﬁdwz(y,o))‘
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