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Abstract

A ternary inhibitory system is a three component system characterized by two properties: growth
and inhibition. A deviation from homogeneity has a strong positive feedback on its further increase. In
the meantime a longer ranging confinement mechanism prevents unlimited spreading. Together they lead
to a locally self-enhancing and self-organizing process. The model considered here is a planar nonlocal
geometric problem derived from the triblock copolymer theory. An assembly of perturbed double bubbles
is mathematically constructed as a stable critical point of the free energy functional. Triple junction, a
phenomenon that the three components meet at a single point, is a key issue addressed in the construction.
Coarsening, an undesirable scenario of excessive micro-domain growth, is prevented by a lower bound
on the long range interaction term in the free energy. The proof involves several ideas: perturbation
of double bubbles in a restricted class; use of internal variables to remove nonlinear constraints, local
minimization in a restricted class formulated as a nonlinear problem on a Hilbert space; and reduction to
finite dimensional minimization. This existence theorem predicts a new morphological phase of a double
bubble assembly.

1 Introduction

The objective of this paper is to establish the existence of a double bubble assembly as a new morphological
phase for a ternary inhibitory system.

The term morphological phase comes from the block copolymer theory. An archetype of inhibitory
systems, a block copolymer is a soft material characterized by fluid-like disorder on the molecular scale and
a high degree of order at a longer length scale. A molecule in a block copolymer is a linear sub-chain of one
type monomers grafted covalently to other types of monomers. Because of the repulsion between the unlike
monomers, different type sub-chains tend to segregate. However the chemical bond between the sub-chains
inhibits macroscopic phase separation. Only a local micro-phase separation occurs, resulting in micro-
domains rich in different types of monomers. These micro-domains form patterns known as morphological
phases [4].

The ternary inhibitory system considered here was originally derived by the authors in [24] from Nakazawa
and Ohta’s density functional formulation for triblock copolymers [18]. Let D be a bounded and smooth
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Figure 1: A proposed double bubble phase in a ternary inhibitory system.

open subset of R2, and ω1 and ω2 be two positive numbers such that ω1 + ω2 < 1. For two measurable
subsets Ω1 and Ω2 of D satisfying |Ω1| = ω1|D|, |Ω2| = ω2|D|, and |Ω1∩Ω2| = 0, let Ω3 = D\(Ω1∪Ω2). Here
|Ω1|, |Ω2| and |Ω1 ∩ Ω2| stands for the area (or the Lebesgue measure) of Ω1, Ω2 and Ω1 ∩ Ω2 respectively.
The free energy of the system is

J (Ω1,Ω2) =
1

2

3∑
i=1

PD(Ωi) +

2∑
i,j=1

∫
D

γij
2

(
(−∆)−1/2(χΩi − ωi)

)(
(−∆)−1/2(χΩj − ωj)

)
dx. (1.1)

The first term in (1.1) is responsible for growth. It is the total length of the interfaces separating the
three components Ω1, Ω2 and Ω3. Three types of interfaces exist: ∂Ω1\∂Ω2, the interface separating Ω1 from
Ω3; ∂Ω2\∂Ω1, the interface separating Ω2 from Ω3; and ∂Ω1∩∂Ω2, the interface separating Ω1 from Ω2. One
can write the total size of the interfaces of all three types as 1

2 (PD(Ω1)+PD(Ω2)+PD(Ω3)). Here PD(Ωi) is
the perimeter of Ωi in D. For a set Ωi with a piecewise C1 boundary, PD(Ωi) is simply the length of ∂Ωi∩D.
For a general Lebesgue measurable subset the perimeter is defined in (2.22). In PD(Ω1)+PD(Ω2)+PD(Ω3),
each of ∂Ω1\∂Ω2, ∂Ω2\∂Ω1, and ∂Ω1 ∩ ∂Ω2 is counted twice. The half is put here to avoid double counting.
To make this term small, the Ωi’s like to form large regions separated by curves as short as possible.

The second term in (1.1) provides an inhibition mechanism. The operator (−∆)−1/2 is the positive
square root of the inverse of the −∆ operator; see (1.6); χΩi is the characteristic function of Ωi (χΩi(x) = 1
if x ∈ Ωi and 0 otherwise). The matrix γij is symmetric and positive definite for a triblock copolymer. For
the second term to be small, the functions χΩi must have frequent fluctuation.

A critical point (Ω1,Ω2) of J is a solution to the following equations:

κ1 + γ11IΩ1 + γ12IΩ2 = λ1 on ∂Ω1\∂Ω2 (1.2)

κ2 + γ12IΩ1 + γ22IΩ2 = λ2 on ∂Ω2\∂Ω1 (1.3)

κ0 + (γ11 − γ12)IΩ1 + (γ12 − γ22)IΩ2 = λ1 − λ2 on ∂Ω1 ∩ ∂Ω2 (1.4)

ν1 + ν2 + ν0 = 0⃗ at ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω3. (1.5)

Here we assume that Ω1 and Ω2 do not touch the boundaries of D. Otherwise we need to add another
condition that the boundary of Ω1 (or Ω2) meets the boundary of D perpendicularly.

In (1.2)-(1.4) κ1, κ2, and κ0 are the curvatures of the curves ∂Ω1\∂Ω2, ∂Ω2\∂Ω1, and ∂Ω1 ∩ ∂Ω2,
respectively. These are signed curvatures defined with respect to a choice of normal vectors. For instance a
circle has positive curvature if the normal vector is inward pointing. On ∂Ω1\∂Ω2 the normal vector points
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Figure 2: Left plot: the ABC...ABC lamellar morphological phase found in triblock copolymers. Right plot:
the ABAB...ABAC phase found in homopolymer/diblock copolymer blends.

inward into Ω1. On ∂Ω2\∂Ω1, the normal vector points inward into Ω2. On ∂Ω1 ∩ ∂Ω2, the normal vector
points from Ω2 towards Ω1, i.e. inward with respect to Ω1 and outward with respect to Ω2.

Also in (1.2)-(1.4) IΩ1 and IΩ2 are two functions on D determined from Ω1 and Ω2 respectively. The
function IΩi , called an inhibitor, is the solution to Poisson’s equation

−∆IΩi = χΩi − ωi in D, ∂νIΩi = 0 on ∂D,

∫
D

IΩi(x) dx = 0, (1.6)

where ∂νIΩi stands for the outward normal derivative of IΩi on ∂D. Note that the constraints |Ωi| = ωi|D|
implies that the integral of the right side of the PDE in (1.6) is zero, so the PDE together with the boundary
condition is solvable. The solution is unique up to an additive constant. The last condition

∫
D
IΩi(x) dx = 0

fixes this constant and selects a particular solution. One also writes IΩi = (−∆)−1(χΩi −ωi), as the outcome
of the operator (−∆)−1 on χΩi −ωi. The operator (−∆)−1/2 in (1.1) is the positive square root of (−∆)−1.

The constants λ1 and λ2 are Lagrange multipliers corresponding to the constraints |Ω1| = ω1|D| and
|Ω2| = ω2|D|. They are unknown and are to be found with Ω1 and Ω2.

In the last equation, (1.5), ν1, ν2, and ν0 are the inward pointing, unit tangent vectors of the curves
∂Ω1\∂Ω2, ∂Ω2\∂Ω1, and ∂Ω1 ∩ ∂Ω2 at triple points. The requirement that the three unit vectors sum to
zero is equivalent to the condition the three curves meet at 120 degree angles.

A morphological phase of the problem (1.1) must be a local minimizer of the functional J , hence a
stable solution to (1.2)-(1.5). As a phase in an inhibitory system it should have an approximately periodic
pattern. Many patterns have been proposed by physicists as morphological phases based on experiments and
numerical simulations; see [4]. Mathematically only two patterns have been known to be local minimizers of
J , both of which are one dimensional.

The first was found by the authors in [25] and depicted in the left plot of Figure 2. It is a one dimensional
local minimizer of J , consisting of alternating A, B, and C micro-domains. The functional J is posed on
the unit interval with the periodic boundary condition. Cyclic patterns of 3k, k ∈ N, micro-domains are all
local minimizers of J . Here the matrix γ is positive definite.

Another one dimensional solution, again an energy local minimizer, was found by Choksi and Ren in [6].
It models a diblock copolymer/homopolymer blend. Depicted in the right plot of Figure 2, such a blend is
a mixture of a AB diblock copolymer with a homopolymer of monomer species C, where the species C is
thermodynamically incompatible with both the A and B monomer species. In the homopolymer a polymer
chain consists purely of the monomer species C. Only the AB diblock copolymer has the inhibition property.
In this case γ has one positive eigenvalue and one zero eigenvalue.

In this paper we predict a new morphological phase based on an existence theorem. As illustrated in
Figure 1, this new phase is an assembly of perturbed double bubbles.

The double bubble is a fascinating geometric structure. It arises as the optimal configuration of the two
component isoperimetric problem. Let m1 and m2 be two positive numbers. Find two disjoint sets E1 and
E2 in Rn such that |E1| = m1, |E2| = m2, and the area of ∂E1 ∪ ∂E2 is minimum. The double bubble is
the unique solution to this isoperimetric problem by the works of Almgren [3], Taylor [35], Foisy et al [9],
Hutchings et al [11], and Reichardt [22]. In two dimensions the planar double bubble, Figures 4 and 5, is
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enclosed by three circular arcs that meet at two triple junction points, or triple points. The angles between
the arcs at a triple point are all 120 degrees.

A perturbed double bubble assembly is a collection of many disjoint, perturbed double bubbles. A
perturbed double bubble deviates from an exact double bubble slightly, due to the impact of the second
term in J . All the perturbed double bubbles in the assembly have approximately the same size and shape.
In Figure 1 the union of the blue bubbles is taken by the first component Ω1, the union of the yellow bubbles
is occupied by the second component Ω2, and the rest of the domain is filled by Ω3.

We introduce a fixed number m ∈ (0, 1) and a small ϵ so that ω1 = ϵ2m and ω2 = ϵ2(1 −m). The area
constraints |Ω1| = ω1|D| and |Ω2| = ω2|D| now take the form

|Ω1| = mϵ2 and |Ω2| = (1−m)ϵ2. (1.7)

Instead of ω1 and ω2, ϵ becomes one parameter of our problem. The fixed number m measures the relative

size of |Ω1| vs |Ω2| since |Ω1|
|Ω2| =

m
1−m .

The other parameter is the matrix γ. It must be positive definite and satisfy a uniform positivity

condition. Namely, there exists ι > 0 so that ι λ(γ) ≤ λ(γ) where λ(γ) and λ(γ) are the two eigenvalues of

γ such that 0 < λ(γ) ≤ λ(γ). The matrix γ must also have a lower bound and an upper bound.
The main result in this paper is the following existence theorem.

Theorem 1.1 Let m ∈ (0, 1), n ∈ N, and ι ∈ (0, 1]. There exist positive numbers δ, σ̃, and σ depending on
D, m, n, and ι only, such that if the following three conditions hold

1. 0 < ϵ < δ,

2.
σ̃

ϵ3 log 1
ϵ

≤ λ(γ) ≤ λ(γ) <
σ

ϵ3
,

3. ι λ(γ) ≤ λ(γ),

then there is an assembly of n perturbed double bubbles, satisfying the constraints (1.7), which is a solution
to the equations (1.2)-(1.5). Each perturbed double bubble is bounded by three smooth curves that meet at
two triple junction points.

This solution is stable in some sense. If n = 1, the lower bound σ̃
ϵ3 log 1

ϵ

≤ λ(γ) is not needed.

The proof of Theorem 1.1 reveals several properties of the solution. One of them is that all the perturbed
double bubbles in the solution have almost the same size and shape.

Another property is that the locations of the double bubbles in the assembly are determined asymptot-
ically by a Green’s function. Let G be the Green’s function of the −∆ operator on D with the Neumann
boundary condition; namely G(x, y) as a function of x satisfies

−∆G(·, y) = δ(· − y)− 1

|D|
in D; ∂νG(·, y) = 0 on ∂D;

∫
D

G(x, y) dy = 0 (1.8)

for each y ∈ D. One can write G as a sum of two terms:

G(x, y) =
1

2π
log

1

|x− y|
+R(x, y). (1.9)

The first term 1
2π log 1

|x−y| is the fundamental solution of the Laplace operator; the second term R is the

regular part of the Green’s function, a smooth function of (x, y) ∈ D ×D.
For n distinct points ξk, k = 1, 2, ..., n, in D let

F (ξ1, ..., ξn) =

n∑
k=1

R(ξk, ξk) +
∑
k ̸=l

G(ξk, ξl). (1.10)
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Figure 3: An illustration of the solution found in Theorem 1.1 in the case that D is the unit disc and n = 200.
The locations of the perturbed double bubbles are determined by minimizing F given in (1.10).

It is known that R(x, x) → ∞ if x→ ∂D. Consequently F (ξ1, ..., ξn) → ∞, if one of the ξk’s approaches ∂D,
or if the distance of two points ξk and ξl approaches 0. This ensures that F is minimized by n distinct points
in D. It is proved in Section 6 that if the perturbed double bubbles in the solution are located at points ξ∗,1,
ξ∗,2, ..., ξ∗,n, and (ξ∗.1, ..., ξ∗,n) → (ξ◦,1, ..., ξ◦,n) as ϵ→ 0 and |γ|ϵ3 → 0, possibly along a subsequence, then

F (ξ◦,1, ξ◦,2, ..., ξ◦,n) = min{F (ξ1, ξ2, ..., ξn) : ξ1, ξ2, ..., ξn ∈ D, ξk ̸= ξl if k ̸= l}. (1.11)

Therefore the perturbed double bubbles are found near points that minimize the function F . Here |γ| can
be any norm of the matrix γ. If one takes |γ| to be the operator norm, then |γ| = λ(γ).

If D is the unit disc, the Green’s function is known explicitly:

G(x, y) =
1

2π
log

1

|x− y|
+

1

2π

[ |x|2
2

+
|y|2

2
+ log

1

|xy − 1|

]
− 3

8π
(1.12)

where y denoted the complex conjugate of y ∈ D ⊂ R2 ∼= C and xy is the complex product of x and y.
Consequently F is also known explicitly.

Figure 3 shows a double bubble assembly with D being the unit disc and n = 200. The locations of
the perturbed double bubbles in this picture are determined by numerical minimization of F . Away from
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the boundary of D, the double bubbles organize themselves in a hexagonal pattern. However the proof of
Theorem 1.1 does not tell what the directions of the perturbed double bubbles are, so the directions of the
double bubbles shown in Figure 3 do not reflect the directions of the double bubbles in a real solution.

The proof of Theorem 1.1 consists of several steps. In the first step, done in Section 2, one constructs
an assembly of exact double bubbles and compute its energy. Take n exact double bubbles Bk whose two
bubbles are Bk

1 and Bk
2 for k = 1, 2, ..., n. The area of Bk

i is wk
i . Take n distinct points ξk in D and

n angles θk ∈ S, where S is the unit circle. Scale down each Bk by a factor ϵ, rotate by the angle θk

and place it in D centered at ξk. This small double bubble in D is denoted T k(Bk), and the collection
(T 1(B1), T 2(B2), ..., Tn(Bn)) is an assembly of exact double bubbles denoted by T (B). This T (B) depends
on ξ = (ξ1, ..., ξn), θ = (θ1, ..., θn), and w = {wk

i }. In Lemma 2.1 one finds the energy of T (B).
In the second step, perturb each Bk in a special way to define a restricted class of perturbed double

bubble assemblies. There are actually two parts in the perturbation, explained in Section 2. First move the
two triple points of Bk vertically in opposite directions by the same amount. Connect the new triple points
by three circular arcs. The two sets bounded by the new arcs still have the areas wk

1 and wk
2 respectively and

the radii ρki of the new arcs still satisfy the condition (ρk1)
−1− (ρk2)

1 = (ρk0)
−1. However the 120 degree angle

condition at triple points no longer holds for the new arcs. In the second part of the restricted perturbation,
the arcs are changed to more general curves, while the areas of the two enclosed sets remain to be wk

i and
the triple points are unchanged. This perturbed double bubble is denoted P k. It is scaled down by ϵ and
mapped into D by the same T k. The collection T (P ) = (T 1(P 1), T 2(P 2), ..., Tn(Pn)) is an assembly of
perturbed double bubbles. All assemblies obtained this way form a class, the restricted class of perturbed
double bubbles, which is determined by ξ, θ, and w.

It turns out that each assembly in a restricted class is identified by an element of a Hilbert space Y defined
in Section 2. The element consists of 3n functions ϕki and n numbers ηk for k = 1, 2, ..., n and i = 1, 2, 0.
Collectively they are denoted by (ϕ, η) where ϕ = (ϕ1, ϕ2, ..., ϕn), ϕk = (ϕk1 , ϕ

k
2 , ϕ

k
0), and η = (η1, η2, ..., ηn).

Within the restricted class J becomes a functional on Y. Sections 3, 4, and 5 culminate in Lemma 5.1,
which states that in each restricted class there is an element (ϕ∗, η∗) that locally minimizes J within the
restricted class. This third step is most technical, involving an error estimate of the exact double bubble
assembly T (B), proving the positivity of the second variation of J at T (B), and a fixed point argument. In
Lemma 5.3 it is shown that (ϕ∗, η∗) satisfies a weakened version of (1.2)-(1.4) where the constants λ1 and
λ2 may vary from one perturbed double bubble to another perturbed double bubble in the assembly.

To fix this problem and also to have the 120 degree angle condition (1.5) satisfied, revisit the restricted
class of perturbed double bubble assemblies. Since this class is specified by (ξ, θ, w), the energy minimizing
element (ϕ∗, η∗) in this class should be denoted by (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)). In the fourth step one finds
the energy J (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)) of this element in Lemma 6.1. Treating this quantity as a function of
ξ, θ, and w, one minimizes it with respect to (ξ, θ, w) and finds a minimum (ξ∗, θ∗, w∗) in Lemma 6.2. If
one uses the restricted class of assemblies specified by this particular (ξ∗, θ∗, w∗), then it is proved in Section
6 that the locally energy minimizing element (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) solves (1.2)-(1.4) exactly and
also satisfies the 120 degree angle condition (1.5) at triple points.

The idea of using a restricted class of perturbed double bubbles first appeared in the authors’ work [31].
There it was shown that when m = 1

2 , J admits a local minimizer that shapes like a single, symmetric
double bubble. This method was later improved by the authors in [32], where the condition m = 1

2 is
relaxed to m ∈ (0, 1). The single double bubble solution constructed there is asymmetric if m ̸= 1

2 . As

only one double bubble is considered in those papers, the lower bound σ̃
ϵ3 log 1

ϵ

≤ λ(γ) in Theorem 1.1 is not

needed. In Theorem 1.1 this lower bound is used to prevent coarsening. If coarsening occurs, some pieces of
a constituent component grows bigger while some other pieces of the same component shrink and disappear.
There must be at least two perturbed double bubbles in an assembly for coarsening to be possible. The
lower bound also forces the perturbed double bubbles in the solution to have approximately the same shape
and size.
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(0, hk)

ak
1

(bk1 , 0)

r k
1

ak
2

(bk2 , 0)

r k
2

ak
0

(bk0 , 0)

r k
0

Figure 4: An asymmetric exact double bubble with angles aki , radii r
k
i , and centers (bki , 0). One of the two

triple points is (0, hk).

2 Exact double bubble assemblies and restricted perturbations

We start with n exact double bubbles, denoted by B1, ..., Bn. Each double bubble Bk is a pair of two
adjacent sets Bk

1 and Bk
2 . The area of Bk

i is denoted by wk
i :

|Bk
i | = wk

i , i = 1, 2, k = 1, 2, ..., n. (2.1)

These two numbers, wk
1 and wk

2 , completely determine the double bubble Bk. The wk
i ’s stay in the set W

which is the closure of

W = {(wk
i ) ∈ R2n :

m

2n
< wk

1 <
2m

n
,
1−m

2n
< wk

2 <
2(1−m)

n
, ∀k;

n∑
k=1

wk
1 = m,

n∑
k=1

wk
2 = 1−m}. (2.2)

Initially wk
i are fixed. Later they will vary in W . Of course wk

i can vary only if n ≥ 1. If n = 1, the case
studied in [31, 32], there is no need to introduce wk

i .
The set Bk

1 is bounded by two circular arcs of radii rk1 and rk0 . One arc, whose radius is rk0 , is also on the
boundary of Bk

2 . The rest of the boundary of Bk
2 is another circular arc whose radius is rk2 .

There are actually two cases to consider. The first is the asymmetric case, depicted in Figure 4, where
the area of Bk

1 is different from the area of Bk
2 . If the left bubble Bk

1 is smaller than the right bubble Bk
2 ,

i.e. wk
1 < wk

2 , then
rk1 < rk2 , (2.3)

and the three radii satisfy the condition

(rk1 )
−1 − (rk2 )

−1 = (rk0 )
−1. (2.4)

If wk
1 > wk

2 , then (2.4) changes to
(rk1 )

−1 − (rk2 )
−1 = −(rk0 )

−1. (2.5)

From now on when dealing with an asymmetric double bubble or a perturbation of an asymmetric double
bubble, we assume, without the loss of generality, that wk

1 < wk
2 . The other case, wk

1 > wk
2 can always be

handled in a similar way.
The two points where the three arcs meet are termed triple junction points, or triple points. At these

points the three arcs meet at 120 degree angles. Denote by ak1 , a
k
2 , and ak0 the angles associated with the

three arcs, Figure 4. The 120 degree angle condition and (2.3) imply that, if wk
1 < wk

2 ,

ak1 =
2π

3
− ak0 , ak2 =

2π

3
+ ak0 , ak0 ∈

(
0,
π

3

)
. (2.6)
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ak
1 = 2π

3 ak
2 = 2π

3

(bk1 , 0) (bk2 , 0)

(0, hk)

r k
1 r k

2

Figure 5: A symmetric exact double bubble where rk1 = rk2 and ak1 = ak2 = 2π
3 .

The conditions (2.1) can be expressed as

(rk1 )
2(ak1 − cos ak1 sin a

k
1) + (rk0 )

2(ak0 − cos ak0 sin a
k
0) = wk

1 (2.7)

(rk2 )
2(ak2 − cos ak2 sin a

k
2)− (rk0 )

2(ak0 − cos ak0 sin a
k
0) = wk

2 . (2.8)

The second case is the symmetric case where Bk
1 and Bk

2 have the same area, i.e. wk
1 = wk

2 . Then

rk1 = rk2 and rk0 = ∞. (2.9)

The middle arc becomes a straight line segment. The three arcs still meet at 120 degree angles, Figure 5. In
this case

ak1 = ak2 =
2π

3
, ak0 = 0 (2.10)

and (2.7) and (2.8) become

(rk1 )
2(ak1 − cos ak1 sin a

k
1) = (rk2 )

2(ak2 − cos ak2 sin a
k
2) = wk

1 = wk
2 . (2.11)

Place the exact double bubble Bk = (Bk
1 , B

k
2 ) in R2 so that the triple points are (0, hk) and (0,−hk)

where
hk = rki sin a

k
i , i = 1, 2, 0 (2.12)

is positive. Moreover the centers of the three arcs are denoted (bki , 0), i = 1, 2, 0, respectively. In the
symmetric case (2.12) holds for i = 1, 2, and the center (bk0 , 0) of the middle arc is at infinity.

Each Tϵ,ξk,θk is an affine transformation given by

Tϵ,ξk,θk x̂ = ϵeiθ
k

x̂+ ξk.

In this paper we identify R2 with C to use the complex multiplication, like eiθ
k

x̂ above, to simplify notation.
Often Tϵ,ξk,θk is simplified to T k, and T (B), which stands for (T 1(B1), T 2(B2), ..., Tn(Bn)) where T k(Bk) =
(T k(Bk

1 ), T
k(Bk

2 )), is an assembly of exact double bubbles. One also sets T (Bi) = ∪n
k=1T

k(Bk
i ) for i = 1, 2.

The double bubbles T k(Bk) must all be inside D and do not intersect each other. Recall the function F
defined in (1.10). The domain of F is

Ξ = {ξ = (ξ1, ξ2, ..., ξn) : ξk ∈ D ∀ k = 1, 2, ..., n, ξk ̸= ξl ∀ k ̸= l}. (2.13)

Since F (ξ) → ∞ as ξ → ∂Ξ where Ξ is viewed as a subset of R2n, one can find a small enough δ > 0 such
that

min
ξ∈Ξ

F (ξ) < min
ξ∈Ξ\Ξδ

F (ξ). (2.14)
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Here Ξδ is a subset of Ξ defined as

Ξδ = {ξ ∈ Ξ : d(ξk, ∂D) > δ ∀ k, d(ξk, ξl) > 2δ ∀ k ̸= l}. (2.15)

In (2.15) “d” stands for the Euclidean distance in R2. The centers ξk of the double bubbles T k(Bk) will
always be in the closure of Ξδ:

ξ = (ξ1, ξ2, ..., ξn) ∈ Ξδ. (2.16)

At this point we state our initial requirement on δ which is the bound for ϵ. The number δ must be small
enough so that

0 < 2max{rk1 , rk2}δ <
δ

2
(2.17)

holds for the radii rk1 and rk2 of any double bubble Bk for which |Bk
1 | = wk

1 ∈ [m2n ,
2m
n ] and |Bk

2 | = wk
2 ∈

[ 1−m
2n , 2(1−m)

n ]. In other words (2.17) holds uniformly with respect to all double bubble Bk as long as wk
1

and wk
2 are in the specified ranges.

With this choice of δ and with ϵ < δ, let zk ∈ T k(Bk). Then for any x ∈ ∂D,

d(x, zk) ≥ d(x, ξk)− d(ξk, zk) ≥ δ − 2max{rk1 , rk2}ϵ > δ − 2max{rk1 , rk2}δ >
δ

2
. (2.18)

For zk ∈ T k(Bk) and zl ∈ T l(Bl) where k ̸= l,

d(zk, zl) ≥ d(ξk, ξl)− d(ξk, zk)− d(ξl, zl) ≥ 2δ − 2max{rk1 , rk2}ϵ− 2max{rl1, rl2}ϵ > δ. (2.19)

Hence each T k(Bk) is inside D and the T k(Bk)’s do not intersect. More precisely with each zk ∈ T k(Bk)
for k = 1, 2, ..., n, z = (z1, z2, ..., zn) is in Ξδ/2, where the set Ξδ/2 is defined as in (2.15).

The two terms in (1.1) are denoted by Js and Jl standing for the short and long part of the energy
respectively:

Js(Ω1,Ω2) =
1

2

3∑
i=1

PD(Ωi), (2.20)

Jl(Ω1,Ω2) =
2∑

i,j=1

∫
D

γij
2

(
(−∆)−1/2(χΩi − ωi)

)(
(−∆)−1/2(χΩj − ωj)

)
dx. (2.21)

For a Lebesgue measurable subset E of D the perimeter is defined by

PD(E) = sup
{∫

E

div g(x) dx : g ∈ C1
0 (D,R2), |g(x)| ≤ 1 ∀x ∈ D

}
(2.22)

where div g is the divergence of the C1 vector field g on D with compact support and |g(x)| stands for the
Euclidean norm of the vector g(x) ∈ R2; see for instance [8] for more on the notion of perimeter. If Ω1

and Ω2 are bounded by piecewise C1 curves and do not share boundary with D, then Js(Ω1,Ω2) is just the
length of ∂Ω1 ∪ ∂Ω2. With the help of the Green’s function one can write Jl in an alternative form:

Jl(Ω1,Ω2) =
2∑

i,j=1

γij
2

∫
Ωi

∫
Ωj

G(x, y) dxdy (2.23)

which is more amenable to computation.
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Lemma 2.1 The energy J (T (B)) of the exact double bubble assembly T (B) is estimated as follows.

∣∣∣J (T (B))−
{
ϵ

n∑
k=1

3∑
i=0

2aki r
k
i +

(
log

1

ϵ

)
ϵ4

n∑
k=1

2∑
i,j=1

γijw
k
i w

k
j

4π
+ ϵ4

n∑
k=1

2∑
i,j=1

γij
2

∫
Bk

i

∫
Bk

j

1

2π
log

1

|x̂− ŷ|
dx̂dŷ

+ϵ4
n∑

k=1

2∑
i,j=1

γij
2
wk

i w
k
jR(ξ

k, ξk) + ϵ4
∑
k ̸=l

2∑
i,j=1

γij
2
wk

i w
l
jG(ξ

k, ξl)
}∣∣∣

≤ ϵ5
n∑

k=1

2∑
i,j=1

γij
2
wk

i w
k
j 4AR max{rk1 , rk2}+ ϵ5

∑
k ̸=l

2∑
i,j=1

γij
2
wk

i w
l
j4AG max{rk1 , rk2 , rl1, rl2} = O(|γ|ϵ5).

The constants AR and AG above are given by

AR = max
{
|∇R(x, y)| : x, y ∈ D, d(x, ∂D) ≥ δ

2
, d(y, ∂D) ≥ δ

2

}
(2.24)

AG = max
{
|∇G(x, y)| : x, y ∈ D, d(x, ∂D) ≥ δ

2
, d(y, ∂D) ≥ δ

2
, d(x, y) ≥ δ

}
(2.25)

where δ is given in (2.14).

Here O(|γ|ϵ5) stands for a quantity that can be bounded by C|γ|ϵ5 for some constant C is a constant
that depend at most on D, m and n. This convention is practiced throughout the paper.

Proof. By the remark following (2.22) and (2.23),

J (T (B)) = ϵ

n∑
k=1

3∑
i=0

2aki r
k
i +

2∑
i,j=1

γij
2

∫
∪n

k=1T
k(Bk

i )

∫
∪n

l=1T
l(Bl

j)

G(x, y) dxdy

= ϵ
n∑

k=1

3∑
i=0

2aki r
k
i +

n∑
k=1

2∑
i,j=1

γij
2

∫
Tk(Bk

i )

∫
Tk(Bk

j )

1

2π
log

1

|x− y|
dxdy

+
n∑

k=1

2∑
i,j=1

γij
2

∫
Tk(Bk

i )

∫
Tk(Bk

j )

R(x, y) dxdy

+
∑
k ̸=l

2∑
i,j=1

γij
2

∫
Tk(Bk

i )

∫
T l(Bl

j)

G(x, y) dxdy

= ϵ
n∑

k=1

3∑
i=0

2aki r
k
i +

(
log

1

ϵ

)
ϵ4

n∑
k=1

2∑
i,j=1

γijw
k
i w

k
j

4π

+ϵ4
n∑

k=1

2∑
i,j=1

γij
2

∫
Bk

i

∫
Bk

j

1

2π
log

1

|x̂− ŷ|
dx̂dŷ

+ϵ4
n∑

k=1

2∑
i,j=1

γij
2

∫
Bk

i

∫
Bk

j

R(T kx̂, T kŷ) dx̂dŷ

+ϵ4
∑
k ̸=l

2∑
i,j=1

γij
2

∫
Bk

i

∫
Bl

j

G(T kx̂, T lŷ) dx̂dŷ.

By the mean value theorem,

|R(T kx̂, T kŷ)−R(ξk, ξk)|
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= |∇R(ξk + τϵeiθ
k

x̂, ξk + τϵeiθ
k

ŷ) · ϵeiθ
k

x̂+ ∇̃R(ξk + τϵeiθ
k

x̂, ξk + τϵeiθ
k

ŷ) · ϵeiθ
k

ŷ|
≤ 4AR max{rk1 , rk2}ϵ

|G(T kx̂, T lŷ)−G(ξk, ξl)|

= |∇G(ξk + τϵeiθ
k

x̂, ξl + τϵeiθ
l

ŷ) · ϵeiθ
k

ŷ + ∇̃G(ξk + τϵeiθ
k

x̂, ξl + τϵeiθ
l

ŷ) · ϵeiθ
l

ŷ|
≤ 4AG max{rk1 , rk2 , rl1, rl2}ϵ,

from which the lemma follows.
The following two lemmas can be proved by direct computation.

Lemma 2.2 Let qε(t) be a deformation of a curve q(t) with q0 = q. Then

d

dε

∣∣∣
ε=0

∫ 1

−1

|(qε)′| dt = T ·X
∣∣∣1
−1

−
∫ 1

−1

κN ·X ds.

Here
∫ 1

−1
|(qε)′| dt is the length of qε, T = q′

|q′| , N is a unit normal vector, κN is the curvature vector, and

X(t) = ∂qε(t)
∂ε |ε=0 is the infinitesimal element of qε

Lemma 2.3 Suppose that a bounded domain U is enclosed by a curve ∂U , and Uε is a deformation of U .
Let X be the infinitesimal element of the deformation of ∂U . Then

d

dε

∣∣∣
ε=0

∫
Uε

f(x) dx = −
∫
∂U

f(x)N ·X ds

where N is the inward unit normal vector on ∂U .

Denote a perturbed double bubble assembly by

Ω = ((Ω1
1,Ω

1
2), (Ω

2
1,Ω

2
2), ..., (Ω

n
1 ,Ω

n
2 )); (2.26)

namely for each k, (Ωk
1 ,Ω

k
2) forms a perturbed double bubble, which is enclosed by three curves rk1 , r

k
2 , and

rk0 . More precisely rki parametrizes ∂Ωk
1\∂Ωk

2 , ∂Ω
k
2\∂Ωk

1 , and ∂Ωk
1 ∩ ∂Ωk

2 for i = 1, 2, 0 respectively. Here
Ωk

1 and Ωk
2 are disjoint, share part of their boundaries, and have two triple points. Later we will consider

perturbed assemblies with more specific properties.
The two triple points of Ωk are

rk1(1) = rk2(1) = rk0(1) and rk1(−1) = rk2(−1) = rk0(−1). (2.27)

The unit tangent vectors of rk1 , r
k
2 , and rk0 are denoted Tk

1 , T
k
2 , and Tk

0 and given by

Tk
i (t) =

(rki )
′(t)

|(rki )′(t)|
. (2.28)

The unit normal vectors to rk1 , r
k
2 , and rk0 are Nk

1 , N
k
2 , and Nk

0 respectively. We adopt the following direction
convention: Nk

1 points inward with respect to Ωk
1 , N

k
2 points inward with respect to Ωk

2 , and Nk
0 points from

Ωk
2 towards Ωk

1 , i.e. inward with respect to Ωk
1 and outward with respect to Ωk

2 . The curvature of rki is
denoted κki . Here Nk

i and κki conform to the sign convention so that κkiN
k
i is the (orientation independent)

curvature vector. Under this sign convention

dTk
i

ds
= kki N

k
i (2.29)

where ds = |(rki )′(t)|dt is the length element. One sets

Ω1 = ∪n
k=1Ω

k
1 and Ω2 = ∪n

k=1Ω
k
2 . (2.30)
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A deformation of the assembly (2.32) is a family of assemblies

Ωε = ((Ωε,1
1 ,Ωε,1

2 ), (Ωε,2
1 ,Ωε,2

2 ), ..., (Ωε,n
1 ,Ωε,n

2 )) (2.31)

for ε in a neighborhood of 0, where for each k, (Ωε,k
1 ,Ωε,k

2 ) forms a deformation of the perturbed double

bubble (Ωk
1 ,Ω

k
2). For each k the three curves ∂Ωε,k

1 \∂Ωε,k
2 , ∂Ωε,k

2 \∂Ωε,k
1 , and ∂Ωε,k

1 ∪ ∂Ωε,k
2 that enclose

(Ωε,k
1 ,Ωε,k

2 ) are parametrized respectively by rε,k1 , rε,k2 , and rε,k0 respectively. At ε = 0, r0,ki = rki . Again one
writes

Ωε
1 = ∪n

k=1Ω
ε,k
1 and Ωε

2 = ∪n
k=1Ω

ε,k
2 . (2.32)

Define

Xk
i (t) =

∂rε,ki (t)

∂ε

∣∣∣
ε=0

(2.33)

which is the infinitesimal element of the deformation.

Lemma 2.4 Let Ωε be a deformation of a perturbed double bubble assembly Ω as described above. Then

dJs(Ω
ε)

dε

∣∣∣
ε=0

=
n∑

k=1

( 2∑
j=0

(Tk
i ) ·Xk

∣∣∣1
−1

)
−

n∑
k=1

∫
∂Ωk

1\∂Ωk
2

κk1N
k
1 ·Xk

1 ds−
n∑

k=1

∫
∂Ωk

2\∂Ωk
1

κk2N
k
2 ·Xk

2 ds

−
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

κk0N
k
0 ·Xk

0 ds (2.34)

dJl(Ω
ε)

dε

∣∣∣
ε=0

= −
n∑

k=1

∫
∂Ωk

1\∂Ωk
2

(γ11IΩ1 + γ12IΩ2)N
k
1 ·Xk

1 ds−
n∑

k=1

∫
∂Ωk

2\∂Ωk
1

(γ12IΩ1 + γ22IΩ2)N
k
2 ·Xk

2 ds

−
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

((γ11 − γ12)IΩ1 + (γ12 − γ22)IΩ2)N
k
0 ·Xk

0 ds (2.35)

d|Ωε
1|

dε

∣∣∣
ε=0

= −
n∑

k=1

∫
∂Ωk

1\∂Ωk
2

Nk
1 ·Xk

1 ds−
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

Nk
0 ·Xk

0 ds (2.36)

d|Ωε
2|

dε

∣∣∣
ε=0

= −
n∑

k=1

∫
∂Ωk

2\∂Ωk
1

Nk
2 ·Xk

2 ds+
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

Nk
0 ·Xk

0 ds. (2.37)

In (2.34) Xk denotes the Xk
i ’s at the triple points. Since (2.27) holds for rε,ki , Xk

1(−1) = Xk
2(−1) = Xk

0(−1)
and Xk

1(1) = Xk
2(1) = Xk

0(1). Therefore one can drop the subscript i in Xk
i (±1).

Proof. . The first formula (2.34) follows directly from Lemma 2.2.
To show (2.35), recall IΩi from (1.6) which can be written as

IΩi(x) =

∫
Ωi

G(x, y) dy, i = 1, 2, (2.38)

in terms of the Green’s function. Then the product rule of differentiation implies that

d

dε

∣∣∣
ε=0

∫
Ωε

i

∫
Ωε

j

G(x, y) dx dy =
d

dε

∣∣∣
ε=0

∫
Ωε

i

IΩj (x) dx+
d

dε

∣∣∣
ε=0

∫
Ωε

j

IΩi(x) dx. (2.39)

However, Lemma 2.3 shows

d

dε

∣∣∣
ε=0

∫
Ωε

i

IΩj (x) dx =


−

n∑
k=1

∫
∂Ωk

1\∂Ωk
2

IΩjN
k
1 ·Xk

1 ds−
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

IΩjN
k
0 ·Xk

0 ds, i = 1

−
n∑

k=1

∫
∂Ωk

2\∂Ωk
1

IΩjN
k
2 ·Xk

2 ds+

n∑
k=1

∫
∂Ωk

1∩∂Ωk
2

IΩjN
k
0 ·Xk

0 ds, i = 2

. (2.40)
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Therefore
d

dε

∣∣∣
ε=0

∫
Ωε

i

∫
Ωε

j

G(x, y) dx dy (2.41)

=



−2
n∑

k=1

∫
∂Ωk

1\∂Ωk
2

IΩ1N
k
1 ·Xk

1 ds− 2
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

IΩ1N
k
0 ·Xk

0 ds, i = j = 1

−2
n∑

k=1

∫
∂Ωk

2\∂Ωk
1

IΩ2N
k
2 ·Xk

2 ds+ 2
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

IΩ2N0 ·X0 ds, i = j = 2

−
n∑

k=1

∫
∂Ωk

1\∂Ωk
2

IΩ2
Nk

1 ·Xk
1 ds−

n∑
k=1

∫
∂Ωk

2\∂Ωk
1

IΩ1
Nk

2 ·Xk
2 ds

−
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

(IΩ2 − IΩ1)N
k
0 ·Xk

0 ds, i = 1, j = 2

.

Hence,

dJl(Ω
ε)

dε

∣∣∣
ε=0

=
d

dε

∣∣∣
ε=0

2∑
i,j=1

γij
2

∫
Ωε

i

∫
Ωε

j

G(x, y) dx dy

= −
n∑

k=1

∫
∂Ωk

1\∂Ωk
2

(γ11IΩ1 + γ12IΩ2)N
k
1 ·Xk

1 ds−
n∑

k=1

∫
∂Ωk

2\∂Ωk
1

(γ12IΩ1 + γ22IΩ2)N
k
2 ·Xk

2 ds

−
n∑

k=1

∫
∂Ωk

1∩∂Ωk
2

[(γ11 − γ12)IΩ1 + (γ12 − γ22)IΩ2 ]N
k
0 ·Xk

0 ds. (2.42)

This proves (2.35).
The formulas (2.36) and (2.37) follow from Lemma 2.3 with f(x) = 1.

We perform a special type of perturbation to each exact double bubble Bk in the assembly T (B) in two
steps.

In the first step, move the two triple points (0, hk) and (0,−hk) vertically to (0, ηk) and (0,−ηk) respec-
tively. In the asymmetric case the three circular arcs are perturbed to three new circular arcs whose radii
are ρk1 , ρ

k
2 , and ρ

k
0 ; the angles aki are perturbed to αk

i accordingly; see Figure 6. The ρki ’s and the αk
i ’s are

determined from ηk implicitly by solving the following system of equations

(ρk1)
2(αk

1 − cosαk
1 sinα

k
1) + (ρk0)

2(αk
0 − cosαk

0 sinα
k
0) = wk

1 (2.43)

(ρk2)
2(αk

2 − cosαk
2 sinα

k
2)− (ρk0)

2(αk
0 − cosαk

0 sinα
k
0) = wk

2 (2.44)

ρki sinα
k
i = ηk, i = 1, 2, 0 (2.45)

(ρk1)
−1 − (ρk2)

−1 = (ρk0)
−1. (2.46)

The regions bounded by the new arcs still have the areas wk
1 and wk

2 ; hence the equations (2.43) and (2.44).
The centers of the new arcs are denoted (βk

i , 0), i = 1, 2, 0.
In the symmetric case, the first step of perturbation turns the middle line segment connecting (0, hk) to

(0,−hk) to the line segment connecting (0, ηk) and (0,−ηk). The left and right arcs become arcs of radius
ρk1 = ρk2 , and the angles become αk

1 = αk
2 . They satisfy the equations

(ρki )
2(αk

i − cosαk
i sinα

k
i ) = wk

i , i = 1, 2 (2.47)

ρki sinα
k
i = ηk, i = 1, 2 (2.48)
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(0, ηk)

αk
1

(β k
1 , 0)

ρk
1

αk
2

(β k
2 , 0)

ρk
2

αk
0

(β k
0 , 0)

ρk
0

Figure 6: First step of perturbation in the asymmetric case. Left: the exact double bubble is perturbed to a
pair of two sets bounded by three circular arcs governed by (2.43) - (2.46). Right: the same perturbed pair
without the exact double bubble. Also showing are the angles αk

i , the radii ρki , the centers (βk
i , 0), and one

triple point (0, ηk).

(0, ηk)

αk
1

(β k
1 , 0)

ρk
1

αk
2

(β k
2 , 0)

ρk
2

Figure 7: First step of perturbation in the symmetric case.

where wk
1 = wk

2 . These equations determine ρki and αk
i in terms of ηk.

This step of perturbation is explained in more detail and shown to be well defined when ηk is close to hk

in Appendix B.
In the second step of perturbation we further perturb the shape of the circular arcs. Introduce 3n

functions uki (t), k = 1, 2, ..., n, i = 1, 2, 0, for t ∈ (−1, 1). In the asymmetric case the circular arcs are
replaced by curves parametrized by

r̂k1(t) = uk1(t)e
i(π−αk

1 t) + βk
1 , r̂k2(t) = uk2(t)e

iαk
2 t + βk

2 , r̂k0(t) = uk0(t)e
iαk

0 t + βk
0 , k = 1, 2, ..., n; (2.49)

see Figure 8. The two triple points correspond to t = −1 and t = 1, namely

r̂k1(−1) = r̂k2(−1) = r̂k0(−1) = −ηki and r̂k1(1) = r̂k2(1) = r̂k0(1) = ηki. (2.50)

They remain unchanged in this step, so
uki (±1) = ρki . (2.51)
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(0, ηk)

αk
1

(β k
1 , 0)

ρk
1

αk
2

(β k
2 , 0)

ρk
2

αk
0

(β k
0 , 0)

ρk
0

Figure 8: Second step of perturbation in the asymmetric case. Left: The circular arcs obtained in the first
step are perturbed to more general curves. Right: the same perturbed double bubble without the exact
double bubble showing.

Note that a sector perturbed by uki has the area
∫ 1

−1
αk

i (u
k
i (t))

2

2 dt. Since the areas of the newly perturbed

regions must still be wk
1 and wk

2 , one requires that∫ 1

−1

αk
1(u

k
1(t))

2 − (ρk1)
2 cosαk

1 sinα
k
1

2
dt+

∫ 1

−1

αk
0(u

k
0(t))

2 − (ρk0)
2 cosαk

0 sinα
k
0

2
dt = wk

1 (2.52)∫ 1

−1

αk
2(u

k
2(t))

2 − (ρk2)
2 cosαk

2 sinα
k
2

2
dt−

∫ 1

−1

αk
0(u

k
0(t))

2 − (ρk0)
2 cosαk

0 sinα
k
0

2
dt = wk

2 . (2.53)

In the symmetric case, the middle curve is parametrized differently by

r̂k0 = uk0(t) + ηkti, where uk0(±1) = 0. (2.54)

The constraints (2.52) and (2.53) become∫ 1

−1

αk
1(u

k
1(t))

2 − (ρk1)
2 cosαk

1 sinα
k
1

2
dt+

∫ 1

−1

ηkuk0(t) dt = wk
1 (2.55)∫ 1

−1

αk
2(u

k
2(t))

2 − (ρk2)
2 cosαk

2 sinα
k
2

2
dt−

∫ 1

−1

ηkuk0(t) dt = wk
2 (2.56)

where ρk1 = ρk2 , α
k
1 = αk

2 , and w
k
1 = wk

2 .
This perturbed double bubble is denoted P k = (P k

1 , P
k
2 ). Its image under Tϵ,ξk,θk is denoted by T k(P k) =

(T k(P k
1 ), T

k(P k
2 )). Collectively one writes T (P ) = (T 1(P 1), ..., Tn(Pn)) which is an assembly of perturbed

double bubbles. Moreover T (Pi) = ∪n
k=1T

k(P k
i ) for i = 1, 2. The boundaries of T k(P k) are parametrized by

rki (t) = T k(r̂ki (t)). (2.57)

Although the uki ’s describe the shape of the perturbed double bubble well, the constraints (2.53) are
nonlinear and hard to work with. We introduce new variables ϕki , k = 1, 2, ..., n, i = 1, 2, 0, in place of uki .
In the asymmetric case they are given by

ϕki (t) =
αk
i (u

k
i (t))

2 − αk
i (ρ

k
i )

2

2
, i = 1, 2, 0. (2.58)
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(β k
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2

Figure 9: Second step of perturbation in the symmetric case.

In the symmetric case ϕk0 is given differently by

ϕk0(t) = ηkuk0(t). (2.59)

Write ϕk for (ϕk1 , ϕ
k
2 , ϕ

k
0). P

k now depends on (ϕk, ηk) in addition to wk
1 and wk

2 , and the scaled down version
T k(P k) depends on ϵ, ξk, θk, wk

1 , w
k
2 , as well as (ϕ

k, ηk). We call ϕki and ηk internal variables.
The assembly of perturbed double bubbles T (P ) corresponds to the internal variable representation

((ϕ1, η1), ..., (ϕn, ηn)), which is is simply written as (ϕ, η). By itself ϕ stands for (ϕ1, ϕ2, ..., ϕn) where
ϕk = (ϕk1 , ϕ

k
2 , ϕ

k
0), k = 1, 2, ..., n; similarly η = (η1, η2, ..., ηn). The exact double bubble assembly corresponds

to ((0, h1), ..., (0, hn)) = (0, h).
Because ρki and αk

i satisfy the conditions (2.43) and (2.44), the area constraints (2.52) and (2.53) become
linear constraints ∫ 1

−1

ϕk1(t) dt+

∫ 1

−1

ϕk0(t) dt = 0 and

∫ 1

−1

ϕk2(t) dt−
∫ 1

−1

ϕk0(t) dt = 0 (2.60)

on the ϕki ’s. The ϕ
k
i ’s also satisfy the boundary condition

ϕki (±1) = 0, k = 1, 2, ..., n, i = 1, 2, 0 (2.61)

because of (2.51) and (2.54).

In summary each w ∈ W determines n double bubbles Bk for k = 1, 2, ..., n. Each ϵ < δ, ξ ∈ Ξδ and
θ ∈ Sn specify transformations T k that map the double bubbles Bk to T k(Bk) inside D to form an exact
double bubble assembly T (B). These ϵ, ξ, θ, and w also define a restricted class of perturbed double bubble
assemblies. Within this class, each perturbed double bubble assembly T (P ) is described by (ϕ, η). The exact
double bubble assembly T (B) is in this class and is represented by (0, h), i.e. ϕki = 0 and ηk = hk for all
k = 1, 2, ..., n and i = 1, 2, 0. Other (ϕ, η)’s represent perturbed double bubble assemblies.

For a perturbed double bubble assembly T (P )

PD(T (Pi)) =
n∑

k=1

PD(T k(P k
i )),

and since each T k(P k
i ) is bounded by smooth curves rki and rk0 , the perimeter PD(T k(P k

i )) is the length of
rki plus the length of rk0 . The length of rki is ϵ times the length of r̂ki which is∫ 1

−1

√
((uki )

′(t))2 + (αk
i )

2(uki (t))
2 dt, i = 1, 2, 0, (2.62)
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in terms of the variable uki in the asymmetric case. In the symmetric case the length of r̂k0 is∫ 1

−1

√
((uk0)

′(t))2 + (ηk)2 dt. (2.63)

In terms of ϕki (2.62) becomes

∫ 1

−1

Lk
i ((ϕ

k
i )

′, ϕki , η
k) dt, where Lk

i ((ϕ
k
i )

′, ϕki , η
k) =

√
((ϕki )

′)2

αk
i (2ϕ

k
i + αk

i (ρ
k
i )

2)
+ αk

i (2ϕ
k
i + αk

i (ρ
k
i )

2), (2.64)

and (2.63) becomes

∫ 1

−1

Lk
0((ϕ

k
0)

′, ηk) dt, where Lk
0((ϕ

k
0)

′, ηk) =

√
((ϕk0)

′)2

(ηk)2
+ (ηk)2. (2.65)

By (2.64) and (2.23) the energy of T (P ) can be written as

J (T (P )) = ϵ
n∑

k=1

2∑
i=0

∫ 1

−1

Lk
i ((ϕ

k
i )

′, ϕki , η
k) dt+

n∑
k,l=1

2∑
i=1

γij
2

∫
Tk(Pk

i )

∫
T l(P l

j )

G(x, y) dx dy. (2.66)

To specify the domain of the functional J in the restricted class of perturbed double bubble assemblies, let

Y = {(ϕ, η) = ((ϕ1, η1), (ϕ2, η2), ..., (ϕn, ηn)) ∈ (H1
0 ((−1, 1);R3)× R)n :∫ 1

−1

(ϕk1(t) + ϕk0(t)) dt =

∫ 1

−1

(ϕk2(t)− ϕk0(t)) dt = 0, k = 1, 2, ..., n}. (2.67)

This space is equipped with a norm ∥ · ∥Y derived from the usual H1 norm; see (3.27).
The functional J is defined on a neighborhood of (0, h) ∈ Y; namely there exists c̄ > 0 such that the

domain of J is the open ball of radius c̄ centered at (0, h) in Y:

D(J ) = {(ϕ, η) ∈ Y : ∥(ϕ, η)− (0, h))∥Y < c̄}. (2.68)

Recall the remark after (2.18) and (2.19) which states for all ϵ < δ, ξ ∈ Ξδ, θ ∈ Sn, and w ∈W , the exactly
double bubble assembly T (B) determined by ϵ, ξ, θ and w has the property that z = (z1, z2, ..., zn) ∈ Ξδ/2 if

zk ∈ T k(Bk) for k = 1, 2, ..., n. Choose c̄ sufficiently small so that for all ϵ < δ, all (ξ, θ, w) ∈ Ξδ × Sn ×W ,
and all (ϕ, η) ∈ D(J ), the perturbed double bubble assembly T (P ) specified by ϵ, (ξ, θ, w), and (ϕ, η) has
the property that z = (z1, z2, ..., zn) ∈ Ξδ/4 if zk ∈ T k(P k). Hence the perturbed double bubbles T k(P k) in

T (P ) do not intersect, and all stay in D and away from ∂D.

3 The first variation

Since a perturbed double bubble P k is described by internal variables ϕki and ηk, there is an easy way to
generate deformations P ε,k. Start with a deformation of (ϕ, η) = ((ϕ1, η1), ..., (ϕn, ηn)) ∈ D(J ) in the form:

ϕki → ϕki + εψk
i , ηk → ηk + εζk, k = 1, 2, ..., n, i = 1, 2, 0 (3.1)

for (ψ, ζ) = ((ψ1, ζ1), ..., (ψn, ζn)) ∈ Y. Then in the asymmetric case (2.58) defines a deformation of uki
denoted by uε,ki (with (uki )

0 being uki ), namely by

ϕki + εψk
i =

αk
i (η

k + εζk)(uε,ki )2 − αk
i (η

k + εζk)(ρki (η
k + εζk))2

2
. (3.2)
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Here αk
i and ρki are treated as functions of ηk, and αk

i (η
k+εζk) and ρki (η

k+εζk) are these functions evaluated
at ηk + εζk. Differentiating (3.2) with respect to ε and setting ε to be 0 yield

ψk
i = αk

i u
k
i

∂uε,ki

∂ε

∣∣∣
ε=0

+
(αk

i )
′ζk(uki )

2

2
− (αk

i )
′ζk(ρki )

2

2
− αk

i ρ
k
i (ρ

k
i )

′ζk. (3.3)

Note that since αk
i , ρ

k
i , and β

k
i depend on ηk,

dαk
i (η

k + εζk)

dε

∣∣∣
ε=0

= (αk
i )

′ζk,
dρki (η

k + εζk)

dε

∣∣∣
ε=0

= (ρki )
′ζk,

dβk
i (η

k + εζk)

dε

∣∣∣
ε=0

= (βk
i )

′ζk. (3.4)

In (3.3) and (3.4) αk
i , (α

k
i )

′, ρki , (ρ
k
i )

′ are all functions of ηk and are all evaluated at ηk. In the symmetric
case (3.3) becomes

ψk
0 = ηk

∂uε,k0

∂ε

∣∣∣
ε=0

+ ζkuk0 . (3.5)

Recall Xk
i from (2.33), so here in the asymmetric case

Xk
i =

 ϵeiθ
k
(

∂uε,k
1

∂ε

∣∣
ε=0

ei(π−αk
1 t) + uk1(α

k
1)

′ζktei(π−αk
1 t)(−i) + (βk

1 )
′ζk

)
if i = 1

ϵeiθ
k
(

∂uε,k
i

∂ε

∣∣
ε=0

eiα
k
i t + uki (α

k
i )

′ζkteiα
k
i ti + (βk

i )
′ζk

)
if i = 2, 0

, (3.6)

and in the symmetric case

Xk
0 = ϵeiθ

k
(∂uε,k0

∂ε

∣∣
ε=0

+ ζkti
)
. (3.7)

Lemma 3.1 At the triple points Xk
i (±1) = ζk XS,k(±1) where XS,k(±1) = ±ϵeiθk

i.

The superscript S here stands for “stretching”.
Proof. In the asymmetric case, by (3.3), since ψk

i (±1) = 0, uki (±1) = ρki ,

∂uε,ki (±1)

∂ε

∣∣∣
ε=0

= (ρki )
′ζk, i = 1, 2, 0,

and hence

Xk
i (±1) =

{
ϵeiθ

k

((ρk1)
′ζkei(π∓αk

1 ) ± ρk1(α
k
1)

′ζkei(π∓αk
1 )(−i) + (βk

1 )
′ζk) if i = 1

ϵeiθ
k

((ρki )
′ζke±iαk

i ± ρki (α
k
i )

′ζke±iαk
i i + (βk

i )
′ζk) if i = 2, 0

=

 ζkϵeiθ
k d(ρk

1e
i(π∓αk

1 )+βk
1 )

dηk if i = 1

ζkϵeiθ
k d(ρk

i e
±iαk

i +βk
i )

dηk if i = 2, 0

= ζkϵeiθ
k d(±ηki)

dηk
= ζk(±ϵeiθ

k

i).

In this proof, (ρki )
′, (αk

i )
′, and (βk

i )
′ are derivatives of ρki , α

k
i , and βk

i with respect to ηk evaluated at ηk.
The same conclusion holds for Xk

0(±1) in the symmetric case.
Next compute

−Nk
i ·Xk

i ds =

{
((rk1)

′i) ·Xk
1 dt if i = 1

−((rki )
′i) ·Xk

i dt if i = 2, 0
. (3.8)

By (2.57)

(rki )
′(t) =

{
ϵeiθ

k

((uk1)
′(t)ei(π−αk

1 t) + αk
1u

k
1(t)e

i(π−αk
1 t)(−i)) if i = 1

ϵeiθ
k

((uki )
′(t)eiα

k
i t + αk

i u
k
i (t)e

iαk
i ti) if i = 2, 0

. (3.9)
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It follows from (3.6), (3.8) and (3.9) that

−Nk
i ·Xk

i ds = ϵ2(ψk
i + Ek

i (ϕ
k
i , η

k)ζk) dt (3.10)

where Ek
i is an operator given, in the asymmetric case, by

Ek
i (ϕ

k
i , η

k) =



− (αk
1 )

′(uk
1 )

2

2 − (αk
1)

′uk1(u
k
1)

′t+
(αk

1 )
′(ρk

1 )
2

2 + αk
1ρ

k
1(ρ

k
1)

′

+(βk
1 )

′ · (αk
1u

k
1e

i(π−αk
1 t) − (uk1)

′ei(π−αk
1 t)(−i)) if i = 1

− (αk
i )

′(uk
i )

2

2 − (αk
i )

′uki (u
k
i )

′t+
(αk

i )
′(ρk

i )
2

2 + αk
i ρ

k
i (ρ

k
i )

′

+(βk
i )

′ · (αk
i u

k
i e

iαk
i t − (uki )

′eiα
k
i ti) if i = 2, 0

(3.11)

where uki is related to ϕki and ηk via (2.58). In (3.11) (αk
i )

′, (ρki )
′, and (βk

i )
′ are derivatives of αk

i , ρ
k
i , and

βk
i with respect to ηk. All these functions of ηk, namely αk

i , (α
k
i )

′, ρki , (ρ
k
i )

′, βk
i , and (βk

i )
′, are evaluated at

ηk. On the other hand (uki )
′ in (3.11) is just the derivative of uki (t) with respect to t. In the symmetric case

Ek
0 (ϕ

k
0 , η

k) = −ϕ
k
0 + (ϕk0)

′t

ηk
. (3.12)

Define three more functions of ηk (in the asymmetric case):

µk
i = (ρki )

2(αk
i − cosαk

i sinα
k
i ), i = 1, 2, 0. (3.13)

Geometrically for i = 1, 2, µk
i is the sum of the area of a sector and the area of a triangle, associated with

the left or right arc, after the first step of restricted perturbation, Figure 6. For i = 0, µk
0 is the difference of

the area of a sector and the area of a triangle associated with the middle arc. By (2.43) and 2.44) the µk
i ’s

satisfy
µk
1 + µk

0 = wk
1 , µk

2 − µk
0 = wk

2 . (3.14)

In the symmetric case µk
1 and µk

2 are still given by (3.13), but they are constants, independent of ηk; namely
µk
1 = µk

2 = wk
1 = wk

2 and µk
0 = 0.

It is straight forward to show the following lemma.

Lemma 3.2 The operator Ek
i satisfies the property∫ 1

−1

Ek
i (ϕ

k
i , η

k) dt = (µk
i )

′. (3.15)

Moreover ∫ 1

−1

Ek
1 (ϕ

k
1 , η

k) dt+

∫ 1

−1

Ek
0 (ϕ

k
0 , η

k) dt =

∫ 1

−1

Ek
2 (ϕ

k
2 , η

k) dt−
∫ 1

−1

Ek
0 (ϕ

k
0 , η

k) dt = 0. (3.16)

Proof. In the asymmetric case, by (3.11),∫ 1

−1

Ek
i (ϕ

k, ηk) dt =

{
− (αk

1 )
′

2 t(uk1)
2|1−1 + (αk

1)
′(ρk1)

2 + 2αk
1ρ

k
1(ρ

k
1)

′ − (βk
1 )

′ · uk1ei(π−αk
1 t)(−i)|1−1

− (αk
i )

′

2 t(uki )
2|1−1 + (αk

i )
′(ρki )

2 + 2αk
i ρ

k
i (ρ

k
i )

′ − (βk
i )

′ · uki eiα
k
i ti|1−1

=

{
2αk

1ρ
k
1(ρ

k
1)

′ − 2ηk(βk
1 )

′ if i = 1
2αk

i ρ
k
i (ρ

k
i )

′ + 2ηk(βk
i )

′ if i = 2, 0
.

On the other hand

(µk
i )

′ =

{
(αk

1(ρ
k
1)

2 − βk
1η

k)′

(αk
i (ρ

k
i )

2 + βk
i η

k)′
=

{
2αk

1ρ
k
1(ρ

k
1)

′ + (αk
1)

′(ρk1)
2 − βk

1 − ηk(βk
1 )

′ if i = 1
2αk

i ρ
k
i (ρ

k
i )

′ + (αk
i )

′(ρki )
2 + βk

i + ηk(βk
i )

′ if i = 2, 0
.
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Hence

(µk
i )

′ −
∫ 1

−1

Ek
i (ϕ

k
i , η

k) dt =

{
(αk

1)
′(ρk1)

2 − βk
1 + ηk(βk

1 )
′ if i = 1

(αk
i )

′(ρki )
2 + βk

i − ηk(βk
i )

′ if i = 2, 0
=

 (αk
1)

′(ρk1)
2 − (βk

1 )
2( η

k

βk
1
)′

(αk
i )

′(ρki )
2 + (βk

i )
2( η

k

βk
i

)′

= (αk
i )

′(ρki )
2 − (βk

i )
2(tanαk

i )
′ = (αk

i )
′(ρki )

2 − (βk
i )

2(secαk
i )

2(αk
i )

′ = 0.

This proves the first part of the lemma. The constraints (3.14) on µk
i imply that

(µk
1)

′ + (µk
0)

′ = (µk
2)

′ − (µk
0)

′ = 0

from which the second part follows.
The lemma also holds in the symmetric case because∫ 1

−1

Ek
0 (ϕ

k
0 , η

k) dt =

∫ 1

−1

−ϕ
k
0 + (ϕk0)

′t

ηk
dt = −ϕ

k
0t

ηk

∣∣∣1
−1

= 0 = (µk
0)

′

and the argument in the asymmetric case also applies to Ek
i (ϕ

k
i , η

k) for i = 1, 2.

Let (ϕ, η) ∈ D(J ) and (ψ, ζ) ∈ Y, and calculate

d

dε

∣∣∣
ε=0

Js((ϕ, η) + ε(ψ, ζ)),
d

dε

∣∣∣
ε=0

Jl((ϕ, η) + ε(ψ, ζ)).

For the former if ϕki ∈ H2(−1, 1),

d

dε

∣∣∣
ε=0

Js((ϕ, η) + ε(ψ, ζ))

= ϵ
n∑

k=1

2∑
i=0

∫ 1

−1

(∂Lk
i ((ϕ

k
i )

′, ϕki , η
k)

∂(ϕki )
′ (ψk

i )
′ +

∂Lk
i ((ϕ

k
i )

′, ϕki , η
k)

∂ϕki
ψk
i

)
dt

+ϵ
n∑

k=1

( 2∑
i=0

∫ 1

−1

∂Lk
i ((ϕ

k
i )

′, ϕki , η
k)

∂ηk
dt
)
ζk

= ϵ

n∑
k=1

2∑
i=0

∫ 1

−1

( d
dt

(
− ∂Lk

i ((ϕ
k
i )

′, ϕki , η
k)

∂(ϕki )
′

)
+
∂Lk

i ((ϕ
k
i )

′, ϕki , η
k)

∂ϕki

)
ψk
i dt

+ϵ

n∑
k=1

( 2∑
i=0

∫ 1

−1

∂Lk
i ((ϕ

k
i )

′, ϕki , η
k)

∂ηk
dt
)
ζk

= ϵ
n∑

k=1

∫ 1

−1

2∑
i=0

Kk
i (ϕ

k
i , η

k)ψk
i dt+ ϵ

n∑
k=1

K̃k(ϕk, ηk)ζk

=
n∑

k=1

⟨ϵ(Kk(ϕk, ηk), K̃k(ϕk, ηk)), (ψk, ζk)⟩.

= ⟨ϵ(K(ϕ, η), K̃(ϕ, η)), (ψ, ζ)⟩n. (3.17)

In (3.17) the operator Kk
i (k = 1, 2, ..., n and i = 0, 1, 2) and the functional K̃k are given by:

Kk
i (ϕ

k
k, η

k) =
d

dt

(
− ∂Lk

i ((ϕ
k
i )

′, ϕki , η
k)

∂(ϕki )
′

)
+
∂Lk

i ((ϕ
k
i )

′, ϕki , η
k)

∂ϕki
, (3.18)

K̃k(ϕk, ηk) =
2∑

i=0

∫ 1

−1

∂Lk
i ((ϕ

k
i )

′, ϕki , η
k)

∂ηk
dt (3.19)
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and one writes Kk for (Kk
1 ,Kk

2 ,Kk
0), K for ((K1

1,K1
2,K1

0), ..., (Kn
1 ,Kn

2 ,Kn
0 )) and K̃ for (K̃1, ..., K̃n).

In (3.17) the inner products ⟨·, ·⟩ and ⟨·, ·⟩n come from the Hilbet spaces L2((−1, 1);R3) × R and
(L2((−1, 1);R3)× R)n respectively:

⟨(ϕk, ηk), (ϕ̃k, η̃k)⟩ =

2∑
i=0

∫ 1

−1

ϕki (t)ϕ̃
k
i (t) dt+ ηkη̃k. (3.20)

⟨(ϕ, η), (ϕ̃, η̃)⟩n =

n∑
k=1

2∑
i=0

∫ 1

−1

ϕki (t)ϕ̃
k
i (t) dt+

n∑
k=1

ηkη̃k. (3.21)

Comparing (3.17) with (2.34) of Lemma 2.4 and using (3.10) one finds, with the help of Lemma 3.1,

Kk
i = ϵκki and K̃k = ϵ−1

( 2∑
i=0

Tk
i

)
·XS,k

∣∣∣1
−1

+
2∑

i=0

∫ 1

−1

Kk
i (ϕ

k
i , η

k)Ek
i (ϕ

k
i , η

k) dt. (3.22)

Moreover, by (3.10), (2.35) of Lemma 2.4 implies

d

dε

∣∣∣
ε=0

Jl((ϕ, η) + ε(ψ, ζ)) =
n∑

k=1

⟨
ϵ2


γ11IT (P1) + γ12IT (P2)

γ12IT (P1) + γ22IT (P2)

(γ11 − γ12)IT (P1) + (γ12 − γ22)IT (P2)

Qk(ϕ, η)

 ,


ψk
1

ψk
2

ψk
0

ζk,


⟩
. (3.23)

In (3.23) the functional Qk is given by

Qk(ϕ, η) =

∫ 1

−1

(
(γ11IT (P1) + γ12IT (P2))E

k
1 (ϕ

k
1 , η

k) + (γ12IT (P1) + γ22IT (P2))E
k
2 (ϕ

k
2 , η

k)

+((γ11 − γ12)IT (P1) + (γ12 − γ22)IT (P2))E
k
0 (ϕ

k
0 , η

k)
)
dt. (3.24)

In addition to Y two more spaces are needed in this work:

X = {(ϕ, η) ∈ Y : ϕki ∈ H2(−1, 1)} (3.25)

Z = {(ϕ, η) : ϕki ∈ L2(−1, 1), ηk ∈ R,
∫ 1

−1

(ϕk1 + ϕk0) dt =

∫ 1

−1

(ϕk2 − ϕk0) dt = 0}. (3.26)

Clearly X ⊂ Y ⊂ Z ⊂ (L2((−1, 1);R3)× R)n. The norms of X , Y, and Z are given by

∥(ϕ, η)∥2X =

n∑
k=1

2∑
i=0

∥ϕki ∥2H2 +

n∑
k=1

(ηk)2

∥(ϕ, η)∥2Y =
n∑

k=1

2∑
i=0

∥ϕki ∥2H1 +
n∑

k=1

(ηk)2, (3.27)

∥(ϕ, η)∥2Z =
n∑

k=1

2∑
i=0

∥ϕki ∥2L2 +
n∑

k=1

(ηk)2

where ∥ · ∥H1 and ∥ · ∥H2 are the usual H1 and H2 norms of Sobolev spaces H1(−1, 1) and H2(−1, 1)
respectively, and ∥ · ∥L2 is the L2 norm of L2(−1, 1). Let

Π : L2((−1, 1);R3)× R →
{
(ψk, ηk) ∈ L2((−1, 1);R3)× R :

∫ 1

−1

(ψk
1 + ψk

0 ) dt =

∫ 1

−1

(ψk
2 − ψk

0 ) dt = 0
}
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be the orthogonal projection operator given by

Π(ψk, ζk) =


ψk
1

ψk
2

ψk
0

ζk

−
[ ∫ 1

−1

(ψk
1

3
+
ψk
2

6
+
ψk
0

6

)
dt
]

1
0
1
0

−
[ ∫ 1

−1

(ψk
1

6
+
ψk
2

3
− ψk

0

6

)
dt
]

0
1

−1
0

 . (3.28)

Note that Π has no effect on the fourth component ζk.
The gradient of Js is an operator Ss from a neighborhood of (0, h) in X to Z such that

d

dε

∣∣∣
ε=0

Js((ϕ, η) + ε(ψ, ζ)) = ⟨Ss(ϕ, η), (ψ, ζ)⟩n (3.29)

for all (ψ, ζ) ∈ X . Similarly one defines Sl and S, the gradients of Jl and J respectively. From (3.17) one
sees that

Ss(ϕ, η) =

 S1
s (ϕ

1, η1)
...
Sn
s (ϕ

n, ηn)

 where Sk
s (ϕ

k, ηk) = Πϵ


Kk

1(ϕ
k
1 , η

k)
Kk

2(ϕ
k
2 , η

k)
Kk

0(ϕ
k
0 , η

k)

K̃k(ϕk, ηk)

 . (3.30)

The gradient of Jl is

Sl(ϕ, η) =

 S1
l (ϕ, η)
...
Sn
l (ϕ, η)

 where Sk
l (ϕ, η) = Πϵ2


γ11IT (P1) + γ12IT (P2)

γ12IT (P1) + γ22IT (P2)

(γ11 − γ12)IT (P1) + (γ12 − γ22)IT (P2)

Qk(ϕ, η)

 . (3.31)

A remark regarding the IT (Pi)’s in (3.31) is in order. Recall that each IT (Pi), i = 1, 2, is a function on D

given in (1.6), and the set T (Pi) is determined by the internal variables ϕki , ϕ
k
0 and ηk for k = 1, 2, ..., n. The

IT (Pi)’s (i = 1, 2) in the first three components on the right side of (3.31) are now considered as outcomes of
the operators

Ik
ij : (ϕi, ϕ0, η) → IT (Pi)(r

k
j (t)), i = 1, 2, j = 1, 2, 0, k = 1, 2, ..., n. (3.32)

where j = 1, 2, 0 corresponds to the first, second, and third component in (3.31) respectively. Note that in
(3.32)

(ϕi, ϕ0, η) = (ϕ1i , ϕ
1
0, η

1)× (ϕ2i , ϕ
2
0, η

2)× ...× (ϕni , ϕ
n
0 , η

n) (3.33)

represents T (Pi).
The gradient of J is

S = Ss + Sl. (3.34)

Therefore

S(ϕ, η) =

 S1(ϕ, η)
...
Sn(ϕ, η)


where

Sk(ϕ, η) = Π


ϵKk

1(ϕ
k
1 , η

k) + ϵ2(γ11IT (P1) + γ12IT (P2))
ϵK2(ϕ

k
2 , η

k) + ϵ2(γ12IT (P1) + γ22IT (P2))
ϵKk

0(ϕ
k
0 , η

k) + ϵ2(γ11 − γ12)IT (P1) + ϵ2(γ12 − γ22)IT (P2)

ϵK̃k(ϕk, ηk) + ϵ2Qk(ϕ, η)

 . (3.35)

The domain of S is taken to be

D(S) = {(ϕ, η) ∈ X : ∥(ϕ, η − h)∥X < c̄} (3.36)

where c̄ in (3.36) is the same as the c̄ in (2.68). Consequently, D(S) ⊂ D(J ).
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Lemma 3.3 It holds uniformly with respect to t that

Sk(0, h) =
(
O(|γ|ϵ4), O(|γ|ϵ4), O(|γ|ϵ4), O(|γ|ϵ4)

)
for all k = 1, 2, ..., n. Consequently, there exists C̃ > 0 such that ∥S(0, h)∥Z ≤ C̃|γ|ϵ4.

Proof. Calculations from (3.18) and (3.19) show that

Kk
i (0, h

k) =
1

rki
and K̃k(0, hk) = 2

2∑
i=0

d(αk
i ρ

k
i )

dηk

∣∣∣
η=h

in the asymmetric case and

K̃k(0, hk) =
(
2

2∑
i=1

d(αk
i ρ

k
i )

dηk
+ 2

)∣∣∣
η=h

in the symmetric case. By (B.22) in Appendix B,

K̃k(0, hk) = 0.

Consequently, by the virtue of the projection operator Π and the fact that 1
rk1

− 1
rk2

= 1
rk0
,

Sk
s (0, h

k) = Πϵ


Kk

1(0, h
k)

Kk
2(0, h

k)
Kk

0(0, h
k)

K̃k(0, hk)

 = Πϵ


1/rk1
1/rk2
1/rk0
0

 = 0. (3.37)

Regarding Sk
l (0, h) let r̂

k
i be the boundaries of the exact double bubble Bk, i.e.,

r̂ki (t) =

{
rk1e

i(π−ak
1 t) + bk1 if i = 1

rki e
iak

i t + bki if i = 2, 0

and rki be the boundary of T k(Ek
i ), i.e.,

rki (t) = ϵeiθ
k

r̂ki (t) + ξk.

One then deduces

Ik
ij(0, 0, h) =

∫
T (Bi)

G(rkj (t), y) dy

=

∫
Tk(Bk

i )

1

2π
log

1

|rkj (t)− y|
dy +

∫
Tk(Bk

i )

R(rkj (t), y) dy +
∑
l ̸=k

∫
T l(Bl

i)

G(rkj (t), y) dy

= ϵ2
∫
Bk

i

1

2π
log

1

ϵ|r̂kj (t)− ŷ|
dŷ +O(ϵ2)

=
ϵ2

2π

(
log

1

ϵ

)
|Bk

i |+ ϵ2
∫
Bk

i

1

2π
log

1

|r̂j(t)− ŷ|
dŷ +O(ϵ2)

=
ϵ2

2π

(
log

1

ϵ

)
wk

i +O(ϵ2).

Consequently, with the help of (3.16) of Lemma 3.2,

Qk(0, h) =

∫ 1

−1

[
γ11

ϵ2

2π

(
log

1

ϵ

)
wk

1 + γ12
ϵ2

2π

(
log

1

ϵ

)
wk

2

]
Ek
1 (0, h

k) dt
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+

∫ 1

−1

[
γ12

ϵ2

2π

(
log

1

ϵ

)
wk

1 + γ22
ϵ2

2π

(
log

1

ϵ

)
wk

2

]
Ek
2 (0, h

k) dt

+

∫ 1

−1

[
(γ11 − γ12)

ϵ2

2π

(
log

1

ϵ

)
wk

1 + (γ12 − γ22)
ϵ2

2π

(
log

1

ϵ

)
wk

2

]
Ek
0 (0, h

k) dt+O(|γ|ϵ2)

=
γ11ϵ

2

2π

(
log

1

ϵ

)
wk

1

∫ 1

−1

(Ek
1 (0, h

k) + Ek
0 (0, h

k)) dt

+
γ12ϵ

2

2π

(
log

1

ϵ

)
wk

2

∫ 1

−1

(Ek
1 (0, h

k) + Ek
0 (0, h

k)) dt

+
γ12ϵ

2

2π

(
log

1

ϵ

)
wk

1

∫ 1

−1

(Ek
2 (0, h

k)− Ek
0 (0, h

k)) dt

+
γ22ϵ

2

2π

(
log

1

ϵ

)
wk

2

∫ 1

−1

(Ek
2 (0, h

k)− Ek
0 (0, h

k)) dt+O(|γ|ϵ2)

= O(|γ|ϵ2).

Therefore

Sk
l (0, h) =

ϵ4

2π

(
log

1

ϵ

)
Π


γ11w

k
1 + γ12w

k
2

γ12w
k
1 + γ22w

k
2

(γ11 − γ12)w
k
1 + (γ12 − γ22)w

k
2

0

+O(|γ|ϵ4)

=
ϵ4

2π

(
log

1

ϵ

)γ11wk
1Π


1
0
1
0

+ γ12w
k
2Π


1
0
1
0

+ γ12w
k
1Π


0
1

−1
0

+ γ22w
k
2Π


0
1

−1
0


+O(|γ|ϵ4)

=
ϵ4

2π

(
log

1

ϵ

)
(⃗0 + 0⃗ + 0⃗ + 0⃗) +O(|γ|ϵ4) = O(|γ|ϵ4). (3.38)

The lemma follows from (3.37) and (3.38).

4 The second variation

The Fréchet derivative of the operator S at any (ϕ, η) ∈ D(S) is denoted S ′(ϕ, η). It is a linear operator
from X to Z. For every (ψ, ζ) ∈ X , it yields the second variation of J :

d2J ((ϕ, η) + ε(ψ, ζ))

dε2

∣∣∣
ε=0

= ⟨S ′(ϕ, η)(ψ, ζ), (ψ, ζ)⟩n. (4.1)

Similar formulas hold if J is replaced by Js and S replaced by Ss, or J by Jl and S by Sl.
We show that the operator S ′(0, h), the Fréchet derivative of S at the exact double bubble assembly is

positive definite and derives a upper bound for the inverse operator (S ′(0, h))−1.
Define the ϵ independent part of Js by P so that Js = ϵP where

P(ϕ, η) =
n∑

k=1

2∑
i=0

∫ 1

−1

Lk
i ((ϕ

k
i )

′, ϕki , η
k) dt, (ϕ, η) ∈ Y. (4.2)

Calculations show that, in the asymmetric case,

∂2Lk
i (0, 0, η

k)

∂((ϕki )
′)2

=
1

(αk
i ρ

k
i )

3
,
∂2Lk

i (0, 0, η
k)

∂(ϕki )
2

= − 1

αk
i (ρ

k
i )

3
,
∂2Lk

i (0, 0, η
k)

∂(ηk)2
=
d2(αk

i ρ
k
i )

d(ηk)2
, (4.3)
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∂2Lk
i (0, 0, η

k)

∂(ϕki )
′∂ϕki

= 0,
∂2Lk

i (0, 0, η
k)

∂(ϕki )
′∂ηk

= 0,
∂2Lk

i (0, 0, η
k)

∂ϕki ∂η
k

=
d

dηk

( 1

ρki

)
, (4.4)

and in the symmetric case

∂2Lk
0(0, η

k)

∂((ϕk0)
′)2

=
1

(ηk)3
,
∂2Lk

0(0, η
k)

∂(ηk)2
= 0,

∂2Lk
0(0, η

k)

∂(ϕk0)
′∂ηk

= 0. (4.5)

The second variation of P at (ϕ, η) = (0, h) is

d2P(0 + εψ, h+ εζ)

dε2

∣∣∣
ε=0

=

n∑
k=1

2∑
i=0

∫ 1

−1

[ 1

(aki r
k
i )

3
((ψk

i )
′)2 − 1

aki (r
k
i )

3
(ψk

i )
2 +

d2(αk
i ρ

k
i )

d(ηk)2

∣∣∣
ηk=hk

(ζk)2 + 2
d

dηk

( 1

ρki

)∣∣∣
ηk=hk

ψk
i ζ

k
]
dt.

However the constraints (2.60) that the ψk
i ’s satisfy and the condition (2.46) on the ρki ’s imply

2∑
i=0

∫ 1

−1

2
d

dηk

( 1

ρki

)∣∣∣
ηk=hk

ψk
i ζ

k dt = 2
d

dηk

( 1

ρk1
− 1

ρk2
− 1

ρk0

)∣∣∣
ηk=hk

(∫ 1

−1

ψk
1 dt

)
ζk = 0.

Hence the integral of the last term vanishes, and

d2P(0 + εψ, h+ εζ)

dε2

∣∣∣
ε=0

=

n∑
k=1

2∑
i=0

∫ 1

−1

[ 1

(aki r
k
i )

3
((ψk

i )
′)2 − 1

aki (r
k
i )

3
(ψk

i )
2 +

d2(αk
i ρ

k
i )

d(ηk)2

∣∣∣
ηk=hk

(ζk)2
]
dt. (4.6)

This is a quadratic form on Y. A simple lemma is needed at this point.

Lemma 4.1 Let q ∈ (0, π) and Υ ∈ R. The inequality∫ 1

−1

((y′(t))2 − q2y2(t)) dt ≥ Υ2q3

2(tan q − q)

holds for all y ∈ H1
0 (−1, 1) that satisfies the constraint

∫ 1

−1
y(t) dt = Υ.

The proof of this lemma is given in Appendix A.

Lemma 4.2 There exists d > 0 such that

d2P(0 + εψ, h+ εζ)

dε2

∣∣∣
ε=0

≥ 2d∥(ψ, ζ)∥2Y (4.7)

for all (ψ, ζ) ∈ X . In other words for (ψ, ζ) ∈ X ,

⟨S ′
s(0, h)(ψ, ζ), (ψ, ζ)⟩n ≥ 2dϵ∥(ψ, ζ)∥2Y . (4.8)

Proof. Let ∫ 1

−1

ψk
0 dt = Υk,

∫ 1

−1

ψk
1 dt = −Υk,

∫ 1

−1

ψk
2 dt = Υk (4.9)
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because of the constraints (2.60). By Lemma 4.1, one deduces

d2P(0 + εψ, h+ εζ)

dε2

∣∣∣
ε=0

− 2d
n∑

k=1

2∑
i=0

∥ψk
i ∥2H1

=
n∑

k=1

2∑
i=0

∫ 1

−1

[( 1

(aki r
k
i )

3
− 2d

)
((ψk

i )
′)2 −

( 1

aki (r
k
i )

3
+ 2d

)
(ψk

i )
2
]
dt+

n∑
k=1

2∑
i=0

2(ζk)2
d2(αk

i ρ
k
i )

d(ηk)2

∣∣∣
ηk=hk

≥
n∑

k=1

2∑
i=0

(
1

(ak
i r

k
i )

3 − 2d
)
(Υk)2(qki )

3

2(tan qki − qki )
+

n∑
k=1

2∑
i=0

2(ζk)2
d2(αk

i ρ
k
i )

d(ηk)2

∣∣∣
ηk=hk

(4.10)

where

qki =

√√√√ 1
ak
i (r

k
i )

3 + 2d

1
(ak

i r
k
i )

3 − 2d
. (4.11)

If d→ 0, then

2∑
i=0

(
1

(ak
i r

k
i )

3 − 2d
)
(qki )

3

2(tan qki − qki )
→ 1

2

2∑
i=0

1

(rki )
3(tan aki − aki )

=
1

2(hk)3

2∑
i=0

sin3 aki
tan aki − aki

=
1

2(hk)3

2∑
i=0

cos aki sin
3 aki

sin aki − aki cos a
k
i

. (4.12)

By Lemma B.1 in Appendix B, (4.12) is positive. Hence for d > 0 sufficiently small,

2∑
i=0

(
1

(ak
i r

k
i )

3 − 2d
)
(Υk)2(qki )

3

2(tan qki − qki )
≥ 0 (4.13)

for all k. By (B.23) in Appendix B,
2∑

i=0

d2(αk
i ρ

k
i )

d(ηk)2

∣∣∣
ηk=hk

> 0. (4.14)

Hence

2(ζk)2
2∑

i=0

d2(αk
i ρ

k
i )

d(ηk)2

∣∣∣
ηk=hk

≥ 2d(ζk)2 (4.15)

if d is sufficiently small. The lemma now follows from (4.10), (4.13), and (4.15).
The above argument is carried out with the assumption that all exact double bubbles Bk are asymmetric.

However if a Bk is symmetric, one simply makes the changes

αk
0ρ

k
0 → ηk,

1

ak0(r
k
0 )

3
→ 0,

1

(ak0r
k
0 )

3
→ 1

(hk)3
(4.16)

and the same argument also covers the symmetric case. Note that in the symmetric case (B.31) plays the
role of (B.23).

In the rest of the paper, if only the asymmetric case is presented in a proof, then the same proof will also
work for the symmetric case with the suitable modification of (4.16).
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From the quadratic form (4.6), one finds the explicit formula for S ′
s(0, h):

(Sk
s )

′(0, hk)(ψk, ζk) = Πϵ


− 1

(ak
1r

k
1 )

3 (ψ
k
1 )

′′ − 1
ak
1 (r

k
1 )

3ψ
k
1

− 1
(ak

2r
k
2 )

3 (ψ
k
2 )

′′ − 1
ak
2 (r

k
2 )

3ψ
k
2

− 1
(ak

0r
k
0 )

3 (ψ
k
0 )

′′ − 1
ak
0 (r

k
0 )

3ψ
k
0

2(
∑2

i=0
d2(αk

i ρ
k
i )

d(ηk)2
|ηk=hk)ζk

 . (4.17)

Next study

(Sk
l )

′(0, h)(ψ, ζ) = Πϵ2


γ11(Ik

11)
′(0, 0, h)(ψ1, ψ0, ζ) + γ12(Ik

21)
′(0, 0, h)(ψ2, ψ0, ζ)

γ12(Ik
12)

′(0, 0, h)(ψ1, ψ0, ζ) + γ22(Ik
22)

′(0, 0, h)(ψ2, ψ0, ζ)
(γ11 − γ12)(Ik

10)
′(0, 0, h)(ψ1, ψ0, ζ) + (γ12 − γ22)(Ik

20)
′(0, 0, h)(ψ2, ψ0, ζ)

(Qk)′(0, h)(ψ, ζ)

 .

(4.18)

Lemma 4.3 There exists Č > 0 depending on D, m and n only such that

∥S ′
l(0, h)(ψ, ζ)∥Z ≤ Č|γ|ϵ4∥(ψ, ζ)∥Z

for all (ψ, ζ) ∈ X .

Proof. To compute the Fréchet derivatives of Ik
ij , deform (ϕ, η) to (ϕ, η) + ε(ψ, ζ) and denote the corre-

sponding deformation of rk1 , r
k
2 and rk0 by rε,k1 , rε,k2 and rε,k0 respectively. Then

(Ik
ij)

′(ϕi, ϕ0, η) : (ψi, ψ0, ζ) →
∂

∂ε

∣∣∣
ε=0

∫
T (P ε

i )

G(rkj (t), y) dy +
∂

∂ε

∣∣∣
ε=0

∫
T (Pi)

G(rε,kj , y) dy. (4.19)

Since (ϕ, η) is (0, h) in this lemma, T (P ) becomes T (B) and its deformation is denoted T (Bε). Applying
Lemma 2.3 to the first term on the left side of (4.19) with the boundaries of T (B) parametrized by

rk1(t) = T k(rk1e
i(π−ak

1 t) + bk1), rk2(t) = T k(rk2e
iak

2 t + bk2), rk0(t) = T k(rk0e
iak

0 t + bk0), (4.20)

one obtains

∂

∂ε

∣∣∣
ε=0

∫
T (Bε

i )

G(rkj (t), y) dy

=


−
∫
T (∂B1)\T (∂B2)

G(rkj (t), r1)N1 ·X1 ds−
∫
T (∂B1)∩T (∂B2)

G(rkj (t), r0)N0 ·X0 ds if i = 1

−
∫
T (∂B2)\T (∂B1)

G(rkj (t), r2)N2 ·X2 ds+

∫
T (∂B1)∩T (∂B2)

G(rkj (t), r0)N0 ·X0 ds if i = 2

(4.21)

In (4.21) some shorthand notations have been used. For instance T (∂B1)\T (∂B2) stands for the union
∪n
l=1T

l(∂Bl
1)\T l(∂Bl

2); r1, N1 and X1 refer to rl1, N
l
1 and Xl

1 respectively on each T l(∂Bl
1)\T l(∂Bl

2) of the
union T (∂B1)\T (∂B2). With the help of (3.10), one finds that

−
∫
T (∂B1)\T (∂B2)

G(rkj (t), r1)N1 ·X1 ds

=
n∑

l=1

ϵ2
∫ 1

−1

G(rkj (t), r
l
1(τ))(ψ

l
1(τ) + E l

1(0, h
l)(τ)ζl) dτ
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=

∫ 1

−1

ϵ2

2π

(
log

1

|rkj (t)− rk1 |

)
(ψk

1 + Ek
1 (0, h

k)ζk) dτ + ϵ2
∫ 1

−1

R(rkj (t), r
k
1)(ψ

k
1 + Ek

1 (0, h
k)ζk) dτ

+
∑
l ̸=k

ϵ2
∫ 1

−1

G(rkj (t), r
l
1)(ψ

l
1 + E l

1(0, h
l)ζl) dτ

=
ϵ2

2π

(
log

1

ϵ

)∫ 1

−1

(ψk
1 + Ek

1 (0, h
k)ζk) dτ

+
ϵ2

2π

∫ 1

−1

(
log

1

|rkj e
iak

j t + bkj − rk1e
i(π−ak

1τ) − bk1 |

)
(ψk

1 + Ek
1 (0, h

k)ζk) dτ +O(ϵ2)

n∑
l=1

(∥ψl
1∥L2 + |ζl|)

=
ϵ2

2π

(
log

1

ϵ

)∫ 1

−1

(ψk
1 + Ek

1 (0, h
k)ζk) dτ +O(ϵ2)

n∑
l=1

(∥ψl
1∥L2 + |ζl|).

The above estimate holds uniformly with respect to t. Also the term rkj e
iak

j t above is valid if j = 0, 2; if

j = 1, it should be replaced by rk1e
i(π−ak

1 t). Similar estimates hold for the other three terms in (4.21). By
the constraints (2.60) on ψk

i and (3.16) of Lemma 3.2 one deduces that

∂

∂ε

∣∣∣
ε=0

∫
T (Bε

i )

G(rkj (t), y) dy

=


ϵ2

2π

(
log

1

ϵ

)∫ 1

−1

(ψk
1 + Ek

1 (0, h
k)ζk) dτ +

ϵ2

2π

(
log

1

ϵ

)∫ 1

−1

(ψk
0 + Ek

0 (0, h
k)ζk) dτ +O(ϵ2)∥(ψ, ζ)∥Z

ϵ2

2π

(
log

1

ϵ

)∫ 1

−1

(ψk
2 + Ek

2 (0, h
k)ζk) dτ − ϵ2

2π

(
log

1

ϵ

)∫ 1

−1

(ψk
0 + Ek

0 (0, h
k)ζk) dτ +O(ϵ2)∥(ψ, ζ)∥Z

= O(ϵ2)∥(ψ, ζ)∥Z (4.22)

holds uniformly with respect to t.
The second part on the right side of (4.19), for (ϕ, η) = (0, h), is written as

∂

∂ε

∣∣∣
ε=0

∫
T (Bi)

G(rε,kj (t), y) dy =

∫
T (Bi)

∇G(rkj (t), y) ·Xk
j (t) dy (4.23)

where ∇G stands for the gradient of G with respect to its first argument. Clearly∫
T (Bi)

|∇G(rkj (t), y)| dy = O(ϵ) (4.24)

holds uniformly with respect to t. Calculations from (3.3) and (3.6) show that

Xk
j (t) =


ϵeiθ

k
[ 1

ak1r
k
1

(ψk
1 + ak1r

k
1 (ρ

k
1)

′ζk)ei(π−ak
1 t) + rk1 (α

k
1)

′ζktei(π−ak
1 t)(−i) + (βk

1 )
′ζk

]
if j = 1

ϵeiθ
k
[ 1

akj r
k
j

(ψk
j + akj r

k
j (ρ

k
j )

′ζk)eia
k
j t + rkj (α

k
j )

′ζkteia
k
j ti + (βk

j )
′ζk

]
if j = 2, 0

(4.25)
where (ρkj )

′, (αk
j )

′, and (βk
j )

′ refer to the derivatives of ρkj , α
k
j , and β

k
j with respect to ηk evaluated at hk,

respectively. Then (4.24) and (4.25) imply∥∥∥ ∂
∂ε

∣∣∣
ε=0

∫
T (Bi)

G(rεj(t), y) dy
∥∥∥
L2

= O(ϵ2)(∥ψk
j ∥L2 + |ζk|). (4.26)
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By (4.22) and (4.26) one finds that

∥(Ik
ij)

′(0, 0, h)(ψi, ψ0, ζ)∥L2 = O(ϵ2)∥(ψ, ζ)∥Z . (4.27)

This allows us to handle the first three components of (Sk
l )

′ in (4.18).
Finally consider (Qk)′ in the last component of (Sk

l )
′. Note that

(Qk)′(0, h)(ψ, ζ)

=

∫ 1

−1

(γ11(Ik
11)

′(0, 0, h)(ψ1, ψ0, ζ) + γ12(Ik
21)

′(0, 0, h)(ψ2, ψ0, ζ))Ek
1 (0, h

k) dt

+

∫ 1

−1

(γ12(Ik
12)

′(0, 0, h)(ψ1, ψ0, ζ) + γ22(Ik
22)

′(0, 0, h)(ψ2, ψ0, ζ))Ek
2 (0, h

k) dt

+

∫ 1

−1

((γ11 − γ12)(Ik
10)

′(0, 0, h)(ψ1, ψ0, ζ) + (γ12 − γ22)(Ik
20)

′(0, 0, h)(ψ2, ψ0, ζ))Ek
0 (0, h

k) dt

+

∫ 1

−1

(γ11Ik
11(0, 0, h) + γ12Ik

21(0, 0, h))(Ek
1 )

′(0, hk)(ψk
1 , ζ

k) dt

+

∫ 1

−1

(γ12Ik
12(0, 0, h) + γ22Ik

22(0, 0, h))(Ek
2 )

′(0, hk)(ψk
2 , ζ

k) dt

+

∫ 1

−1

((γ11 − γ12)Ik
10(0, 0, h) + (γ12 − γ22)Ik

20(0, 0, h))(Ek
0 )

′(0, hk)(ψk
0 , ζ

k) dt. (4.28)

Denote the six terms on the right side of (4.28) by I, II, III, IV , V , and V I respectively. Then the estimate
(4.27) implies that

I, II, III = O(|γ|ϵ2) ∥(ψ, ζ)∥Z . (4.29)

Regarding IV , V , and V I, note that

Ik
ij(0, 0, h) =

∫
T (Bi)

G(rkj (t), y) dy

=

∫
Tk(Bk

i )

1

2π
log

1

|rkj (t)− y|
dy +

∫
Tk(Bk

i )

R(rkj (t), y) dy +
∑
l ̸=k

∫
T l(Bl

i)

G(rkj (t), y) dy

=
|Bk

i |
2π

(
log

1

ϵ

)
ϵ2 + ϵ2Ak

ij(t)

where

Ak
ij(t) =



∫
Bk

i

( 1

2π
log

1

|rk1ei(π−ak
1 t) − ŷ|

+R(rk1(t), T
k(ŷ))

)
dŷ +

∑
l ̸=k

∫
Bl

i

G(rk1(t), T
l(ŷ)) dŷ if j = 1

∫
Bk

i

( 1

2π
log

1

|rkj e
iak

j t − ŷ|
+R(rkj (t), T

k(ŷ))
)
dŷ +

∑
l ̸=k

∫
Bl

i

G(rkj (t), T
l(ŷ)) dŷ if j = 2, 0

.

(4.30)
Then ∫ 1

−1

Ik
ij(0, 0, h)(Ek

j )
′(0, hk)(ψk

j , ζ
k) dt

=
|Bk

i |
2π

(
log

1

ϵ

)
ϵ2

∫ 1

−1

(Ek
j )

′(0, hk)(ψk
j , ζ

k) dt+ ϵ2
∫ 1

−1

Ak
ij(t)(Ek

j )
′(0, hk)(ψk

j , ζ
k) dt. (4.31)

Calculations from (2.58) and (3.11) show that

(Ek
j )

′(0, hk)(ψk
j , ζ

k) = (ekj )
′(t) (4.32)
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where (ekj )
′(t) stands for the derivative of ekj (t) with respect to t and

ekj (t) =



(
− (αk

1)
′(hk)t

ak1
− (βk

1 )
′(hk)

ak1r
k
1

sin ak1t
)
ψk
1 +

( d

dηk

∣∣∣
ηk=hk

(αk
1ρ

k
1(ρ

k
1)

′t− ρk1(β
k
1 )

′ sinαk
1t)

)
ζk

(
−

(αk
j )

′(hk)t

akj
+

(βk
j )

′(hk)

akj r
k
j

sin akj t
)
ψk
j +

( d

dηk

∣∣∣
ηk=hk

(αk
j ρ

k
j (ρ

k
j )

′t+ ρkj (β
k
j )

′ sinαk
j t)

)
ζk

. (4.33)

One then estimates the second term on the right side of (4.31) via integration by parts:

ϵ2
∫ 1

−1

Ak
ij(t)(Ek

j )
′(0, hk)(ψk

j , ζ
k) dt = ϵ2Ak

ij(t)e
k
j (t)

∣∣∣1
−1

− ϵ2
∫ 1

−1

(Ak
ij)

′(t)ekj (t) dt. (4.34)

Then

ϵ2Ak
ij(t)e

k
j (t)

∣∣∣1
−1

= ϵ2Ak
ij(t)

[ d

dηk

∣∣∣
ηk=hk

(αk
j ρ

k
j (ρ

k
j )

′t+ (−1)jρkj (β
k
j )

′ sinαk
j t)

]
ζk

∣∣∣1
−1

= O(ϵ2)|ζk| (4.35)∣∣∣ϵ2 ∫ 1

−1

(Ak
ij)

′(t)ekj (t) dt
∣∣∣ ≤ ϵ2∥(Ak

ij)
′∥L2∥ekj ∥L2

= O(ϵ2)(∥ψk
j ∥L2 + |ζk|) (4.36)

since (Ak
ij)

′(t) is bounded with respect to t. By (4.31), (4.34), (4.35), and (4.36) one concludes that∫ 1

−1

Ik
ij(0, 0, h)(Ek

j )
′(0, hk)(ψk

j , ζ
k) dt =

|Bk
i |

2π

(
log

1

ϵ

)
ϵ2

∫ 1

−1

(Ek
j )

′(0, hk)(ψk
j , ζ

k) dt+O(ϵ2)(∥ψk
j ∥L2 + |ζk|).

(4.37)
By (3.16) of Lemma 3.2,∫ 1

−1

(Ek
1 )

′(0, hk)(ψk
1 , ζ

k) dt+

∫ 1

−1

(Ek
0 )

′(0, hk)(ψk
0 , ζ

k) dt = 0∫ 1

−1

(Ek
2 )

′(0, hk)(ψk
2 , ζ

k) dt−
∫ 1

−1

(Ek
0 )

′(0, hk)(ψk
0 , ζ

k) dt = 0. (4.38)

Following (4.37) and (4.38) one arrives at

IV + V + V I = O(|γ|ϵ2)(
2∑

j=0

∥ψk
j ∥L2 + |ζk|). (4.39)

By (4.29) and (4.39), (4.28) becomes

(Qk)′(0, h)(ψ, ζ) = O(|γ|ϵ2)∥(ψ, ζ)∥Z . (4.40)

By (4.27) and (4.40) one deduces that there exists Č > 0 such that

∥S ′
l(0, h)(ψ, ζ)∥Z ≤ Č|γ|ϵ4∥(ψ, ζ)∥Z (4.41)

for all (ψ, ζ) ∈ X .

Lemmas 4.2 and 4.3 give a lower bound on the operator S ′(0, h).
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Lemma 4.4 There exist d > 0 and σ > 0 such that when |γ|ϵ3 < σ,

⟨S ′(0, h)(ψ, ζ), (ψ, ζ)⟩n ≥ dϵ∥(ψ, ζ)∥2Y

for all (ψ, ζ) ∈ X .

Proof. Let d be the positive number given in Lemma 4.2 and σ = d
Č

where Č comes from Lemma 4.3.

Then Lemma 4.3 shows that for |γ|ϵ3 < σ,

∥S ′
l(0, h)(ψ, ζ)∥Z ≤ Č|γ|ϵ4∥(ψ, ζ)∥Z ≤ Čσϵ∥(ψ, ζ)∥Z = dϵ∥(ψ, ζ)∥Z (4.42)

for all (ψ, ζ) ∈ X . By Lemma 4.2 and (4.42)

⟨S ′(0, h)(ψ, ζ), (ψ, ζ)⟩n = ⟨S ′
s(0, h)(ψ, ζ), (ψ, ζ)⟩n + ⟨S ′

l(0, h)(ψ, ζ), (ψ, ζ)⟩n
≥ 2dϵ∥(ψ, ζ)∥2Y − dϵ∥(ψ, ζ)∥2Z ≥ dϵ∥(ψ, ζ)∥2Y

for all (ψ, ζ) ∈ X .

A consequence of the positivity of S ′(0, h) is its invertibility.

Lemma 4.5 Let σ be the number given in Lemma 4.4.

1. There exists d̃ > 0 such that if |γ|ϵ3 < σ, ∥S ′(0, h)(ψ, ζ)∥Z ≥ d̃ϵ∥(ψ, ζ)∥X holds for all (ψ, ζ) ∈ X .

2. The linear map S ′(0, h) is one-to-one and onto from X to Z; moreover ∥(S ′(0, h))−1∥ ≤ 1
d̃ϵ

where

∥(S ′(0, h))−1∥ is the operator norm of (S ′(0, h))−1.

Proof. By Lemma 4.4 it is easy to see that if |γ|ϵ3 < σ, then for all (ψ, ζ) ∈ X

∥(ψ, ζ)∥Z ≤ 1

dϵ
∥S ′(0, h)(ψ, ζ)∥Z . (4.43)

The first part of Lemma 4.5 asserts that the Z-norm of (ψ, ζ) on the left side of (4.43) can be strengthened
to the stronger X -norm, if d is replaced by a possibly smaller d̃.

If part 1 is false, then there exist sequences γν , ϵν , and (ψν , ζν) ∈ X such that |γν |ϵ3ν < σ, ∥(ψν , ζν)∥X = 1
and with ϵ = ϵν and γ = γν in S ′,

∥ϵ−1
ν S ′(0, 0)(ψν , ζν)∥Z → 0, as ν → ∞. (4.44)

By (4.43),
∥(ψν , ζν)∥Z → 0. (4.45)

Moreover, due to the compactness of the embeddingH2(−1, 1) → C1[−1, 1] and ∥(ψν , ζν)∥X = 1, ∥ψk
ν.i∥C1 →

0 and in particular for all k and i,
(ψk

ν,i)
′(±1) → 0 as ν → ∞. (4.46)

Since S ′(0, h) = S ′
s(0, h) + S ′

l(0, h), and (4.42) and (4.45) imply that

∥ϵ−1
ν S ′

l(0, h)(ψν , ζν)∥Z → 0, (4.47)

one derives from (4.44) and (4.47) that

∥ϵ−1
ν S ′

s(0, h)(ψν , ζν)∥Z → 0. (4.48)
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By (4.17) write

ϵ−1
ν (Sk

s )
′(0, hk)(ψk

ν , ζ
k
ν ) = Π
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i ρ
k
i )
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By (4.45) one finds that ∥∥∥∥∥∥∥∥∥∥
Π
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L2((−1,1);R3)×R

→ 0 (4.50)

for all k. Then (4.48), (4.49) and (4.50) show that∥∥∥∥∥∥∥∥∥Π
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→ 0 (4.51)

for all k. By the definition of Π, (3.28),
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Moreover, (4.46) implies that
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3 (ψ
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3(ak
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k
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3 (ψ
k
ν,0)

′)∣∣1
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0

 →


0
0
0
0

 ∈ R4. (4.53)

Therefore, by (4.51), (4.52) and (4.53), for all k and i

∥(ψk
ν,i)

′′∥L2 → 0 as ν → ∞. (4.54)

From (4.45) and (4.54) we deduce that ∥(ψν , ζν)∥X → 0, a contradiction to our assumption at the beginning
that ∥(ψν , ζν)∥X = 1.

For part 2, it suffices to show that S ′(0, h) is onto. First note that by the standard theory of second order
linear differential equations, S ′(0, h) is an unbounded self-adjoint operator on Z with the domain X ⊂ Z.
Second if (ψ̃, ζ̃) ∈ Z is perpendicular to the range of S ′(0, h), i.e. ⟨S ′(0, h)(ψ, ζ), (ψ̃, ζ̃)⟩ = 0 for all (ψ, ζ) ∈ X ,
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then the self-adjointness of S ′(0, h) implies that (ψ̃, ζ̃) ∈ X and S ′(0, h)(ψ̃, ζ̃) = 0. By (4.43), (ψ̃, ζ̃) is zero.
Hence, the range of S ′(0, h) is dense in Z. Finally (4.43) implies that the range of S ′(0, h) is a closed subset
of Z. Therefore S ′(0, h) is onto.

Finally in this section we state two properties regarding S ′′, the second Fréchet derivative of S or the
third variation of J .

Lemma 4.6 There exists Ĉ > 0 such that for all (ϕ, η) ∈ D(S),

∥S ′′(ϕ, η)((ψ̃, ζ̃), (ψ, ζ))∥Z ≤ Ĉ(ϵ+ |γ|ϵ4)∥(ψ̃, ζ̃)∥X ∥(ψ, ζ)∥X

holds for all (ψ, ζ) and (ψ̃, ζ̃) ∈ X .

The proof, which is skipped, is straight forward estimation, similar to the proofs of [27, Lemma 3.2] and
[26, Lemma 6.1].

Lemma 4.7 There exists Ĉ > 0 such that for all (ϕ, η) ∈ D(S),

|⟨S ′′(ϕ, η)((ψ̃, ζ̃), (ψ, ζ)), (ψ, ζ)⟩n| ≤ Ĉ(ϵ+ |γ|ϵ4)∥(ψ̃, ζ̃)∥X ∥(ψ, ζ)∥2Y

holds for (ψ, ζ) and (ψ̃, ζ̃) ∈ X .

See [27, Lemma 4.1] or [26, Lemma 7.2] for the proofs of similar formulas.

5 Minimization in a restricted class

For each (ξ, θ, w) ∈ Ξδ × Sn × W that specifies the exact double bubbles Bk, k = 1, 2, ..., n, and the
transformation Tϵ,ξ,θ, we find a locally J minimizing perturbed double bubble in the restricted class of
perturbed double bubble assemblies. This restricted class is identified by (ξ, θ, w). One starts by solving

S(ϕ, η) = 0. (5.1)

Lemma 5.1 There exists σ > 0 such that (5.1) admits a solution (ϕ∗, η∗) ∈ D(S) ⊂ X satisfying ∥(ϕ∗, η∗)−
(0, h)∥X ≤ 2C̃|γ|ϵ3

d̃
, provided |γ|ϵ3 < σ.

Proof. For (ϕ, η) ∈ D(S) write

S(ϕ, η) = S(0, h) + S ′(0, h)((ϕ, η)− (0, h)) +R(ϕ, η) (5.2)

where R(ϕ, η) is a higher order term defined by (5.2). Define an operator T from D(S) ⊂ X into X by

T (ϕ, η) = (0, h)− (S ′(0, h))−1(S(0, h) +R(ϕ, η)), (5.3)

and re-write the equation S(ϕ, η) = 0 as a fixed point problem T (ϕ, η) = (ϕ, η).
Let c ∈ (0, c̄), where c̄ is given in (3.36), and define a closed ball W = {(ϕ, η) ∈ X : ∥(ϕ, η)− (0, h)∥X ≤

c} ⊂ D(S). For (ϕ, η) ∈ W,

∥R(ϕ, η)∥Z ≤ 1

2
sup

τ∈(0,1)

∥S ′′((1−τ)(0, h)+τ(ϕ, η))((ϕ, η−h), (ϕ, η−h))∥Z ≤ Ĉ(ϵ+ |γ|ϵ4)
2

∥(ϕ, η−h)∥2X (5.4)

by Lemma 4.6. Then by Lemmas 3.3 and 4.5

∥T (ϕ, η)− (0, h)∥X ≤ ∥(S ′(0, h))−1∥(∥S(0, h)∥Z + ∥R(ϕ, η)∥Z)

≤ 1

ϵd̃

(
C̃|γ|ϵ4 + Ĉ(ϵ+ |γ|ϵ4)

2
c2
)

≤ C̃σ

d̃
+
Ĉ + Ĉσ

2d̃
c2. (5.5)
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Let (ϕ̃, η̃) ∈ W. Consider

∥T (ϕ, η)− T (ϕ̃, η̃)∥X ≤ ∥(S ′(0, h))−1∥ ∥R(ϕ, η)−R(ϕ̃, η̃)∥Z

≤ 1

ϵd̃
∥S(ϕ, η)− S(ϕ̃, η̃)− S ′(0, h)((ϕ, η)− (ϕ̃, η̃))∥Z

≤ 1

ϵd̃
∥S(ϕ, η)− S(ϕ̃, η̃)− S ′(ϕ̃, η̃)((ϕ, η)− (ϕ̃, η̃))∥Z

+
1

ϵd̃
∥(S ′(ϕ̃, η̃)− S ′(0, h))((ϕ, η)− (ϕ̃, η̃))∥Z

≤ 1

2ϵd̃
sup

τ∈(0,1)

∥S ′′((1− τ)(ϕ̃, η̃) + τ(ϕ, η))∥ ∥(ϕ, η)− (ϕ̃, η̃)∥2X

+
1

ϵd̃
sup

τ∈(0,1)

∥S ′′((1− τ)(0, h) + τ(ϕ̃, η̃))∥ ∥(ϕ̃, η̃ − h)∥X ∥(ϕ, η)− (ϕ̃, η̃)∥X

≤ Ĉ(ϵ+ |γ|ϵ4)
ϵd̃

(
c+ c

)
∥(ϕ, η)− (ϕ̃, η̃)∥X

≤ 2Ĉ(1 + σ)c

d̃
∥(ϕ, η)− (ϕ̃, η̃)∥X . (5.6)

Take

c = min
{ d̃

6Ĉ
,
c̄

2

}
. (5.7)

Let σ be small enough so that Lemma 4.5 holds, and moreover

σ ≤ min
{
1,

d̃c

2C̃

}
. (5.8)

It follows from (5.5) and (5.6) that

∥T (ϕ, η)− (0, h)∥X ≤ c and ∥T (ϕ, η)− T (ϕ̃, η̃)∥X ≤ 2

3
∥(ϕ, η)− (ϕ̃, η̃)∥X (5.9)

for all (ϕ, η), (ϕ̃, η̃) ∈ W. The Contraction Mapping Principle says that T has a fixed point in W. This
fixed point is denoted by (ϕ∗, η∗), and it solves (5.1).

To prove the estimate of (ϕ∗, η∗), revisit the equation (ϕ, η) = T (ϕ, η), satisfied by (ϕ∗, η∗), and derive
from (5.3) and (5.4) that

∥(ϕ∗, η∗ − h)∥X ≤ ∥(S ′(0, h))−1∥(∥S(0, h)∥Z + ∥R(ϕ∗, η∗)∥Z)

≤ 1

ϵd̃

(
C̃|γ|ϵ4 + Ĉ(ϵ+ |γ|ϵ4)

2
∥(ϕ∗, η∗ − h)∥2X

)
.

Rewrite the above as (
1− Ĉ(1 + |γ|ϵ3)

2d̃
∥(ϕ∗, η∗ − h)∥X

)
∥(ϕ∗, η∗ − h)∥X ≤ C̃|γ|ϵ3

d̃
. (5.10)

In (5.10) estimate

Ĉ(1 + |γ|ϵ3)
2d̃

∥(ϕ∗, η∗ − h)∥X ≤ Ĉ(1 + |γ|ϵ3)
2d̃

c ≤ Ĉc(1 + σ)

2d̃
≤ 1

6
(5.11)

by (5.7) and (5.8). The estimate of (ϕ∗, η∗) follows from (5.10).

The first part of the next lemma shows that the assembly (ϕ∗, η∗) is locally energy minimizing, hence sta-
ble, within the restricted class of perturbed double bubble assemblies. The second part gives a measurement
on the non-degeneracy of (ϕ∗, η∗) within the restricted class.
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Lemma 5.2 1. There exist d̂ > 0 and σ > 0 such that if |γ|ϵ3 < σ, then the solution (ϕ∗, η∗) found in

Lemma 5.1 satisfies ⟨S ′(ϕ∗, η∗)(ψ, ζ), (ψ, ζ)⟩n ≥ d̂ϵ∥(ψ, ζ)∥2Y for all (ψ, ζ) ∈ X .

2. There exist ď > 0 and σ > 0 such that if |γ|ϵ3 < σ, the solution (ϕ∗, η∗) satisfies ∥S ′(ϕ∗, η∗)(ψ, ζ)∥Z ≥
ďϵ∥(ψ, ζ)∥X for all (ψ, ζ) ∈ X .

Proof. There exists τ̃ ∈ (0, 1) such that

⟨S ′(ϕ∗, η∗)(ψ, ζ), (ψ, ζ)⟩n
= ⟨S ′(0, h)(ψ, ζ), (ψ, ζ)⟩n + ⟨S ′′((1− τ̃)(0, h) + τ̃(ϕ∗, η∗))((ϕ∗, η∗ − h), (ψ, ζ)), (ψ, ζ)⟩n.

By Lemma 4.7,

|⟨S ′′((1− τ̃)(0, h) + τ̃(ϕ∗, η∗))((ϕ∗, η∗ − h), (ψ, ζ)), (ψ, ζ)⟩n| ≤ Ĉ(ϵ+ |γ|ϵ4)∥(ϕ∗, η∗ − h)∥X ∥(ψ, ζ)∥2Y . (5.12)

Consequently by Lemmas 4.4 and 5.1

⟨S ′(ϕ∗, η∗)(ψ, ζ), (ψ, ζ)⟩n ≥ dϵ∥(ψ, ζ)∥2Y − Ĉ(ϵ+ |γ|ϵ4)2C̃|γ|ϵ
3

d̃
∥(ψ, ζ)∥2Y

≥ ϵ
(
d− 2ĈC̃(σ + σ2)

d̃

)
∥(ψ, ζ)∥2Y ≥ dϵ

2
∥(ψ, ζ)∥2Y

if σ is sufficiently small. The first part follows if d̂ = d
2 .

By Lemmas 4.5, 4.6 and 5.1,

∥S ′(ϕ∗, η∗)(ψ, ζ)∥Z ≥ ∥S ′(0, h)(ψ, ζ)∥Z − sup
τ∈(0,1)

∥S ′′((1− τ)(0, h) + τ(ϕ∗, η∗))((ϕ∗, η∗ − h), (ψ, ζ))∥Z

≥ d̃ϵ∥(ψ, ζ)∥X − Ĉ(ϵ+ |γ|ϵ4)∥(ϕ∗, η∗ − h)∥X ∥(ψ, ζ)∥X

≥
(
d̃ϵ− Ĉ(ϵ+ |γ|ϵ4)2C̃|γ|ϵ

3

d̃

)
∥(ψ, ζ)∥Z

≥ ϵ
(
d̃− 2ĈC̃(σ + σ2)

d̃

)
∥(ψ, ζ)∥Z ≥ d̃ϵ

2
∥(ψ, ζ)∥Z

if σ is sufficiently small. Part 2 follows if ď = d̃
2 .

One interprets the equation S(ϕ∗, η∗) = 0 and proves the following. Let T (P ∗) be the assembly repre-

sented by (ϕ∗, η∗) and T (P ∗
i ) = ∪n

k=1T
k(P ∗,k

i ) for i = 1, 2.

Lemma 5.3 The perturbed double bubble assembly described by (ϕ∗, η∗) satisfies the equations

ϵKk
1(ϕ

∗,k
1 , η∗,k) + ϵ2(γ11IT (P∗

1 ) + γ12IT (P∗
2 )) = λk1 (5.13)

ϵKk
2(ϕ

∗,k
2 , η∗,k) + ϵ2(γ12IT (P∗

1 ) + γ22IT (P∗
2 )) = λk2 (5.14)

ϵKk
0(ϕ

∗,k
0 , η∗,k) + ϵ2(γ11 − γ12)IT (P∗

1 ) + ϵ2(γ12 − γ22)IT (P∗
2 ) = λk1 − λk2 (5.15)

on the boundaries of each perturbed double bubble T k(P ∗,k), k = 1, 2, ..., n. Moreover at the triple points,

2∑
i=0

Tk
i ·XS,k

∣∣∣1
−1

= 0, k = 1, 2, ..., n, (5.16)

where the Tk
i ’s are unit tangent vectors of the boundaries of the k-th perturbed double bubble and XS,k is

given in Lemma 3.1.
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Proof. By the virtue of the projection operator Π, the first three components of each Sk in (3.35) imply
that for each k there exist λk1 , λ

k
2 ∈ R such that the equations (5.13)-(5.15) hold.

From the fourth component of Sk in (3.35) one sees that

ϵK̃k(ϕ∗,k, η∗,k) + ϵ2Qk(ϕ∗, η∗) = 0.

By the expression of K̃k in (3.22) and the definition (3.24) of Qk, the last equation asserts

2∑
i=0

Tk
i ·XS,k

∣∣∣1
−1

+

∫ 1

−1

(
ϵKk

1(ϕ
∗,k
1 , η∗,k) + ϵ2(γ11IT (P∗

1 ) + γ12IT (P∗
2 ))

)
Ek
1 (ϕ

∗,k
1 , η∗,k) dt

+

∫ 1

−1

(
ϵKk

2(ϕ
∗,k
2 , η∗,k) + ϵ2(γ12IT (P∗

2 ) + γ22IT (P∗
2 ))

)
Ek
2 (ϕ

∗,k
2 , η∗,k) dt

+

∫ 1

−1

(
ϵKk

0(ϕ
∗,k
0 , η∗,k) + ϵ2(γ11 − γ12)IT (P∗

1 ) + ϵ2(γ12 − γ22)IT (P∗
2 ))

)
Ek
0 (ϕ

∗,k
0 , η∗,k) dt = 0.

The equations (5.13)-(5.15) reduce the last equation to

2∑
i=0

Tk
i ·XS,k

∣∣∣1
−1

+

∫ 1

−1

λk1Ek
1 (ϕ

∗,k
1 , η∗,k) dt+

∫ 1

−1

λk2Ek
2 (ϕ

∗,k
2 , η∗,k) dt+

∫ 1

−1

(λk1 − λk2)Ek
0 (ϕ

∗,k
0 , η∗,k) dt = 0.

Formula (3.16) of Lemma 3.2 further simplifies the above to

2∑
i=0

Tk
i ·XS,k

∣∣∣1
−1

= 0

completing the proof.

Lemma 5.3 does not assert that the perturbed double bubble assembly T (P ∗) is a critical point of J .
There are two reasons. First the constants λki in (5.13)-(5.15) depend on k, but the constants λi in (1.2)-(1.4)
are independent of k. Therefore (5.13)-(5.15) do not imply (1.2)-(1.4). Second the equation (5.16) does not
imply (1.5).

The next section will resolve these two issues.

6 Proof of Theorem 1.1

Recall that the locally energy minimizing perturbed double bubble assembly T (P ∗) found in the last section
was constructed under two conditions:

1. The perturbed double bubbles P ∗,k are mapped into D by the transformation Tϵ,ξ,θ with given ξ =
(ξ1, ..., ξn) ∈ Ξδ and θ = (θ1, ..., θn) ∈ Sn.

2. Each P ∗,k
i , for k = 1, 2, ..., n and i = 1, 2, has the prescribed area wk

i .

In this section one minimizes J (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)) with respect to (ξ, θ, w) ∈ Ξδ×Sn×W to obtain
a minimum (ξ∗, θ∗, w∗). With the particular ξ∗, θ∗ and w∗, (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) will yield the
final solution to (1.2)-(1.5).

The first lemma gives an estimate on the difference between the energy of (ϕ∗, η∗) and the energy of the
exact double bubble assembly T (B).

Lemma 6.1 If σ is small, then |J (ϕ∗, η∗) − J (0, h)| ≤ |γ|ϵ4
( C̃2

d̃
|γ|ϵ3 + 10ĈC̃3

3d̃3
(|γ|ϵ3)2 + 10ĈC̃3

3d̃3
(|γ|ϵ3)3

)
holds uniformly for all (ξ, θ, w) ∈ Ξδ × Sn ×W .
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Proof. Expanding J (ϕ∗, η∗) yields

J (ϕ∗, η∗) = J (0, h) + ⟨S(0, h), (ϕ∗, η∗ − h)⟩n +
1

2
⟨S ′(0, h)(ϕ∗, η∗ − h), (ϕ∗, η∗ − h)⟩n

+
1

6
⟨S ′′((1− τ̃)(0, h) + τ̃(ϕ∗, η∗))((ϕ∗, η∗ − h), (ϕ∗, η∗ − h)), (ϕ∗, η∗ − h)⟩n (6.1)

for some τ̃ ∈ (0, 1). Also expanding S(ϕ∗, η∗) gives

∥S(ϕ∗, η∗)− S(0, h)− S ′(0, h)(ϕ∗, η∗ − h)∥Z

≤ sup
τ∈(0,1)

1

2
∥S ′′((1− τ)(0, h) + τ(ϕ∗, η∗))((ϕ∗, η∗ − h), (ϕ∗, η∗ − h))∥Z . (6.2)

Since S(ϕ∗, η∗) = 0, (6.2) shows that

∥S(0, h) + S ′(0, h)(ϕ∗, η∗ − h)∥Z ≤ sup
τ∈(0,1)

1

2
∥S ′′((1− τ)(0, h) + τ(ϕ∗, η∗ − h))((ϕ∗, η∗), (ϕ∗, η∗ − h))∥Z ,

which implies that

|⟨S(0, h), (ϕ∗, η∗ − h)⟩n + ⟨S ′(0, h)(ϕ∗, η∗ − h), (ϕ∗, η∗ − h)⟩n|

≤
(1
2

sup
τ∈(0,1)

∥S ′′((1− τ)(0, h) + τ(ϕ∗, η∗))((ϕ∗, η∗ − h), (ϕ∗, η∗ − h))∥Z
)
∥(ϕ∗, η∗ − h)∥X . (6.3)

By (6.3), (6.1) yields that∣∣∣J (ϕ∗, η∗)− J (0, h)− 1

2
⟨S(0, h), (ϕ∗, η∗ − h)⟩n

∣∣∣
≤

( 5

12
sup

τ∈(0,1)

∥S ′′((1− τ)(0, h) + τ(ϕ∗, η∗))((ϕ∗, η∗ − h), (ϕ∗, η∗ − h))∥Z
)
∥(ϕ∗, η∗ − h)∥X . (6.4)

Lemmas 3.3, 4.6 and 5.1 show that

|J (ϕ∗, η∗)− J (0, h)|

≤ 1

2
|⟨S(0, h), (ϕ∗, η∗ − h)⟩n|+( 5

12
sup

τ∈(0,1)

∥S ′′((1− τ)(0, h) + τ(ϕ∗, η∗))((ϕ∗, η∗ − h), (ϕ∗, η∗ − h))∥Z
)
∥(ϕ∗, η∗ − h)∥X

≤ 1

2
(C̃|γ|ϵ4)2C̃|γ|ϵ

3

d̃
+

5

12
Ĉ(ϵ+ |γ|ϵ4)

(2C̃|γ|ϵ3
d̃

)3

= |γ|ϵ4
( C̃2

d̃
|γ|ϵ3 + 10ĈC̃3

3d̃3
(|γ|ϵ3)2 + 10ĈC̃3

3d̃3
(|γ|ϵ3)3

)
(6.5)

which proves the lemma.

The solution (ϕ∗, η∗) to (5.1) found in Lemma 5.1 depends on ξ, θ and w. To emphasize this dependence,
write ϕ∗ = ϕ∗(·, ξ, θ, w) and η∗ = η∗(ξ, θ, w). The exact double bubble T (B) whose internal representation
is (0, h) also depends on ξ, θ and w. Now let ξ vary in Ξδ, θ vary in Sn, w vary in W , and set

J(ξ, θ, w) = J (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)). (6.6)

In (6.6) J is treated as functions of (ξ, θ, w) ∈ Ξδ × Sn ×W . Since Ξδ × Sn ×W is compact, J attains at
least one minimum. The next lemma shows that such a minimum must be in the interior of the set.
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Lemma 6.2 Let (ξ∗, θ∗, w∗) ∈ Ξδ × Sn ×W be a minimum of J . When δ and σ are sufficiently small and
σ̃ is sufficiently large, (ξ∗, θ∗, w∗) must be in Ξδ × Sn ×W , the interior of Ξδ × Sn ×W .

Proof. Suppose
(ξ∗, θ∗, w∗) → (ξ◦, θ◦, w◦) (6.7)

as ϵ→ 0 and |γ|ϵ3 → 0, possibly along a subsequence.
First show that w◦ = w̃ where

w̃ =
((m

n
,
1−m

n

)
, ...,

(m
n
,
1−m

n

))
. (6.8)

Let
ϵ

λ(γ)ϵ4 log 1
ϵ

→ ∆ and
γ

λ(γ)
→ Γ as ϵ→ 0, possibly along a subsequence. (6.9)

By condition 2 of Theorem 1.1

0 ≤ ∆ ≤ 1

σ̃
(6.10)

and by condition 3

1 ≤ λ(Γ) ≤ λ(Γ) ≤ 1

ι
(6.11)

where λ(Γ) and λ(Γ) are the two eigenvalues of Γ. Then by Lemmas 2.1 and 6.1, as ϵ→ 0,

J(ξ, θ, w)

λ(γ)ϵ4 log 1
ϵ

→ 2∆
n∑

k=1

2∑
i=0

aki r
k
i +

n∑
k=1

2∑
i,j=1

Γijw
k
i w

k
j

4π
(6.12)

uniformly for (ξ, θ, w) ∈ Ξδ × Sn ×W . The right side of (6.12) is a function of w, since aki and rki depend
on wk

1 and wk
2 only. If σ̃ is sufficiently large, then ∆ is sufficiently small and by Appendix C the right side

of (6.12) is minimized at w = w̃. If w◦ were not w̃, then J(ξ∗, θ∗, w∗) > J(ξ∗, θ∗, w̃) when ϵ is sufficiently
small, a contradiction to the assumption that (ξ∗, θ∗, w∗) is a minimum of J .

Next show that
F (ξ◦) = min

ξ∈Ξ
F (ξ). (6.13)

Let

H(ξ, θ) =
1

λ(γ)ϵ4

{
J(ξ, θ, w∗)−

[
ϵ

n∑
k=1

3∑
i=0

2a∗,ki r∗,ki +
(
log

1

ϵ

)
ϵ4

n∑
k=1

2∑
i,j=1

γijw
∗,k
i w∗,k

j

4π

+ϵ4
n∑

k=1

2∑
i,j=1

γij
2

∫
B∗,k

i

∫
B∗,k

j

1

2π
log

1

|x̂− ŷ|
dx̂dŷ

]}
. (6.14)

In (6.14) B∗,k is the exact double bubble determined by w∗,k
1 and w∗,k

2 . By Lemmas 2.1 and 6.1, and the
fact that w∗ → w̃, one obtains that, as ϵ→ 0 and |γ|ϵ3 → 0,

H(ξ, θ) → 1

2

(
Γ11

(m
n

)2

+ 2Γ12

(m
n

)(1−m

n

)
+ Γ22

(1−m

n

)2)
F (ξ) (6.15)

uniformly for (ξ, θ) ∈ Ξδ × Sn. If ξ◦ were not a minimum of F , then let ξ̃ be a minimum of F . By (2.14) ξ̃

must be in Ξδ. One finds that H(ξ∗, θ∗) > H(ξ̃, θ∗) when ϵ and |γ|ϵ3 are sufficiently small, a contradiction
to the fact that (ξ∗, θ∗, w∗) is a minimum of J .

Since w̃ is in W and any minimum of F is attained in Ξδ by (2.14), one sees that when ϵ and |γ|ϵ3 are
sufficiently small (ξ∗, θ∗, w∗) is in Ξδ × Sn ×W .
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The proof of Lemma 6.2 is the first instance that requires σ̃ to be large. It is the second time, with (2.17)
being the first, when δ is assumed to be small. It is also in this proof that the condition 3 of Theorem 1.1 is
first used. From this moment on, δ, σ and σ̃ become dependent on ι.

The dependence of (ϕ∗, η∗) = (ϕ∗(t, ξ, θ, w), η∗(ξ, θ, w)) on ξki , and θ
k is investigated in the next lemma.

Lemma 6.3 When σ is sufficiently small, ∥∂(ϕ∗,η∗)

∂ξki
∥X = O(|γ|ϵ3) where k = 1, 2, ..., n and i = 1, 2, and

∥∂(ϕ∗,η∗)
∂θk ∥X = O(|γ|ϵ4) uniformly with respect to all (ξ, θ, w) ∈ Ξδ × Sn ×W .

Proof. The equation (5.1) is now written as

S(ϕ, η, ξ, θ) = 0, (6.16)

with the operator S acting as
S : (ϕ, η)× (ξ, θ) → S(ϕ, η, ξ, θ) (6.17)

from D(S)×Dδ ×Sn to Z. Estimate DS(ϕ,α,ξ,θ)

Dξki
and DS(ϕ,α,ξ,θ)

Dθk , the Fréchet derivatives of S with respect to

ξki and θk respectively. Let T (P ) be the perturbed double bubble assembly represented by (ϕ, η). Suppose
that the boundaries of P l are r̂lj(t) and the boundaries of T l(P l) are rlj . Hence rlj = T l(r̂lj). Note that P l

and r̂lj are independent of ξ and θ. The operator S acts on ξ and θ via the transformation T , and only the
parts involving IT (Pp) in S depend on ξ and θ as follows:

Il
pj(ϕp, ϕ0, η) = IT (Pp)(r

l
j(t)) =

∫
T (Pp)

G(rlj(t), y) dy

=

∫
T l(P l

p)

1

2π
log

1

|rlj(t)− y|
dy +

∫
T l(P l

p)

R(rlj(t), y) dy +
∑
q ̸=l

∫
T q(P q

p )

G(rqj , y) dy

=

∫
P l

p

ϵ2

2π
log

1

ϵ|r̂lj(t)− ŷ|
dŷ + ϵ2

∫
P l

p

R(ϵeiθ
l

r̂lj(t) + ξl, ϵeiθ
l

ŷ + ξl) dŷ

+
∑
q ̸=l

ϵ2
∫
P q

p

G(ϵeiθ
l

r̂lj(t) + ξl, ϵeiθ
q

ŷ + ξq) dŷ.

Then clearly
∂IT (Pp)

∂ξki
= O(ϵ2) and

∂IT (Pp)

∂θk
= O(ϵ3) (6.18)

hold uniformly with respect to t, ξ, θ, and w. Consequently∥∥∥DS(ϕ, η, ξ, θ)
Dξki

∥∥∥ = O(|γ|ϵ4) and
∥∥∥DS(ϕ, η, ξ, θ)

Dθk

∥∥∥ = O(|γ|ϵ5). (6.19)

Here the Fréchet derivatives are operators from R to Z and the above are estimates on the norms of these
operators. On the other hand Lemma 5.2 part 2 shows that at (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)), the solution found
in Lemma 5.1, ∥∥∥(DS(ϕ∗, η∗, ξ, θ)

D(ϕ, η)

)−1∥∥∥ ≤ 1

ďϵ
(6.20)

if σ is small. Note that DS(ϕ∗,η∗,ξ,θ)
D(ϕ,η) here is the same as S ′(ϕ∗, η∗) in Lemma 5.2. The implicit function

theorem asserts that when σ is small enough,∥∥∥D(ϕ∗, η∗)

Dξki

∥∥∥ = O(|γ|ϵ3) and
∥∥∥D(ϕ∗, η∗)

Dθk

∥∥∥ = O(|γ|ϵ4). (6.21)
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Since ∥∥∥D(ϕ∗, η∗)

Dξki

∥∥∥ =
∥∥∥∂(ϕ∗, η∗)

∂ξki

∥∥∥
X

and
∥∥∥D(ϕ∗, η∗)

Dθk

∥∥∥ =
∥∥∥∂(ϕ∗, η∗)

∂θk

∥∥∥
X

(6.22)

the lemma follows.

Finally we complete the proof of the main theorem.

Proof of Theorem 1.1. In Section 5 it is proved that there is an assembly (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)) for
each (ξ, θ, w) ∈ Ξδ × Sn ×W which satisfies the equations (5.13)-(5.15). Lemma 6.2 shows that J(ξ, θ, w) =
J (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)) is minimized at (ξ∗, θ∗, w∗) ∈ Ξδ × Sn ×W .

The proof of Theorem 1.1 is divided into two steps. In the first step one shows that the assembly
(ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) satisfies the triple junction condition (1.5), and in the second step one shows
that at (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) the constants λki in equations (5.13)-(5.15) are independent of k.

In the first step of the proof w is taken to be w∗. The dependence on w∗ is not explicitly stated in this step.
By choosing (ξ, θ) ∈ Ξδ×Sn in different ways, one constructs various deformations of (ϕ∗(·, ξ∗, θ∗), η∗(ξ∗, θ∗))
to discover properties of (ϕ∗(·, ξ∗, θ∗), η∗(ξ∗, θ∗)). These deformations no longer keep assemblies in the
restricted class.

First fix k and take (ξl1, ξ
l
2, θ

l) = (ξ∗,l1 , ξ∗,l2 , θ∗,l)+ε(δlk, 0, 0) for each l, where δlk = 1 if l = k and δlk = 0 if
l ̸= k. The deformation (ϕ∗(·, ξ, θ), η∗(ξ, θ)) with (ξ, θ) chosen this way represent approximately a horizontal
translation of the k-th perturbed double bubble in the assembly (ϕ∗(·, ξ∗, θ∗), η∗(ξ∗, θ∗)). The infinitesimal
element of this deformation is

XH,k,l
i (t) =

∂r∗,li (t, ξ, θ)

∂ξk1

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

for l = 1, 2, ..., n, i = 1, 2, 0.

Here r∗,li (t, ξ, θ), with i = 1, 2, 0, form the boundaries of the l-th perturbed double bubble in the assembly
(ϕ∗(·, ξ, θ), η∗(ξ, θ)). Since

r∗,li (t, ξ, θ) = ϵeiθ
l

(u∗,li eiα
l
i(η

∗,l)t + βl
i(η

∗,l)) + ξl

and 2ϕ∗,li = αl
i(η

∗,l)(u∗,li )2 − αl
i(η

∗,l)(ρ∗i (η
∗,l))2, Lemma 6.3 implies that

XH,k,l
i (t) =

∂r∗,li (t, ξ, θ)

∂ξk1

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

=

{
1 +O(|γ|ϵ4) if l = k
O(|γ|ϵ4) if l ̸= k

(6.23)

uniformly with respect to t.
Second for every fixed k take (ξl1, ξ

l
2, θ

l) = (ξ∗,l1 , ξ∗,l2 , θ∗,l) + ε(0, δlk, 0) for each l. This is nearly a vertical
translation of the k-th perturbed double bubble and the infinitesimal element of this deformation is

XV,k,l
i (t) =

∂r∗,li (t, ξ, θ)

∂ξk2

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

=

{
i +O(|γ|ϵ4) if l = k
O(|γ|ϵ4) if l ̸= k

. (6.24)

Third for every k take (ξl1, ξ
l
2, θ

l) = (ξ∗,l1 , ξ∗,l2 , θ∗,l) + ε(0, 0, δlk) for each l. Then it is almost a rotational
deformation of the k-th perturbed double bubble and the infinitesimal element is

XR,k,l
i (t) =

∂r∗,li (t, ξ, θ)

∂θk

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

=

{
i(r∗,ki (t, ξ∗, θ∗)− ξk) +O(|γ|ϵ5) if l = k
O(|γ|ϵ5) if l ̸= k

. (6.25)

At the triple points they are

XR,k,l
i (±1) =

{
∓ϵeiθk

η∗,k(ξ∗, θ∗) +O(|γ|ϵ5) if l = k
O(|γ|ϵ5) if l ̸= k

. (6.26)

Here the estimates O(|γ|ϵ5) hold uniformly with respect to t.
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By Lemma 6.3, since (ξ∗, θ∗) is an interior minimum of J (with w = w∗),

∂J(ξ, θ)

∂ξk1

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

=
∂J(ξ, θ)

∂ξk2

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

=
∂J(ξ, θ)

∂θk

∣∣∣
(ξ,θ)=ξ∗,θ∗)

= 0. (6.27)

On the other hand Lemma 2.4 shows that ∂J(ξ,θ)

∂ξk1

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

, ∂J(ξ,θ)

∂ξk2

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

, and ∂J(ξ,θ)
∂θk

∣∣∣
(ξ,θ)=(ξ∗,θ∗)

are

equal to

n∑
l=1

(
(

2∑
i=0

Tl
i) ·Xl

∣∣∣1
−1

)
−

n∑
l=1

∫
∂T l(P∗,l

1 )\∂T l(P∗,l
2 )

(κ1 + γ11IT (P∗
1 ) + γ12IT (P∗

2 ))N
l
1 ·Xl ds

−
n∑

l=1

∫
∂T l(P∗,l

2 )\∂T l(P∗,l
1 )

(κ2 + γ12IT (P∗
1 ) + γ22IT (P∗

2 ))N
l
2 ·Xl ds

−
n∑

l=1

∫
∂T l(P∗,l

1 )∩∂T l(P∗,l
2 )

(κ0 + (γ11 − γ12)IT (P∗
1 ) + (γ12 − γ22)IT (P∗

2 ))N
l
0 ·Xl ds (6.28)

with X being XH,k, XV,k, and XR,k respectively. In (6.28) Tl
i and Nl

i are the tangent and normal vectors

of the curves r∗,li (t, ξ∗, θ∗). But these curves satisfy the equations (5.13)-(5.15) of Lemma 5.3. Hence, (6.28)
is simplified to

n∑
l=1

(
(

2∑
i=0

Tl
i) ·Xl

∣∣∣1
−1

)
−

n∑
l=1

∫
∂T l(P∗,l

1 )\∂T l(P∗,l
2 )

ϵ−2λl1N
l
1 ·Xl ds

−
n∑

l=1

∫
∂T l(P∗,l

2 )\∂T l(P∗,l
1 )

ϵ−2λl2N
l
2 ·Xl ds−

n∑
l=1

∫
∂T l(P∗,l

1 )∩∂T l(P∗,l
2 )

ϵ−2(λl1 − λl2)N
l
0 ·Xl ds.

By (2.36) and (2.37) of Lemma 2.4, the above is equal to

n∑
l=1

(
(

2∑
i=0

Tl
i) ·Xl

∣∣∣1
−1

)
+

n∑
l=1

ϵ−2λl1
d|T l(P ∗,l

1 )|
dε

∣∣∣
ε=0

+
n∑

l=1

ϵ−2λl2
d|T l(P ∗,l

2 )|
dε

∣∣∣
ε=0

.

When w is fixed at w∗, |T l(P ∗,l
1 )| = w∗,l

1 and |T l(P ∗,l
2 )| = w∗,l

2 are constants independent of ε, so the second
and the third terms above vanish and one deduces from (6.27) and (6.28) that

n∑
l=1

(
(

2∑
i=0

Tl
i) ·Xl

∣∣∣1
−1

)
= 0 (6.29)

for X equal to XH,k, XV,k, or XR,k.
The equations (6.29) are linear homogeneous equations for variables

∑2
i=0 T

l
i(−1) and

∑2
i=0 T

l
i(1). Since

l = 1, 2, ..., n and each of
∑2

i=0 T
l
i(−1) and

∑2
i=0 T

l
i(1) is a vector in R2, there are altogether 4n variables in

(6.29). Since X can be taken to be XH,k, XV,k, or XR,k and k = 1, 2, ..., n, there are 3n equations in (6.29):

n∑
l=1

(
(

2∑
i=0

Tl
i) ·XH,k,l

∣∣∣1
−1

)
= 0,

n∑
l=1

(
(

2∑
i=0

Tl
i) ·XV,k,l

∣∣∣1
−1

)
= 0,

n∑
l=1

(
(

2∑
i=0

Tl
i) ·XR,k,l

∣∣∣1
−1

)
= 0, k = 1, 2, ..., n.

(6.30)
They are supplemented by n more equations

(
2∑

i=0

Tk
i ) ·XS,k

∣∣∣1
−1

= 0, k = 1, 2, ..., n, where XS,k(±1) = ±ϵeiθ
∗,k

i (6.31)
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obtained in (5.16) of Lemma 5.3. The equations (6.30) and (6.31) form a 4n by 4n system of linear homoge-
neous equations. The coefficients of the system are given in (6.23), (6.24), (6.26), and (6.31). One sees that,
when ϵ is sufficiently small, they form a non-singular coefficient matrix. Hence

(Tk
1 +Tk

2 +Tk
0)(1) = (Tk

1 +Tk
2 +Tk

0)(−1) = 0, k = 1, 2, ..., n. (6.32)

In (1.5) the νi’s are the unit inward tangential vectors at the triple points, so νi = −Ti at each upper triple
point corresponding to t = 1 and νi = Ti at each lower triple point corresponding to t = −1. Hence (6.32)
implies (1.5).

In the second step of the proof take ξ = ξ∗ and θ = θ∗ but vary w in a neighborhood of w∗. In this step
the dependence on ξ∗ and θ∗ is not stated explicitly. For each k = 1, 2, ..., n and i = 1, 2, let w be given by
wl

j = w∗,l
j + εδlkji for l = 1, 2, ..., n and j = 1, 2 where δlkji is 1 if l = k and j = i and is 0 otherwise. The

infinitesimal element of this deformation is denoted XA,k
i . Note that these deformations do not satisfy the

constraints
∑n

k=1 w
k
1 = m and

∑n
k=1 w

k
2 = 1 − m. However, since J(w) is minimized at w∗ under these

constraints, there exist Λ1, Λ2 ∈ R such that

∂J(w)

∂wk
i

∣∣∣
w=w∗

= Λi, k = 1, 2, .., n, i = 1, 2. (6.33)

On the other hand (2.34)-(2.35) of Lemma 2.4, (6.32), (5.13)-(5.15) of Lemma 5.3, and (2.36)-(2.37) of
Lemma 2.4 in turn imply that

∂J(w)

∂wk
i

∣∣∣
w=w∗

=

n∑
l=1

(
(

2∑
j=0

Tl
j) ·X

A,k,l
i,j

∣∣∣1
−1

)
+

n∑
l=1

(
−
∫
∂T l(P∗,l

1 )\∂T l(P∗,l
2 )

(κ1 + γ11IT (P∗
1 ) + γ12IT (P∗

2 ))N
l
1 ·X

A,k,l
i,1 ds

−
∫
∂T l(P∗,l

2 )\∂T l(P∗,l
1 )

(κ2 + γ12IT (P∗
1 ) + γ22IT (P∗

2 ))N
l
2 ·X

A,k,l
i,2 ds

−
∫
∂T l(P∗,l

1 )∩∂T l(P∗,l
2 )

(κ0 + (γ11 − γ12)IT (P∗
1 ) + (γ12 − γ22)IT (P∗

2 ))N
l
0 ·X

A,k,l
i,0 ds

)
=

n∑
l=1

ϵ−2λl1

(
−
∫
∂T l(P∗,l

1 )\∂T l(P∗,l
2 )

Nl
1 ·X

A,k,l
i,1 ds−

∫
∂T l(P∗,l

1 )∩∂T l(P∗,l
2 )

Nl
0 ·X

A,k,l
i,0 ds

)
+

n∑
l=1

ϵ−2λl2

(
−
∫
∂T l(P∗,l

2 )\∂T l(P∗,l
1 )

Nl
2 ·X

A,k,l
i,2 ds+

∫
∂T l(P∗,l

1 )∩∂T l(P∗,l
2 )

Nl
0 ·X

A,k,l
i,0 ds

)
=

n∑
l=1

ϵ−2λl1
∂wl

1

∂wk
i

+
n∑

l=1

ϵ−2λl2
∂wl

2

∂wk
i

= ϵ−2λki . (6.34)

Comparing (6.33) and (6.34) one derives ϵ−2λki = Λi for all k. This shows that when (ξ, θ, w) = (ξ∗, θ∗, w∗),
the λki ’s in (5.13)-(5.15) of Lemma 5.3 are independent of k. This establishes (1.2)-(1.4) and completes the
second step.

According to Lemma 5.1 the solution (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) is found in the space X , so the

functions ϕ∗,ki (·, ξ∗, θ∗, w∗) are in H2(−1, 1). The standard boot-strapping argument applied to the second

order integro-differential equations (1.2)-(1.4) shows that the ϕ∗,ki (·, ξ∗, θ∗, w∗)’s are all C∞. Hence the
perturbed bubbles in the solution assembly are enclosed by continuous curves that are C∞ except at the
triple points.

A systematic study of stability of solutions to (1.2)-(1.5) is beyond the scope of this paper. Our assertion
that the solution (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) is stable is interpreted by its local minimization property.
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Recall that the solution (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) is found in two steps. First for each (ξ, θ, w) ∈
Ξδ × Sn ×W , a fixed point (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)) is constructed in a restricted class of perturbed double
bubble assemblies. This fixed point is shown to be locally minimizing J in the restricted class in Lemma
5.2 part 1. In the second step J is minimized among the (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w))’s where (ξ, θ, w) ranges
over Ξδ × Sn ×W , and (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) emerges as a minimum. As a minimum of locally
minimizing assemblies from restricted classes, (ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) is locally energy minimizing
with respect to both restricted deformations and some non-restricted deformations; hence, we claim that
(ϕ∗(·, ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗)) is stable.

The deviation of our solution from an exact double bubble assembly is ∥(ϕ∗(ξ∗, θ∗, w∗), η∗(ξ∗, θ∗, w∗))−
(0, h)∥X and this quantity is of the order |γ|ϵ3 by Lemma 5.1. Therefore, the smaller |γ|ϵ3 is, the closer the
solution is to an exact double bubble assembly.

7 Discussion

While the locations ξ∗,k of the perturbed double bubbles in the solution are near the points that minimize
F , the directions θ∗,k of these double bubbles can not be ascertained from our proof. Note that in (6.15)
the limit of H(ξ, θ) is a constant multiple of F (ξ) which does not depend on θ. The directions θ∗,k cannot
be determined from this level of convergence. One would have to move to a higher level of convergence to
see dependence on θ, but that would require better estimate on the energy of (ϕ∗(·, ξ, θ, w), η∗(ξ, θ, w)) than
the one in Lemma 6.1. On the other hand not knowing the asymptotic limit of θ∗ does not hinder the proof
of Theorem 1.1, since θ varies in Sn, a compact manifold without boundary. The other two variables, ξ and
w, live in Ξδ and W , which are manifolds with boundary, and one must know the dependence of the energy
on ξ and w to show that ξ∗ and w∗ of the minimum are in the interior of these manifolds.

Ideally one likes to find solutions to (1.2)-(1.5) that locally minimizes J in a natural topology like the
one defined by the L1 norm as follows. For two pairs (Ω1,Ω2) and (Ω̃1, Ω̃2) of Lebesgue measurable subsets
of D satisfying the conditions

|Ω1| = |Ω̃1|, |Ω2| = |Ω̃2|, |Ω1 ∩ Ω2| = |Ω̃1 ∩ Ω̃2| = 0,

define a metric
dist((Ω1,Ω2), (Ω̃1, Ω̃2)) = ∥χΩ1 − χΩ̃1

∥L1(D) + ∥χΩ2 − χΩ̃2
∥L1(D).

The functional J is lower semi-continuous under this metric. One can prove the existence of a global
minimizer by the standard argument. It is also an ideal metric for a Γ-convergence theory to connect the
model here to a diffusive interface system; see [25]. However finding local minimizers of J under this metric
is challenging, since any neighborhood defined by the metric contains very irregular elements. We do not
know if the solution found in this paper is a local minimizer with respect to this metric.

The functional J has a simpler counterpart in a binary inhibitory system. Let ω ∈ (0, 1) and γ > 0. For
Ω ⊂ D with the fixed area: |Ω| = ω|D|, the binary free energy of Ω is

JB(Ω) = PD(Ω) +
γ

2

∫
D

|(−∆)−1/2(χΩ − ω)|2 dx. (7.1)

A critical point of this functional satisfies the equation

κ+ γIΩ = λ (7.2)

on ∂Ω. The equation (7.2) or the functional (7.1) may be derived from the Ohta-Kawasaki theory [20] for
diblock copolymers; see [19, 23]. The equation can also be derived from the Gierer-Meinhardt system [30].
This binary problem has been studied intensively in recent years. All solutions to (7.2) in one dimension
are known to be local minimizers of JB [23]. Many solutions in two and three dimensions have been found
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that match the morphological phases in diblock copolymers [21, 27, 26, 28, 29, 13, 14, 30, 33, 36]. Global
minimizers of JB are studied in [2, 34, 17, 5, 16, 15, 10] for various parameter ranges. Applications of the
second variation of JB and its connections to minimality and Gamma-convergence are found in [7, 1, 12].

A relevant result in [26] states that when ω and γ are in a proper range, (7.2) admits a solution that is
an assembly of perturbed discs. The discs have approximately the same size, and the centers of the discs
nearly minimize the same function F of (1.10).

Appendix A

We prove Lemma 4.1. Let F be the functional

F(y) =

∫ 1

−1

((y′(t))2 − q2y2(t)) dt (A.1)

for y ∈ H1
0 (−1, 1) and

∫ 1

−1
y(t) dt = Υ, where q ∈ (0, π).

Step 1: F is bounded below.

Let e1 = (π2 )
2, e2 = π2, and e3 = ( 3π2 )2 be the first three eigenvalues of the problem

−f ′′ = ef, f ∈ H1
0 (−1, 1),

and f1(t) = cos πt
2 and f2(t) = sinπt be eigenfunctions corresponding to λ1 and λ2. Note that∫ 1

−1

f21 (t) dt =

∫ 1

−1

f22 (t) dt = 1, and

∫ 1

−1

f1(t) dt =
4

π
,

∫ 1

−1

f2(t) dt = 0.

For every y ∈ H1
0 (−1, 1), decompose y = c1f1 + c2f2 + z where z ∈ H1

0 (−1, 1) is perpendicular to f1 and f2:∫ 1

−1
f1(t)z(t) dt =

∫ 1

−1
f2(t)z(t) dt = 0. By the variational characterization of the eigenvalues

F(y) = c21(e1 − q2) + c22(e2 − q2) + F(z) ≥ c21(e1 − q2) + c22(e2 − q2) + (e3 − q2)

∫ 1

−1

z2(t) dt. (A.2)

Note

Υ =

∫ 1

−1

y(t) dt =
4c1
π

+

∫ 1

−1

z(t) dt.

Then (
Υ− 4c1

π

)2

= (

∫ 1

−1

z(t) dt)2 ≤ 2

∫ 1

−1

z2(t) dt

and

F(y) ≥ c21(e1 − q2) + c22(e2 − q2) +
1

2
(e3 − q2)

(
Υ− 4c1

π

)2

=
(
e1 − q2 + (e3 − q2)

8

π2

)
c21 − (e3 − q2)

(4Υ
π

)
c1 + (e3 − q2)

Υ2

2
+ (e2 − q2)c22.

Since

e1 − π2 + (e3 − π2)
8

π2
= −3π2

4
+ 10 > 0, and e2 − q2 > π2 − π2 = 0,

F(y) is bounded below for all y ∈ H1
0 (−1, 1) with

∫ 1

−1
y(t) dt = Υ.
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Step 2: A minimizing sequence is bounded in H1
0 (−1, 1).

Let yν be a minimizing sequence. Decompose as above yν = cν1f1 + cν2f2 + zν . Then

F(yν) ≥
(
e1 − q2 + (e3 − q2)

8

π2

)
(cν1)

2 − (e3 − q2)
(4Υ
π

)
cν1 + (e3 − q2)

Υ2

2
+ (e2 − q2)(cν2)

2.

Since F(yν) is bounded below and above (for yν is minimizing), |cν1 | and |cν2 | are bounded with respect to

ν. By (A.2),
∫ 1

−1
z2ν(t) dt is also bounded. Consequently

∫ 1

−1
y2ν(t) dt is bounded. From (A.1) we deduce that∫ 1

−1
(y′ν(t))

2 dt is bounded. Hence yν is bounded in H1
0 (−1, 1).

Step 3: A minimizer v exists.

From the minimizing sequence yν , there is a subsequence again denoted by yν that converges weakly

in H1
0 (−1, 1) and strongly in L2(−1, 1) to a limit v ∈ H1

0 (−1, 1) with
∫ 1

−1
v(t) = Υ. By the weak lower

semi-continuity of the H1 norm,
F(v) ≤ lim inf

ν→∞
F(yν).

Hence v is a minimizer.

Step 4: F(v) =
Υ2q3

2(tan q − q)
.

As a minimizer, v satisfies the equation −v′′ − q2v = λ, v(±1) = 0, for some λ ∈ R. Solving the

equation, we find v(t) = C cos(qt)− λ
q2 , λ = Cq2 cos q. Hence v(t) = C(cos(qt)−cos q) and Υ =

∫ 1

−1
v(t) dt =

C
(

2 sin q
q − 2 cos q

)
. It follows that C = Υ

2 sin q
q −2 cos q

and

v(t) =
Υ(cos(qt)− cos q)

2 sin q
q − 2 cos q

.

If we multiply the equation for v by v and integrate, then

F(v) = λ

∫ 1

−1

v(t) dt = λΥ = CΥq2 cos q =
Υ2q3

2(tan q − q)
.

This proves Lemma 4.1.

Appendix B

We explain in more detail the first part of the restricted perturbation. The asymmetric case and the
symmetric cases are dealt with differently.

For the asymmetric case, one starts with a somewhat different way to perturb an exact double bubble and
later return to the perturbation setting described in Section 2. Since only one double bubble is considered
in this appendix, the superscript k will be dropped from notations like rki , a

k
i , etc. One simply writes ri, ai.

From an exact double bubble specified by the radii ri, the angles ai and the height h of the upper triple
point, move the triple points (0,±h) vertically by the same distance in the opposite directions to (0, η).
Connect the new triple points by three arcs with the radii ρi, the angles αi, and the centers (βi, 0) for
i = 1, 2, 0. However at this point we do not impose the condition ρ−1

1 − ρ−1
2 = ρ−1

0 . Hence the choice of ρi,
αi, and βi is not unique.
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Define
µi = ρ2i (αi − cosαi sinαi), i = 1, 2, 0 (B.1)

as before. Since ρi sinαi = η, one can re-write µi as

µi =
η2(αi − cosαi sinαi)

sin2 αi

. (B.2)

The µi’s must still satisfy the area constraints

µ1 + µ0 = w1, µ2 − µ0 = w2. (B.3)

If αi is treated as a function of µi and η, implicit differentiation shows that

∂αi

∂µi
=

sin3 αi

2η2(sinαi − αi cosαi)
(B.4)

∂αi

∂η
= − (αi − cosαi sinαi) sinαi

η(sinαi − αi cosαi)
. (B.5)

The total length of the three arcs is

P = 2

2∑
i=0

αiρi = 2

2∑
i=0

ηαi

sinαi
. (B.6)

Since αi depends on µi and η, and the µi’s are subject to the constraints (B.3), we take µ0 and η as the
independent variables and treat αi, and P all as functions of µ0 and η.

Compute ∂P
∂µ0

. Since

∂P

∂µ0
= 2η

2∑
i=0

∂

∂αi

( αi

sinαi

)∂αi

∂µi

∂µi

∂µ0
(B.7)

and
∂

∂αi

( αi

sinαi

)
=

sinαi − αi cosαi

sin2 αi

, (B.8)

one deduces by (B.4) and (B.3) that

∂P

∂µ0
=

2∑
i=0

(−1)i sinαi

η
. (B.9)

Note that the right side of (B.9) is −ρ−1
1 + ρ−1

2 + ρ−1
0 .

Next compute ∂P
∂η . Note that

∂P

∂η
= 2

2∑
i=0

( αi

sinαi
+ η

∂

∂αi

( αi

sinαi

)∂αi

∂η

)
.

By (B.5) and (B.8) one finds

∂P

∂η
= 2

2∑
i=0

cosαi. (B.10)

Note that at a critical point where ∂P
∂µ0

= ∂P
∂η = 0,

− sinα1 + sinα2 + sinα0 = 0 (B.11)

cosα1 + cosα2 + cosα0 = 0 (B.12)
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which imply that α1 = 2π
3 − α0 and α2 = 2π

3 + α0, i.e. an exact double bubble.

Now proceed to calculate the second derivatives of P . First

∂2P

∂µ2
0

=
∂

∂µ0

( 1∑
i=0

(−1)i sinαi

η

)
=

2∑
i=0

(−1)i cosαi

η

∂αi

∂µi

∂µi

∂µ0
=

2∑
i=0

cosαi

η

∂αi

∂µi
.

By (B.4)

∂2P

∂µ2
0

=
1

2η3

2∑
i=0

cosαi sin
3 αi

sinαi − αi cosαi
. (B.13)

Next
∂2P

∂µ0∂η
=

∂

∂η

( 2∑
i=0

(−1)i sinαi

η

)
=

2∑
i=0

(−1)i
(
− sinαi

η2
+

cosαi

η

∂αi

∂η

)
.

Using (B.5) one finds

∂2P

∂µ0∂η
= − 1

η2

2∑
i=0

(−1)i sin4 αi

sinαi − αi cosαi
. (B.14)

Finally

∂2P

∂η2
=

∂

∂η

(
2

2∑
i=0

cosαi

)
= −2

2∑
i=0

sinαi
∂αi

∂η
.

By (B.5) one derives

∂2P

∂η2
=

2

η

2∑
i=0

(αi − cosαi sinαi) sin
2 αi

sinαi − αi cosαi
. (B.15)

In summary the Hessian matrix of P is

D2P =


1

2η3

2∑
i=0

cosαi sin
3 αi

sinαi − αi cosαi
− 1

η2

2∑
i=0

(−1)i sin4 αi

sinαi − αi cosαi

− 1

η2

2∑
i=0

(−1)i sin4 αi

sinαi − αi cosαi

2

η

2∑
i=0

(αi − cosαi sinαi) sin
2 αi

sinαi − αi cosαi

 . (B.16)

This matrix is evaluated at the exact double bubble where αi = ai and η = h. The ai’s satisfy a1 = 2π
3 −a0

and a2 = 2π
3 + a0.

Lemma B.1 The matrix D2P at the exact double bubble is positive definite.

This Lemma is proved rigorously in [32, Appendxi B]. Here we offer some numerical evidence by plotting

2∑
i=0

cos ai sin
3 ai

sin ai − ai cos ai
(B.17)

and ( 2∑
i=0

cos ai sin
3 ai

sin ai − ai cos ai

)( 2∑
i=0

(ai − cos ai sin ai) sin
2 ai

sin ai − ai cos ai

)
−
( 2∑

i=0

(−1)i sin4 ai
sin ai − ai cos ai

)2

(B.18)

against a0 ∈ (0, π3 ) in Figure 10. Both (B.17) and (B.18) are positive, so the matrix D2P is positive definite
at the exact double bubble.
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Figure 10: Left plot: the quantity (B.17) against a0 ∈ (0, π3 ). Right plot: the quantity (B.18) against a0.

Lastly we connect the setting here with the setting in the rest of the paper regarding P versus µ0 and η.
After P is treated as a function of µ0 and η here, one sets up the equation

∂P (µ0, η)

∂µ0
= 0, (B.19)

and uses it to define µ0 as a function of η implicitly. This can be done near the exact double bubble because

∂2P

∂µ2
0

∣∣∣
µ0=r20(a0−cos a0 sin a0), η=h

̸= 0 (B.20)

by Lemma B.1. As seen after (B.9), equation (B.19) is just the condition

ρ−1
1 − ρ−1

2 = ρ−1
0 , (B.21)

precisely the one requirement, (2.46), in the setting of restricted perturbations in Section 2 that is not
implemented in this appendix before (B.19).

Once µ0 = µ0(η) becomes a dependent variable, P = P (µ0(η), η) is a function of η only, and

dP

dη
=

∂P

∂µ0

dµ0

dη
+
∂P

∂η
=

∂P

∂η

d2P

dη2
=

∂2P

∂µ0∂η

dµ0

dη
+
∂2P

∂η2
=

∂2P

∂µ0∂η

(
−

∂2P
∂µ0∂η

∂2P
∂µ2

0

)
+
∂2P

∂η2

=

∂2P
∂µ2

0

∂2P
∂η2 − ( ∂2P

∂µ0∂η
)2

∂2P
∂µ2

0

.

Consequently by (B.10),

dP

dη

∣∣∣
η=h

=
∂P

∂η

∣∣∣
µ0=r20(a0−cos a0 sin a0), η=h

= 2
2∑

i=0

cos ai = 0, (B.22)
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and by Lemma B.1,
d2P

dη2

∣∣∣
η=h

> 0. (B.23)

In the symmetric case, we do not use µi since they are constants during a restricted perturbation. One
starts directly with the equation for the area of the two bubbles

ρ2i (αi − cosαi sinαi) = wi, i = 1, 2, (B.24)

where ρ1 = ρ2, α1 = α2 and w1 = w2, and the equation

η = ρi sinαi. (B.25)

Implicit differentiation from (B.24) and (B.25) shows that

dαi

dη
= − (αi − cosαi sinαi) sinαi

η(sinαi − αi cosαi)
. (B.26)

In this case P is give by

P = 2

2∑
i=1

αiρi + 2η = 2

2∑
i=1

ηαi

sinαi
+ 2η (B.27)

It follows that
dP

dη
= 2 cosα1 + 2 cosα2 + 2. (B.28)

Note that at the exact double bubble where αi is
2π
3 ,

dP

dη

∣∣∣
η=h

= 0. (B.29)

Moreover
d2P

dη2
=

2

η

2∑
i=1

(αi − cosαi sinαi) sin
2 αi

sinαi − αi cosαi
. (B.30)

At the exact double bubble

d2P

dη2

∣∣∣
η=h

=
2

h

2∑
i=1

( 2π3 − cos 2π
3 sin 2π

3 ) sin2 2π
3

sin 2π
3 − 2π

3 cos 2π
3

=
3.9631...

h
> 0. (B.31)

Hence (B.23) remains true in the symmetric case. The value in (B.31) may also be obtained from the
asymmetric case by taking the a0 → 0 limit.

Appendix C

Let

f(w) = 2∆
n∑

k=1

2∑
i=0

aki r
k
i +

1

4π

n∑
k=1

2∑
i,j=1

Γijw
k
i w

k
j , w ∈W. (C.1)

Here aki and rki depend on wk
1 and wk

2 implicitly through the equations

(rk1 )
2(ak1 − cos ak1 sin a

k
1) + (rk0 )

2(ak0 − cos ak0 sin a
k
0) = wk

1 (C.2)

(rk2 )
2(ak2 − cos ak2 sin a

k
2)− (rk0 )

2(ak0 − cos ak0 sin a
k
0) = wk

2 (C.3)

rk1 sin a
k
1 = rk2 sin a

k
2 = rk0 sin a

k
0 (C.4)

(rk1 )
−1 − (rk2 )

−1 = (rk0 )
−1 (C.5)

cos ak1 + cos ak2 + cos ak0 = 0 (C.6)
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as explained in Appendix B. In this appendix we show that f is minimized at w̃, given in (6.8), if ∆ is
sufficiently small.

Because of the constraints
n∑

k=1

wk
1 = m,

n∑
k=1

wk
2 = 1−m, (C.7)

a critical point of f in W is a solution to the equations

∂f(w)

∂wk
1

= Λ1,
∂f(w)

∂wk
2

= Λ2, k = 1, 2, ..., n (C.8)

where Λ1, Λ2 ∈ R are Lagrange multipliers from the constraints (C.7). Since for each k, aki and rki (i = 1, 2, 0)
depend on wk

1 and wk
2 only, w̃ is clearly a critical point of f .

For w ∈W , define

f1(w) =
n∑

k=1

2∑
i,j=1

Γijw
k
i w

k
j .

Let xk = wk
1 and yk = wk

2 for k = 1, 2, ..., n− 1. Then

wn
1 = m− (x1 + x2 + ...+ xn−1) and wn

2 = 1−m− (y1 + y2 + ...+ yn−1).

Treating f1 as a function of (x1, ..., xn−1) and (y1, ..., yn−1), without constraint one differentiates f1 to find

∂f1
∂xk

= 2Γ11xk + 2Γ11

( n−1∑
l=1

xl −m
)
+ 2Γ12yk + 2Γ12

( n−1∑
l=1

yl − (1−m)
)

∂f1
∂yk

= 2Γ12xk + 2Γ12

( n−1∑
l=1

xl −m
)
+ 2Γ22yk + 2Γ22

( n−1∑
l=1

yl − (1−m)
)
.

Let x′k = xk − m
n and y′k = yk − 1−m

n . Then at a critical point of f1

4Γ11 2Γ11 ... 2Γ11 4Γ12 2Γ12 ... 2Γ12

2Γ11 4Γ11 ... 2Γ11 2Γ12 4Γ12 ... 2Γ12

... ... ... ... ... ... ... ...
2Γ11 2Γ11 ... 4Γ11 2Γ12 2Γ12 ... 4Γ12

4Γ12 2Γ12 ... 2Γ12 4Γ22 2Γ22 ... 2Γ22

2Γ12 4Γ12 ... 2Γ12 2Γ22 4Γ22 ... 2Γ22

... ... ... ... ... ... ... ...
2Γ12 2Γ12 ... 4Γ12 2Γ22 2Γ22 ... 4Γ22





x′1
x′2
...
x′n−1

y′1
y′2
...
y′n−1


=



0
0
...
0

0
0
...
0


. (C.9)

Let
x′′ = Ax′ and y′′ = Ay′ (C.10)

where

A =


4 2 ... 2
2 4 ... 2
... ... ... ...
2 2 ... 4

 (C.11)

is an n− 1 by n− 1 matrix. Then the last linear system can be written as{
Γ11x

′′ + Γ12y
′′ = 0

Γ12x
′′ + Γ22y

′′ = 0
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Since Γ is non-singular,
x′′ = y′′ = 0⃗. (C.12)

Next write the matrix A as
A = B + 2I (C.13)

where

B =


2 2 ... 2
2 2 ... 2
... ... ... ...
2 2 ... 2


and I is the n−1 by n−1 identity matrix. B is a rank one matrix with two eigenvalues: 0 and 2(n−1). The
eigenvalue 0 has multiplicity n−2 whose eigenvectors span the subspace that is perpendicular to (1, 1, ..., 1)T .
The eigenvalue 2(n − 1) is simple corresponding to the eigenvector (1, 1, ..., 1)T . By (C.13) we deduce that
the eigenvalues of A are 2 (of multiplicity n− 2) and 2n (of multiplicity 1).

Hence by (C.10) and (C.12), since A is non-singular,

x′ = y′ = 0⃗. (C.14)

This shows that the only critical point of f1 is

xk =
m

n
and yk =

1−m

n
, k = 1, 2, ..., n− 1. (C.15)

The second derivative of f1 with respect to x and y is the same matrix[
Γ11A Γ12A
Γ12A Γ22A

]
(C.16)

given in (C.9).
For any (u, v) ∈ R2(n−1), introduce

u′ =
√
Au and v′ =

√
Av. (C.17)

Here, since A is positive definite,
√
A is the positive squre root of A. Then consider the quadratic form

[uT , vT ]

[
Γ11A Γ12A
Γ12A Γ22A

] [
u
v

]
= Γ11u

TAu+ Γ12u
TAv + Γ12v

TAu+ Γ22v
TAv

= Γ11(u
′)Tu′ + Γ12(u

′)T v′ + Γ12(v
′)Tu′ + Γ22(v

′)T v′

=

n−1∑
k=1

[
Γ11(u

′
k)

2 + 2Γ12u
′
kv

′
k + Γ22(v

′
k)

2
]

≥ 0,

since Γ is positive definite. The equality holds only if u = v = 0⃗. This shows that D2f1 is everywhere
positive definite.

Hence f1 is minimized at w̃. Moreover when ∆ is small, f is minimized at w̃.
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[15] H. Knüpfer and C. B. Muratov. On an isoperimetric problem with a competing nonlocal term II: the
general case. Comm. Pure Appl. Math., to appear.

[16] M. Morini and P. Sternberg. Cascade of minimizers for a nonlocal isoperimetric problem in thin domains.
preprint.

[17] C. B. Muratov. Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two
dimensions. Comm. Math. Phys., 299(1):45–87, 2010.

[18] H. Nakazawa and T. Ohta. Microphase separation of ABC-type triblock copolymers. Macromolecules,
26(20):5503–5511, 1993.

[19] Y. Nishiura and I. Ohnishi. Some mathematical aspects of the microphase separation in diblock copoly-
mers. Physica D, 84(1-2):31–39, 1995.

[20] T. Ohta and K. Kawasaki. Equilibrium morphology of block copolymer melts. Macromolecules,
19(10):2621–2632, 1986.

[21] Y. Oshita. Singular limit problem for some elliptic systems. SIAM J. Math. Anal., 38(6):1886–1911,
2007.

[22] B. Reichardt. Proof of the double bubble conjecture in Rn. J. Geom. Anal., 18(1):172–191, 2008.

52



[23] X. Ren and J. Wei. On the multiplicity of solutions of two nonlocal variational problems. SIAM J.
Math. Anal., 31(4):909–924, 2000.

[24] X. Ren and J. Wei. Triblock copolymer theory: Free energy, disordered phase and weak segregation.
Physica D, 178(1-2):103–117, 2003.

[25] X. Ren and J. Wei. Triblock copolymer theory: Ordered ABC lamellar phase. J. Nonlinear Sci.,
13(2):175–208, 2003.

[26] X. Ren and J. Wei. Many droplet pattern in the cylindrical phase of diblock copolymer morphology.
Rev. Math. Phys., 19(8):879–921, 2007.

[27] X. Ren and J. Wei. Single droplet pattern in the cylindrical phase of diblock copolymer morphology. J.
Nonlinear Sci., 17(5):471–503, 2007.

[28] X. Ren and J. Wei. Spherical solutions to a nonlocal free boundary problem from diblock copolymer
morphology. SIAM J. Math. Anal., 39(5):1497–1535, 2008.

[29] X. Ren and J. Wei. Oval shaped droplet solutions in the saturation process of some pattern formation
problems. SIAM J. Appl. Math., 70(4):1120–1138, 2009.

[30] X. Ren and J. Wei. A toroidal tube solution to a problem involving mean curvature and Newtonian
potential. Interfaces Free Bound., 13(1):127–154, 2011.

[31] X. Ren and J. Wei. A double bubble in a ternary system with inhibitory long range interaction. Arch.
Rat. Mech. Anal., 208(1):201–253., 2013.

[32] X. Ren and J. Wei. Asymmetric and symmetric double bubbles in an inhibitory ternary system. preprint.

[33] X. Ren and J. Wei. Double tori solution to an equation of mean curvature and Newtonian potential.
Calc. Var. Partial Differential Equations, to appear.

[34] P. Sternberg and I. Topaloglu. A note on the global minimizers of the nonlocal isoperimetric problem
in two dimensions. Interfaces Free Bound., 13(1):155–19, 2011.

[35] J. Taylor. The structure of singularities in soap-bubble like and soap-film-like minimal surfaces. Ann.
Math., 103(3):489–539, 1976.

[36] I. Topaloglu. On a nonlocal isoperimetric problem on the two-sphere. Comm. Pure Appl. Anal.,
12(1):597–620, 2013.

53


