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Abstract

A ternary inhibitory system is a three component system characterized by two properties: growth
and inhibition. A deviation from homogeneity has a strong positive feedback on its further increase. In
the meantime a longer ranging confinement mechanism prevents unlimited spreading. Together they lead
to a locally self-enhancing and self-organizing process. The model considered here is a planar nonlocal
geometric problem derived from the triblock copolymer theory. An assembly of perturbed double bubbles
is mathematically constructed as a stable critical point of the free energy functional. Triple junction, a
phenomenon that the three components meet at a single point, is a key issue addressed in the construction.
Coarsening, an undesirable scenario of excessive micro-domain growth, is prevented by a lower bound
on the long range interaction term in the free energy. The proof involves several ideas: perturbation
of double bubbles in a restricted class; use of internal variables to remove nonlinear constraints, local
minimization in a restricted class formulated as a nonlinear problem on a Hilbert space; and reduction to
finite dimensional minimization. This existence theorem predicts a new morphological phase of a double
bubble assembly.

1 Introduction

The objective of this paper is to establish the existence of a double bubble assembly as a new morphological
phase for a ternary inhibitory system.

The term morphological phase comes from the block copolymer theory. An archetype of inhibitory
systems, a block copolymer is a soft material characterized by fluid-like disorder on the molecular scale and
a high degree of order at a longer length scale. A molecule in a block copolymer is a linear sub-chain of one
type monomers grafted covalently to other types of monomers. Because of the repulsion between the unlike
monomers, different type sub-chains tend to segregate. However the chemical bond between the sub-chains
inhibits macroscopic phase separation. Only a local micro-phase separation occurs, resulting in micro-
domains rich in different types of monomers. These micro-domains form patterns known as morphological
phases [4].

The ternary inhibitory system considered here was originally derived by the authors in [24] from Nakazawa
and Ohta’s density functional formulation for triblock copolymers [18]. Let D be a bounded and smooth
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Figure 1: A proposed double bubble phase in a ternary inhibitory system.

open subset of R%, and w; and ws be two positive numbers such that w; + ws < 1. For two measurable
subsets y and Qg of D satistying |Q1| = w1|D|, |Q22] = we|D|, and |21 NQ2| = 0, let Q3 = D\ (21 UQ). Here
|24], [Q2| and |21 N Q2| stands for the area (or the Lebesgue measure) of €y, Qo and Oy N Q3 respectively.
The free energy of the system is

7(91792)=;§:PD(91‘)+§: | (8200 =) (-8) 20, —w))do (1)

)=

The first term in (1.1) is responsible for growth. It is the total length of the interfaces separating the
three components 1, 2 and Q3. Three types of interfaces exist: 9Q1\0€, the interface separating Q; from
Q3; 005\001, the interface separating Qs from Q3; and 9Q; NON,, the interface separating €4 from Q5. One
can write the total size of the interfaces of all three types as %(PD (1) +Pp(Q2)+Pp(Q3)). Here Pp(Q;) is
the perimeter of Q; in D. For a set §2; with a piecewise C'* boundary, Pp(;) is simply the length of 9Q; N D.
For a general Lebesgue measurable subset the perimeter is defined in (2.22). In Pp (1) +Pp(Q2) +Pp(Qs3),
each of 9Q1\00, 0022\0Q1, and 9Q; N INy is counted twice. The half is put here to avoid double counting.
To make this term small, the €2;’s like to form large regions separated by curves as short as possible.

The second term in (1.1) provides an inhibition mechanism. The operator (—A)~!/2 is the positive
square root of the inverse of the —A operator; see (1.6); xgq, is the characteristic function of Q; (xq,(z) =1
if x € ; and 0 otherwise). The matrix ~;; is symmetric and positive definite for a triblock copolymer. For
the second term to be small, the functions xq, must have frequent fluctuation.

A critical point (Q21,€32) of J is a solution to the following equations:

k1 +711lo, + 112la, = A1 on 9Q1\09Qs (1.2)

ko +vi2lo, +722l0, = A2 on 0Q\0 (1.3)

ko + (11 —712)lo, + (712 —v22) o, = A — A2 on 9y NOQ, (1.4)
i+t = 0 at 8 NN, NI, (1.5)

Here we assume that Q7 and €23 do not touch the boundaries of D. Otherwise we need to add another
condition that the boundary of ; (or Q2) meets the boundary of D perpendicularly.

In (1.2)-(1.4) k1, k2, and ko are the curvatures of the curves 9Q;\0Q2, 9Q2\0Q;, and 92 N 9Ny,
respectively. These are signed curvatures defined with respect to a choice of normal vectors. For instance a
circle has positive curvature if the normal vector is inward pointing. On 94\ the normal vector points



Figure 2: Left plot: the ABC...ABC' lamellar morphological phase found in triblock copolymers. Right plot:
the ABAB...ABAC phase found in homopolymer /diblock copolymer blends.

inward into ;. On 9Q2\0€;, the normal vector points inward into Qs. On 9Q; N 985, the normal vector
points from s, towards €2y, i.e. inward with respect to 2; and outward with respect to 5.

Also in (1.2)-(1.4) Ig, and Iq, are two functions on D determined from €2; and €9 respectively. The
function Iq,, called an inhibitor, is the solution to Poisson’s equation

—Alg, = xq, —w; inD, 9,Ig, =0 on 9D, / Ig,(z)dz =0, (1.6)
D

where 0,1, stands for the outward normal derivative of I, on 0D. Note that the constraints |€;| = w;|D|
implies that the integral of the right side of the PDE in (1.6) is zero, so the PDE together with the boundary
condition is solvable. The solution is unique up to an additive constant. The last condition [, Iq,(z)dz = 0
fixes this constant and selects a particular solution. One also writes I, = (—A)~!(xq, —w;), as the outcome
of the operator (—A)~! on xq, — w;. The operator (—A)~/2 in (1.1) is the positive square root of (—A)~!.

The constants A; and Ay are Lagrange multipliers corresponding to the constraints |Q;| = wi|D| and
|Q2] = wo|D|. They are unknown and are to be found with ©; and Q.

In the last equation, (1.5), v1, v2, and vy are the inward pointing, unit tangent vectors of the curves
01\, 002\09, and 90y N I at triple points. The requirement that the three unit vectors sum to
zero is equivalent to the condition the three curves meet at 120 degree angles.

A morphological phase of the problem (1.1) must be a local minimizer of the functional 7, hence a
stable solution to (1.2)-(1.5). As a phase in an inhibitory system it should have an approximately periodic
pattern. Many patterns have been proposed by physicists as morphological phases based on experiments and
numerical simulations; see [4]. Mathematically only two patterns have been known to be local minimizers of
J, both of which are one dimensional.

The first was found by the authors in [25] and depicted in the left plot of Figure 2. It is a one dimensional
local minimizer of 7, consisting of alternating A, B, and C' micro-domains. The functional 7 is posed on
the unit interval with the periodic boundary condition. Cyclic patterns of 3k, k € N, micro-domains are all
local minimizers of 7. Here the matrix -y is positive definite.

Another one dimensional solution, again an energy local minimizer, was found by Choksi and Ren in [6].
It models a diblock copolymer/homopolymer blend. Depicted in the right plot of Figure 2, such a blend is
a mixture of a AB diblock copolymer with a homopolymer of monomer species C', where the species C is
thermodynamically incompatible with both the A and B monomer species. In the homopolymer a polymer
chain consists purely of the monomer species C'. Only the AB diblock copolymer has the inhibition property.
In this case v has one positive eigenvalue and one zero eigenvalue.

In this paper we predict a new morphological phase based on an existence theorem. As illustrated in
Figure 1, this new phase is an assembly of perturbed double bubbles.

The double bubble is a fascinating geometric structure. It arises as the optimal configuration of the two
component isoperimetric problem. Let m; and msy be two positive numbers. Find two disjoint sets £; and
E5 in R™ such that |E1| = mq, |E2] = ma, and the area of OE; U OF3 is minimum. The double bubble is
the unique solution to this isoperimetric problem by the works of Almgren [3], Taylor [35], Foisy et al [9],
Hutchings et al [11], and Reichardt [22]. In two dimensions the planar double bubble, Figures 4 and 5, is



enclosed by three circular arcs that meet at two triple junction points, or triple points. The angles between
the arcs at a triple point are all 120 degrees.

A perturbed double bubble assembly is a collection of many disjoint, perturbed double bubbles. A
perturbed double bubble deviates from an exact double bubble slightly, due to the impact of the second
term in J. All the perturbed double bubbles in the assembly have approximately the same size and shape.
In Figure 1 the union of the blue bubbles is taken by the first component 21, the union of the yellow bubbles
is occupied by the second component 25, and the rest of the domain is filled by Q3.

2

We introduce a fixed number m € (0,1) and a small € so that w; = €2m and wy = €2(1 — m). The area

constraints |1| = w1|D] and |Qs| = ws|D| now take the form
Q1] = me? and || = (1 —m)e>. (1.7)

Instead of w; and wq, € becomes one parameter of our problem. The fixed number m measures the relative

size of [1] vs || since }32} =T

The other parameter is the matrix 7. It must be positive definite and satisfy a uniform positivity

condition. Namely, there exists + > 0 so that t A7) < A7) where A(y) and \(y) are the two eigenvalues of

7 such that 0 < A(y) < A(y). The matrix v must also have a lower bound and an upper bound.
The main result in this paper is the following existence theorem.

Theorem 1.1 Let m € (0,1), n € N, and ¢ € (0,1]. There exist positive numbers 6, o, and o depending on
D, m, n, and v only, such that if the following three conditions hold

1. 0<e<d,

o — = o
L —— < A <A < =,
T (M) <A < 3

3. 1A(y) £ A7),

then there is an assembly of n perturbed double bubbles, satisfying the constraints (1.7), which is a solution
to the equations (1.2)-(1.5). Each perturbed double bubble is bounded by three smooth curves that meet at
two triple junction points.

This solution is stable in some sense. If n =1, the lower bound ﬁ < A7) is not needed.

The proof of Theorem 1.1 reveals several properties of the solution. One of them is that all the perturbed
double bubbles in the solution have almost the same size and shape.

Another property is that the locations of the double bubbles in the assembly are determined asymptot-
ically by a Green’s function. Let G be the Green’s function of the —A operator on D with the Neumann
boundary condition; namely G(z,y) as a function of x satisfies

—AG(Ly)=0(-—y) — in D; 90,G(-,y) =0 on 0D; /D G(z,y)dy =0 (1.8)

1
D]
for each y € D. One can write G as a sum of two terms:

1 1
G(z,y) = o log m + R(z,y). (1.9)

1

lz—yl
regular part of the Green’s function, a smooth function of (x,y) € D x D.

For n distinct points €%, k =1,2,...,n, in D let

1
The first term 5-log

is the fundamental solution of the Laplace operator; the second term R is the

F(§', ..M =Y R(E", &)+ Gek¢). (1.10)
k=1 k#l
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Figure 3: An illustration of the solution found in Theorem 1.1 in the case that D is the unit disc and n = 200.
The locations of the perturbed double bubbles are determined by minimizing F' given in (1.10).

It is known that R(x,z) — oo if z — dD. Consequently F(&1, ..., ™) — oo, if one of the £¥’s approaches 9D,
or if the distance of two points £¥ and ¢! approaches 0. This ensures that F' is minimized by n distinct points
in D. It is proved in Section 6 that if the perturbed double bubbles in the solution are located at points £*,
€92 .., 60" and (€51, ..., 697) — (€21 ..,6°™) as € — 0 and |y|e® — 0, possibly along a subsequence, then

Bt 602, ™) =min{F(¢', %, ...,€") : &,¢%,..,¢"eD, &£ ifk#1). (1.11)
Therefore the perturbed double bubbles are found near points that minimize the function F. Here |v| can
be any norm of the matrix 7. If one takes |y| to be the operator norm, then |y| = A(v).

If D is the unit disc, the Green’s function is known explicitly:

1 1 Llzf*  |yl? 1 3
G(z,y) = —1 Sy 1 R L B 2
(@y) =gl — ol ot Hloe ] ~ 5

(1.12)

where 7 denoted the complex conjugate of y € D C R? = C and % is the complex product of z and 7.
Consequently F' is also known explicitly.

Figure 3 shows a double bubble assembly with D being the unit disc and n = 200. The locations of
the perturbed double bubbles in this picture are determined by numerical minimization of F. Away from



the boundary of D, the double bubbles organize themselves in a hexagonal pattern. However the proof of
Theorem 1.1 does not tell what the directions of the perturbed double bubbles are, so the directions of the
double bubbles shown in Figure 3 do not reflect the directions of the double bubbles in a real solution.

The proof of Theorem 1.1 consists of several steps. In the first step, done in Section 2, one constructs
an assembly of exact double bubbles and compute its energy. Take n exact double bubbles B* whose two
bubbles are BY and BY for k = 1,2,...,n. The area of Bf is wzk Take n distinct points &€ in D and
n angles 8% € S, where S is the unit circle. Scale down each B* by a factor ¢, rotate by the angle #*
and place it in D centered at &*. This small double bubble in D is denoted T*(B*), and the collection
(TY(B'),T?(B?),...,T"(B")) is an assembly of exact double bubbles denoted by T(B). This T(B) depends
on &= (& ...,&M), 0= (0',...,0"), and w = {wF}. In Lemma 2.1 one finds the energy of T(B).

In the second step, perturb each B* in a special way to define a restricted class of perturbed double
bubble assemblies. There are actually two parts in the perturbation, explained in Section 2. First move the
two triple points of B¥ vertically in opposite directions by the same amount. Connect the new triple points
by three circular arcs. The two sets bounded by the new arcs still have the areas w# and w4 respectively and
the radii p¥ of the new arcs still satisfy the condition (p§)~1 — (p5) = (pk)~!. However the 120 degree angle
condition at triple points no longer holds for the new arcs. In the second part of the restricted perturbation,
the arcs are changed to more general curves, while the areas of the two enclosed sets remain to be w¥ and
the triple points are unchanged. This perturbed double bubble is denoted P*. It is scaled down by e and
mapped into D by the same T*. The collection T'(P) = (T'(P'),T?(P?),...,T"(P"™)) is an assembly of
perturbed double bubbles. All assemblies obtained this way form a class, the restricted class of perturbed
double bubbles, which is determined by &, 6, and w.

It turns out that each assembly in a restricted class is identified by an element of a Hilbert space ) defined
in Section 2. The element consists of 3n functions ¢* and n numbers n* for k = 1,2,....,n and i = 1,2,0.
Collectively they are denoted by (¢,n) where ¢ = (¢!, ¢2, ..., ¢"), ¢* = (¢¥, 95, ¢K), and n = (n*, 0%, ...,n").
Within the restricted class J becomes a functional on ). Sections 3, 4, and 5 culminate in Lemma 5.1,
which states that in each restricted class there is an element (¢*,n*) that locally minimizes J within the
restricted class. This third step is most technical, involving an error estimate of the exact double bubble
assembly T'(B), proving the positivity of the second variation of J at T'(B), and a fixed point argument. In
Lemma 5.3 it is shown that (¢*,n*) satisfies a weakened version of (1.2)-(1.4) where the constants A; and
A2 may vary from one perturbed double bubble to another perturbed double bubble in the assembly.

To fix this problem and also to have the 120 degree angle condition (1.5) satisfied, revisit the restricted
class of perturbed double bubble assemblies. Since this class is specified by (§, 0, w), the energy minimizing
element (¢*,n*) in this class should be denoted by (¢*(-, &, 0,w),n*(£,0,w)). In the fourth step one finds
the energy J(¢*(-,&€,0,w),n*(£,0,w)) of this element in Lemma 6.1. Treating this quantity as a function of
¢, 0, and w, one minimizes it with respect to (£,6,w) and finds a minimum (£*,0*, w*) in Lemma 6.2. If
one uses the restricted class of assemblies specified by this particular (£*, 0%, w*), then it is proved in Section
6 that the locally energy minimizing element (¢*(-,£*, 0%, w™*),n*(£*, 0%, w*)) solves (1.2)-(1.4) exactly and
also satisfies the 120 degree angle condition (1.5) at triple points.

The idea of using a restricted class of perturbed double bubbles first appeared in the authors’ work [31].
There it was shown that when m = %, J admits a local minimizer that shapes like a single, symmetric
double bubble. This method was later improved by the authors in [32], where the condition m = % is
relaxed to m € (0,1). The single double bubble solution constructed there is asymmetric if m # % As
only one double bubble is considered in those papers, the lower bound ﬁ < A(y) in Theorem 1.1 is not

needed. In Theorem 1.1 this lower bound is used to prevent coarsening. If coarsening occurs, some pieces of
a constituent component grows bigger while some other pieces of the same component shrink and disappear.
There must be at least two perturbed double bubbles in an assembly for coarsening to be possible. The
lower bound also forces the perturbed double bubbles in the solution to have approximately the same shape
and size.



Figure 4: An asymmetric exact double bubble with angles af, radii 7%, and centers (b¥,0). One of the two
triple points is (0, h*).

2 Exact double bubble assemblies and restricted perturbations

We start with n exact double bubbles, denoted by B!, ..., B®. Each double bubble B* is a pair of two
adjacent sets BY and BS. The area of BF is denoted by w?:

IBF| =wF, i=1,2, k=1,2,..,n. (2.1)

These two numbers, w¥ and w§, completely determine the double bubble B¥. The w¥’s stay in the set W
which is the closure of

m L _2m 1-—m
<wh < Y—, ——
n 2n

W = kY e R2n . =
{wh eren: 2

2(1 —m) - -
<whk < — vk, ;wlfzm, kz:;wg:l—m}. (2.2)

k

Initially w¥ are fixed. Later they will vary in W. Of course w¥ can vary only if n > 1. If n = 1, the case

studied in [31, 32], there is no need to introduce w¥.

The set BY is bounded by two circular arcs of radii 7¥ and r§. One arc, whose radius is r§, is also on the
boundary of BY. The rest of the boundary of B} is another circular arc whose radius is 5.

There are actually two cases to consider. The first is the asymmetric case, depicted in Figure 4, where
the area of BY is different from the area of BY. If the left bubble B¥ is smaller than the right bubble B,

ie. wh < wh, then

ri <k (2.3)
and the three radii satisfy the condition
(rf) = (r3) "t = (rp) " (2.4)
If wh > wk, then (2.4) changes to
()t = (r5) = —(rg) (2.5)

From now on when dealing with an asymmetric double bubble or a perturbation of an asymmetric double
bubble, we assume, without the loss of generality, that w¥ < w}. The other case, w¥ > wh can always be
handled in a similar way.

The two points where the three arcs meet are termed triple junction points, or triple points. At these
points the three arcs meet at 120 degree angles. Denote by a¥, a5, and af the angles associated with the
three arcs, Figure 4. The 120 degree angle condition and (2.3) imply that, if w} < w5,

k2w b g 2m

ay = & — dg, a2—§+a§, aéE(O,g). (2.6)



Figure 5: A symmetric exact double bubble where r¥ = r§ and a} = af = 27,

3
The conditions (2.1) can be expressed as
(r¥)%(ak — cosa¥ sina¥) + (rf)*(af — cosal sinal) = wh (2.7)
(r5)%(ak — cosab sinak) — (r)?(ak — cosak sinal) = wh.

The second case is the symmetric case where BY and B5 have the same area, i.e. wf = w§. Then
ri =75 and rf = occ. (2.9)

The middle arc becomes a straight line segment. The three arcs still meet at 120 degree angles, Figure 5. In
this case

2
a¥ =ak = ?ﬂ’ ag =0 (2.10)
and (2.7) and (2.8) become
()2 (a¥ — cosa¥ sinal) = (r5)%(ak — cosak sinah) = wh = wh. (2.11)

Place the exact double bubble B* = (B¥, B5) in R? so that the triple points are (0,k*) and (0, —h*)
where
h* = rFsinak, i=1,2,0 (2.12)

is positive. Moreover the centers of the three arcs are denoted (b¥,0), i = 1,2,0, respectively. In the
symmetric case (2.12) holds for i = 1,2, and the center (bf,0) of the middle arc is at infinity.
Each T, ¢x g» is an affine transformation given by

ok
T, er gp® = e 7 4 ¢F.

In this paper we identify R? with C to use the complex multiplication, like ei?" & above, to simplify notation.
Often T, ¢x g is simplified to T, and T(B), which stands for (T*(B*), T?(B?), ..., T"(B")) where T*(B*) =
(T*(BY), T*(B%)), is an assembly of exact double bubbles. One also sets T'(B;) = Ur_, T*(BF) for i = 1,2.

The double bubbles T*(B*) must all be inside D and do not intersect each other. Recall the function F
defined in (1.10). The domain of F' is

E={e=(€,.,6"): feDVEk=1,2..n "4 VE£I. (2.13)

Since F(£) — oo as € — 9= where = is viewed as a subset of R?", one can find a small enough § > 0 such
that

IgnéélF(f) < gerralill%F(f). (2.14)



Here = is a subset of = defined as
Es={¢€Z: d&",0D) >V k, d(F. € >25V k #£1}. (2.15)

In (2.15) “d” stands for the Euclidean distance in R2. The centers ¥ of the double bubbles T#(B*) will
always be in the closure of Z:

E=(4¢%,...,&") e E; (2.16)

At this point we state our initial requirement on ¢ which is the bound for . The number § must be small
enough so that

é
0 < 2max{rf,r5}é < 3 (2.17)
holds for the radii 7§ and r§ of any double bubble B* for which |BF| = wF € [, 22] and |B}| = wh €

2n’ n
[z, w] In other words (2.17) holds uniformly with respect to all double bubble B* as long as w¥

and w4 are in the specified ranges.
With this choice of § and with € < 6, let 2% € T*(B*). Then for any x € 9D,

d(z, 2%) > d(z, &%) — d(£*, 2%) > 6 — 2max{r¥ r5le > § — 2max{rF,r5}6 > g (2.18)

For ¥ € T*(B¥) and 2! € T'(B') where k # 1,
d(2", 2 > d(gF, €Y — d(€F, %) — d(¢, 1) > 20 — 2max{r¥, r5le — 2max{rl, rh}e > 4. (2.19)

Hence each T*(B¥) is inside D and the T*(B*)’s do not intersect. More precisely with each z* € T*(B¥)

for k=1,2,...,n, z = (z',22%,...,2") is in E5 /20 where the set E5/p is defined as in (2.15).

The two terms in (1.1) are denoted by Js and J; standing for the short and long part of the energy
respectively:

3
Ts(Q21,82) = %Z,PD(Qi)v (2.20)

@) — Y | (8200, =) (£2) 2, — ) da (2.21)
i,j=1

For a Lebesgue measurable subset E of D the perimeter is defined by
Pp(E) = sup {/ divg(z)dz: g€ C3(D,R?), |g(z)| < 1Vx € D} (2.22)
E

where div g is the divergence of the C! vector field g on D with compact support and |g(z)| stands for the
Euclidean norm of the vector g(x) € R?; see for instance [8] for more on the notion of perimeter. If Q4
and Qy are bounded by piecewise C'! curves and do not share boundary with D, then J5(1,22) is just the
length of 901 U Q5. With the help of the Green’s function one can write 7; in an alternative form:

2
0.0 = Y % [ [ Glay) duay (2.23)
o Ja;

ij=1

which is more amenable to computation.



Lemma 2.1 The energy J(T(B)) of the exact double bubble assembly T(B) is estimated as follows.

3

‘j(T(B))—{ezn:Z abrk 4 (log%)&i: 22: ’Yz‘jZU;kw 42 Z 'Yu/ /Bk%log

k=1 1=0 k=114,5=1 k=11,7=1

2
+64Z Z kb R(EH €5) + ety Z kGt eh }|
k#l i,j=1

k=11,7=1

n 2
<&@y Y Swlufadpmax{rf, i} + €Y Z wfulddg max{rf,r§,ri, i} = O(hle®).

k=1i,j=1 k£l i,j=1

The constants Ar and Ag above are given by

Agr

Y
DO | Sl DO | &l

max {|VR(z,y)| : @,y € D, d(z,0D) d(y,0D) >

d(y,0D) > =, d(z,y)

DO | &l D] >l
——

Aqg = max{|VG(x,y)| : z,y €D, d(z,0D) >

where § is given in (2.14).

>3

}

dxdy

(2.24)

(2.25)

Here O(|y|€®) stands for a quantity that can be bounded by C|y|e® for some constant C' is a constant

that depend at most on D, m and n. This convention is practiced throughout the paper.
Proof. By the remark following (2.22) and (2.23),

2

n 3
Yij
J(T(B)) = e 2akrk + / / Glz,y) dvd
(T'(B)) ZZ Z 2 _,\Tr(BE) Jup TH(BY) ) ’

k=1 1=0 2,j=1
n 3 n 2 ~ 1
= € 2af7‘f—|— ”/ / dxdy
n 2
+ Z % R(zx,y) dzdy

=1
/Tk Bk) /Tk Bk)
Tl

/ G(z,y) dzdy
TH(BY) JT(BY)

no 2 o akwk
= ezz Zrl+(log%)e4zz%

+
e
S—

k=1 i=0 k=14,j=1
n 2 ~
+et ”/ / dzdy
kzzlzgzzl Bk Bk 271' |
n 2 5
4 ij kAN 74 7n
+e€ ZZ?/}%/E’C T &, T*)) didy
k=114,j=1
2
+€4ZZ’Y§/ / G(T*&, T'y) didy.
k#ld,j=1 B B

By the mean value theorem,

|R(T*2,T*)) — R(€", ")

10



|VR(¢F + Teeiekic, &+ Teewkg) et 3 4 VR(E* + Teeieki", er 4 Teeiekg)) - eel?” il
4AR max{ry, r5}e

|G(T" &, T') — <£’€ &)l

|VG(E* + ree'? x, e+ Teeiglﬁ) . eeiekg} + @G({k + Teeieki, e+ Teeiglgj) . eeielgﬂ

< 4AG maX{T’f,T’;,T‘i,’IJQ}E,

IA

from which the lemma follows.
The following two lemmas can be proved by direct computation.

Lemma 2.2 Let g°(t) be a deformation of a curve q(t) with q° = q. Then

d

1 1 1
<4 E’dt:T~X’ —/ N - X ds.
4 6:0/_1“‘1 Yl ] eN-Xas

Here f )| dt is the length of q°, T = |q £ N is a unit normal vector, kN is the curvature vector, and

X(t) = aq (t) |e=0 is the infinitesimal element of q°

Lemma 2.3 Suppose that a bounded domain U is enclosed by a curve OU, and U® is a deformation of U.
Let X be the infinitesimal element of the deformation of OU. Then

a
de

fl@)de = — f@)N - Xds
U

e=0 Jye
where N is the inward unit normal vector on OU.
Denote a perturbed double bubble assembly by
Q = ((Q1,08),(92,93), ... (%, 00)); (2.26)

namely for each k, (QF, Q%) forms a perturbed double bubble, which is enclosed by three curves rf, r, and
rf. More precisely r¥ parametrizes 0Q5\0Q%, 9Q5\00F, and 9QF N 9N% for i = 1,2,0 respectively. Here
QF and QF are disjoint, share part of their boundaries, and have two triple points. Later we will consider
perturbed assemblies with more specific properties.

The two triple points of QF are
i (1) =rk(1) = k(1) and rf(-1) =r§(-1) =rf(-1). (2.27)

The unit tangent vectors of r¥, r& and r} are denoted T%, T4, and T} and given by

_ (=)'
T} (t) = T )] (2.28)

The unit normal vectors to r¥, r&, and r§ are N¥, N& and NE respectively. We adopt the following direction
convention: N¥ points inward with respect to QF, N& points inward with respect to Q%, and N points from
QF towards QF, i.e. inward with respect to QF and outward with respect to Q%. The curvature of r¥ is
denoted xF. Here N¥ and k¥ conform to the sign convention so that k¥N¥ is the (orientation independent)
curvature vector. Under this sign convention

dT*
i LENF 2.29
T (2.20)
where ds = |(r¥)'(t)|dt is the length element. One sets
O =Ur_,QF and Q, =UP_ Q5. (2.30)
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A deformation of the assembly (2.32) is a family of assemblies
Q° = (27", 951, (7%, Q57%), ..., (7", 25™)) (2.31)

for € in a neighborhood of 0, where for each k, (Qik, Q;k) forms a deformation of the perturbed double

bubble (2%, Q). For each k the three curves 9Q5*\005", 905F\005 %, and 905" U 905" that enclose

Qa’k, Q%) are parametrized respectively by r? k, r k, and r5F respectively. At e =0, Ok =k, Again one
1 2 1 2 0 i i

writes

Q5 = Up_ Q5% and Q5 = Up_, Q5% (2.32)
Define .
s (t)
XE(t) = = 2.33
i () 9 | (2.33)

which is the infinitesimal element of the deformation.

Lemma 2.4 Let QF be a deformation of a perturbed double bubble assembly Q) as described above. Then

dJs(§2) - ( / ENE L X - / kngk | ek
—_ = N7 - X7 ds — ko IN5 - X5 ds
de le=0 kz:l ;) Z 20k \ ok M kZ:l OOE\ OOk e
—Z / KENE . XE ds (2.34)
1 Jaaknaqk
A7, (€r°) / k / K xck
= — I I - X7 ds — I Io,)N35 - X35 d
e le—o Z ot o0k (mila, +vi2lo,)N S Z o\ o0k (m2la, +v221l0,)N3 - X5 ds
S (O, + (e~ ) )N - X ds (235)
oQkNoQk
I = —zn:/ Np - X} ds—Z/ b - X6 ds (2.36)
de le=0 = Joar\o0k kaam
sl _En:/ Nk - X’fds+2/ EXE s, (2.37)
de le=0 1 7 oQk\oak kaam

In (2.34) X* denotes the X¥’s at the triple points. Since (2.27) holds for r?’k, Xk(=1) = XE(-1) = Xk (-1)
and X¥(1) = X4(1) = X%(1). Therefore one can drop the subscript i in X (£1).

Proof. . The first formula (2.34) follows directly from Lemma 2.2.
To show (2.35), recall I, from (1.6) which can be written as

Ini(w)Z/ G(z,y)dy, 1=1,2, (2.38)
Q;

in terms of the Green’s function. Then the product rule of differentiation implies that

d d
Iq. Io. (z)dx. 2.
o o | [ oo (2.39)

d
4 dedy = 2
de e—o_/f Qs Gla.y) do dy de

However, Lemma 2.3 shows

n

72/ IQjN’f-X’fdsz/ Io,Nb-Xbds, i=1
k=17 0\0Q% k=17091N09%

/ I, (z)dr = . (2.40)
e=0 Qe n

n

d

de

n

_Z/ IQjN’g-X’gderZ/ Io,NE - Xk ds, i=2
k=1 005\00F k=1 097N0Q%

12



Therefore

d
—-— / G(z,y)dzdy (2.41)
E le=0 e JQs
-2 / Io, Nk . Xk qs — 2 / Io,N§ - Xbds, i=j=1
; BQ’f\@Q’; 11 1 Z BQ’fﬁBQ’; 1-Y0 0

-2 / I, NE . XEds + 2 / Io,No - Xods, i=j=2
; o0\O0k 2 Z o0kN00s
—Z/ o, Nk X’“ds—Z/ Nb - Xb ds
1 aQ’;\an Qk\am
—Z/ (Io, — I, )NE - XE ds, i=1,j=2
a0k NNk
Hence,
dJ,(9F) d 2\ i / /
i - ¢ i G dz d
de  le=0 e le=0 Z 2 Jos Jo: (z,y) dz dy
= - Z/ (11lo, +malo,)NY - Xi ds — Z/ (y12a, + v2210,)N§ - X5 ds
a0k \ a0k ank\onk
- Z/ [(v11 = m12)Ta, + (712 — 722) I, |NG - X ds, (2.42)
a0k Nank

This proves (2.35).
The formulas (2.36) and (2.37) follow from Lemma 2.3 with f(z) = 1. o

We perform a special type of perturbation to each exact double bubble B¥ in the assembly T'(B) in two
steps.

In the first step, move the two triple points (0, h¥) and (0, —h*) vertically to (0,1*) and (0, —1*) respec-
tively. In the asymmetric case the three circular arcs are perturbed to three new circular arcs whose radii
are p¥, ph and pﬁ; the angles af are perturbed to af accordingly; see Figure 6. The pf’s and the ai?“s are
determined from n* implicitly by solving the following system of equations

(P¥)% (¥ — cosal sina¥) + (pF)?(ak — cos aO sinag) = wh (2.43)
(P5)2(ah — cosalsinak) — (p§)?(af — cosafsinal) = wh (2.44)
pFsinaf = n¥ i=1,2,0 (2.45)

(P =)™ = (o) (2.46)

The regions bounded by the new arcs still have the areas wf and w§; hence the equations (2.43) and (2.44).
The centers of the new arcs are denoted (3F,0), i = 1,2,0.

In the symmetric case, the first step of perturbation turns the middle line segment connecting (0, h*) to
(0, —h¥) to the line segment connecting (0,7*) and (0, —n*). The left and right arcs become arcs of radius

pk = pk. and the angles become o} = of. They satisfy the equations

(P5)(aF —cosalsinaf) = wf, i=1,2 (2.47)
pisinad =k i=1,2 (2.48)
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/[

Figure 6: First step of perturbation in the asymmetric case. Left: the exact double bubble is perturbed to a
pair of two sets bounded by three circular arcs governed by (2.43) - (2.46). Right: the same perturbed pair
without the exact double bubble. Also showing are the angles af, the radii pf , the centers (BZ’“ ,0), and one
triple point (0,7%).

(0,7"%)

Figure 7: First step of perturbation in the symmetric case.

where wf = w%. These equations determine p¥ and o in terms of n*.

This step of perturbation is explained in more detail and shown to be well defined when 7* is close to h*
in Appendix B.

In the second step of perturbation we further perturb the shape of the circular arcs. Introduce 3n
functions u¥(t), k = 1,2,...,n, i = 1,2,0, for t € (—1,1). In the asymmetric case the circular arcs are

replaced by curves parametrized by
B () = uf (el 4 8Y, #5(1) = ub (e 4 85, #h(t) = uf(t)e ! + Bf, k=1,2,...m5  (2.49)
see Figure 8. The two triple points correspond to t = —1 and ¢ = 1, namely
(-1 =tk (1) =k (-1) = 9" and #(1) =#5(1) = £5(1) = n¥i. (2.50)

They remain unchanged in this step, so
ub (1) = pk. (2.51)
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Figure 8: Second step of perturbation in the asymmetric case. Left: The circular arcs obtained in the first
step are perturbed to more general curves. Right: the same perturbed double bubble without the exact
double bubble showing.

k k 2
Note that a sector perturbed by uf has the area f_ll M dt. Since the areas of the newly perturbed
regions must still be wf and w4, one requires that

2 k k

/1 ab(eh()? = (ph)? cosabsinal . / ob(uh(1))? — (ph)cosafsinal oy
—1 2 -1 2
/1 ak(ub(£))? — (p5)? cos ok sin o dt/l ali(uf ()2 — (pk)? cos of sin o it = wk (253)
—1 2 -1 2
In the symmetric case, the middle curve is parametrized differently by
5 = ub(t) + ¥, where uf(+£1) =0. (2.54)
The constraints (2.52) and (2.53) become
/1 a0 = (AP conepsina / Fub@d = (2.55)
—1 -1
/1 ag(u’g(t))z_(pf)zcosagsmag dt_/l Fuk)dt = wh (2.56)
1 -1

where pF = pk ok = ok, and wh = wh.

This perturbed double bubble is denoted P* = (Pf, P¥). Its image under T, ¢« g is denoted by T*(P*) =
(T*(PF), T*(Pk)). Collectively one writes T(P) = (T (P*1),...,7"(P™)) which is an assembly of perturbed
double bubbles. Moreover T'(P;) = Uy_,T*(PF) for i = 1,2. The boundaries of T*(P*) are parametrized by

r; () = T*(#f (¢)). (2.57)

Although the u¥’s describe the shape of the perturbed double bubble well, the constraints (2.53) are
nonlinear and hard to work with. We introduce new variables ¢¥, k = 1,2,....n, i = 1,2,0, in place of u¥.
In the asymmetric case they are given by

af (uf(1))? — ok (ph)?

Por(t) = = 5 ,i=1,2,0. (2.58)

15



Figure 9: Second step of perturbation in the symmetric case.

In the symmetric case ¢§ is given differently by

5 (t) = n"ug (1). (2.59)
Write ¢ for (¢F, ¢, ¢k). P* now depends on (¢*, n*) in addition to w¥ and wk, and the scaled down version
T*(P*) depends on ¢, %, 0% wk, wh, as well as (¢¥,1n*). We call ¢¥ and n* internal variables.

The assembly of perturbed double bubbles T'(P) corresponds to the internal variable representation
((¢',nY), ..., (6™, 1™)), which is is simply written as (¢,71). By itself ¢ stands for (¢!, ¢?,...,¢") where
oF = (%, 85, 0F), k = 1,2,...,n; similarly n = (n*, 72, ...,n™). The exact double bubble assembly corresponds
to ((0,h1), ..., (0,h™)) = (0,h).

Because pF and o satisfy the conditions (2.43) and (2.44), the area constraints (2.52) and (2.53) become
linear constraints

/_1¢’f(t)dt+/_l¢’§(t)dt:0 and /_1¢§(t)dt—/_l¢’g(t)dt:0 (2.60)

on the ¢¥’s. The ¢&’s also satisfy the boundary condition
PE(+1) =0, k=1,2,...,n, i=1,2,0 (2.61)
because of (2.51) and (2.54).

In summary each w € W determines n double bubbles B* for k = 1,2,...,n. Each e < 6, £ € ?g and
6 € S™ specify transformations T* that map the double bubbles B* to T*(B*) inside D to form an exact
double bubble assembly T'(B). These ¢, £, 6, and w also define a restricted class of perturbed double bubble
assemblies. Within this class, each perturbed double bubble assembly T'(P) is described by (¢, 7n). The exact
double bubble assembly T'(B) is in this class and is represented by (0,h), i.e. ¢F = 0 and n* = h* for all
k=1,2,..,nand i = 1,2,0. Other (¢,n)’s represent perturbed double bubble assemblies.

For a perturbed double bubble assembly T'(P)

n

Po(T(P)) =) Po(T*(P})),

k=1

and since each T*(PF) is bounded by smooth curves r¥ and rf, the perimeter Pp(T*(PF)) is the length of
r¥ plus the length of rf. The length of r¥ is e times the length of #¥ which is

/ Ay OF + @b2ak@pd, i=12,0 (2.62)
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in terms of the variable uf in the asymmetric case. In the symmetric case the length of £ is

1
[ by« o2 (2.63)

In terms of ¢¥ (2.62) becomes

: ((¢4))?
[ By oy i, where LY. f,n’“)\/ Faok 1 b R0 ekl 260

and (2.63) becomes

/_ LS ) dt, where L0 ) = (2, (2.65)

By (2.64) and (2.23) the energy of T(P) can be written as

n 2 1
ZEZZ/ LE((oFY, Ry dt + Z Z%J/ (Pk)/Tl(P})G(x,y) dx dy. (2.66)

k=1i=0""1 k=1 1i=1

To specify the domain of the functional J in the restricted class of perturbed double bubble assemblies, let
Y o= {@m)=(¢"n"), (677, (6", 0")) € (Hg((—1,1); R®) x R)"
1 1
| @+ obwnae= [ @ho) - eborar =0 k=12.mh (260)
1 -1

This space is equipped with a norm || - ||y derived from the usual H'! norm; see (3.27).
The functional J is defined on a neighborhood of (0,h) € Y; namely there exists ¢ > 0 such that the
domain of J is the open ball of radius ¢ centered at (0,h) in Y:

D(T) ={(o:n) €Y : [[(4,m) = (0,h))[ly <} (2.68)

Recall the remark after (2.18) and (2.19) which states for all € < 4, £ € Z5, 0 € S, and w € W, the exactly
double bubble assembly T'(B) determined by ¢, &, # and w has the property that z = (2!,22,...,2") € E5 /2 if
2k € T*(B*) for k = 1,2, ...,n. Choose ¢ sufficiently small so that for all € < §, all (£,6,w) € S5 xS"x W,
and all (¢,n) € D(J), the perturbed double bubble assembly T'(P) specified by €, (€,0,w), and (¢,n) has
the property that z = (21,22,...,2") € E5/4 if z¥ € T*(P*). Hence the perturbed double bubbles T%(P*) in
T(P) do not intersect, and all stay in D and away from 9D.

3 The first variation

Since a perturbed double bubble P* is described by internal variables ¢* and 7*, there is an easy way to
generate deformations P=*. Start with a deformation of (¢,7) = ((¢*, %), ..., (¢™,n™)) € D(J) in the form:

O = oF vk, nF s nf et k=1,2,..,n, i =1,2,0 (3.1)

P, ¢, .. (1/)’3(")) € Y. Then in the asymmetric case (2.58) defines a deformation of u?
k

for (¢,¢) = (
us” (with (u¥)? being uF), namely by

denoted by

af (" +e¢F)(ui™)? — af (n* + <C*) (pF (n* + eC*))?
5 :

& + el = (3.2)
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Here af and pf are treated as functions of n*, and af(nk +e¢*) and pf (n*+e¢*) are these functions evaluated
at ¥ + e¢*. Differentiating (3.2) with respect to ¢ and setting ¢ to be 0 yield

b, kUi (o) CF(uf)? (o) ¢*(p)?

b= ol kR (kY cF
’(/}i = QU aE =0 + 9 2 QG 05 (pz) C . (33)

Note that since af, pi-ﬁ and b’f depend on n*,

doi (n* + e¢*) — (bt dpf (n* + e¢¥)

_ (kY Ak dﬁf(ﬁk +5<k)
de =0 de - (pz) C )

=0 de e=0

B¢t (34)

In (3.3) and (3.4) oF, (aF), p¥, (pF)" are all functions of n* and are all evaluated at #*. In the symmetric
case (3.3) becomes
e,k
ko dug
0 Oe

Recall X¥ from (2.33), so here in the asymmetric case

T Crub. (3.5)

e=

ik ((9us* i(mr—ak i(r—ak : : ;
e f e (P Lt ey et () 1 (8¢t i =1 .
i ok usF . - . ) y .
el (25| _ge ot 4 ub(akyChteelti 4 () CH) if i=2,0
and in the symmetric case
) b e,k
X’g:eelek( ZZ |€=0+§kti). (3.7)

Lemma 3.1 At the triple points XF(+1) = (¥ XSk (£1) where XHF(£1) = +eel?"i.

The superscript S here stands for “stretching”.
Proof. In the asymmetric case, by (3.3), since ¥ (1) = 0, uf(£1) = p¥,

ERY ok
ol \E4H) — (A —1.2.0,
Oe =0 (pz) C , L
and hence
XE(+1) = e ((p}) CHe T £ pf () CRe oD (<) + (BFYCF) i i =1
Z el ((pF)'CFe™ £ pf(af) P i+ (BF)'¢F) if i=2,0

ok k i(xFak) | gk . .
(keeit® Here ™ TP IF )i =1

. k iiai k . i
Ckeei?” 7d(piednk +80) if i=2,0
ok d(Enki .
_ Ckeelek (d,,ZC 1) _ Ck(ieeleki).

In this proof, (p¥)’, (a¥)’, and (BF)" are derivatives of p¥, a¥, and B with respect to n* evaluated at n*.

The same conclusion holds for Xk(41) in the symmetric case. 0

Next compute
((e8)1H) - Xbdt  if i=1

_NF.XFds =4 T
Ni - X ds {—((rf)’i)xfdt if =20 (3:8)
By (2.57)
(Y (1) = ee?" ((uk) (t)e! =10 4 abulb(1)elmoi0 (i) if =1 (3.9)
' eel? ((uF) (t)e it + abuk ()l ) if =20 '
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It follows from (3.6), (3.8) and (3.9) that
=N X ds = (07 + EF (0], n")CE) dt (3.10)
where £F is an operator given, in the asymmetric case, by

(xk ’ uk: 2 ak APUAY
— (ks — (ayul (ub)'t + L0500 +alph (ol

(B - (afufel™=eit) — (uh)y el (i) i =1

CHEANOE (3.11)
(el (abyub(ulye + DU abph(oly
H(BF) - (akubelort — (ufyetoti) if i=2,0

where u¥ is related to ¢F and n* via (2.58). In (3.11) (a¥)’, (p¥)’, and (BF)" are derivatives of o, p¥, and

B with respect to n*. All these functions of n*, namely of, (a¥)’, p¥, (p¥), B, and (BF)’, are evaluated at
n*. On the other hand (u¥)’ in (3.11) is just the derivative of u¥(¢) with respect to t. In the symmetric case

¢k‘ + ¢k‘ /t
& (05,1") = —=2——— 77(’“ o)t (3.12)
Define three more functions of 7* (in the asymmetric case):
= (pF)2(aF —cosalsinal), i=1,2,0. (3.13)

Geometrically for i = 1,2, u¥ is the sum of the area of a sector and the area of a triangle, associated with
the left or right arc, after the first step of restricted perturbation, Figure 6. For i = 0, uk is the difference of
the area of a sector and the area of a triangle associated with the middle arc. By (2.43) and 2.44) the u’s
satisfy

P g =y, ps — pg = ws. (3.14)

In the symmetric case p¥ and pk are still given by (3.13), but they are constants, independent of 1*; namely

pt = ps = wi = wy and pg = 0.

It is straight forward to show the following lemma.

Lemma 3.2 The operator EF satisfies the property

[ ettaan= by .15

Moreover

1 1 1 1
/ £k (ko) dit + / €L 6k, ") di = / £k ok, o) dt — / EE (k) dt = 0. (3.16)
-1 -1 -1 -1

Proof. In the asymmetric case, by (3.11),

1
/ £ (6 ) dt
-1

On the other hand



Hence

1
wé“)'—/ls;“( E ) di

This proves the first part of the lemma. The constraints (3.14) on p¥ imply that
() + (1) = (135)" — (1g) =0

from which the second part follows.
The lemma also holds in the symmetric case because

1 1 k k\/
Y N _¢6 + (¢6)"t
| ehatya- [ -2

and the argument in the asymmetric case also applies to £F(¢F, n*) for i = 1,2.

Let (¢,n) € D(J) and (v, () € Y, and calculate
da
de

For the former if ¢F € H?(—1,1),

de le=0

Ts((é:m) + (¥, Q)), Ji((é:m) + (¥, Q).

’5:0

2| A +ew.0)

OLF((9F)', 0%, n")
oy

/1 LY ((¢5), 5, 1")
onk

n 2 1

SHWN

k=1i=0""

OLF((oF), 6%, n*)
dgk

- () + ok dt

dt)(k
OLY((oF), 0%, n*)
S v

i ((¢i€)/7 'va Wk) dt)ck

OLF((95)', 0%, ")
O¢¥

Jukat

k
= {e(K(@0), K(&:m): (¥, )
In (3.17) the operator KF (k = 1,2,

d_ OL{((¢F), éF\n")

i (k) )+
20 Y OLE((¢h), ¢k, 0")
;0/1 (977’“ dat

20

OLF((¢F)', ¢, n"*)
OPF ’

K¥ (851"

K* (6", ")

..,n and i = 0,1,2) and the functional KF are given by:

(3.17)

(3.18)

(3.19)



and one writes KF for (K¥, Kk, KF), K for (K1, KL, KD), ..., (K?,K2,K)) and K for (K1, ...,K™).
In (3.17) the inner products (-,-) and (-,-),, come from the Hilbet spaces L?((—1,1);R?®) x R and
(L?((—1,1); R3) x R)™ respectively:

(@@ = 3 / SO0 dit + i (3.20)
(6m). (&) = ZZ / SO (E) dt + Zn (3.21)
k=11
Comparing (3.17) with (2.34) of Lemma 2.4 and using (3.10) one finds, with the help of Lemma 3.1,

~ 2 1 2 1
KE = et and K = (Y TF) - X34 437 / KE (08 0 EL (o8, ") dt. (3.22)
i=0 - i=0 7 1

Moreover, by (3.10), (2.35) of Lemma 2.4 implies

. midrpyy + 12l }i
d 2 Yzlr(py) + Ye2lr(py) 5
- .n) + ; = E 2 , . 3.23
de 5:0‘71(((ZS n) + e, ) ,; <€ (711 — 712)IT(P1;C + (12 — ’722)IT(P2) 5 ( )
Q*(¢,m) ¢k,
In (3.23) the functional QF is given by
1
Ok (p,m) = / ((m1lrpy) + M2Irpn))EF(OY,07) + (2Ir(py) + Yo2lr(r,))ES (85, 1F)
-1
+((y11 — y2) Iy + (12 — Vo2 ) Ir(py))ES (86, 1%)) dt. (3.24)
In addition to ) two more spaces are needed in this work:
X = {(¢n) €V:of e H*(-1,1)} (3.25)

Z

1 1
{(¢,n) : ¢ € L*(-1,1), n* €R, /_1<¢’f+¢§)dt=/_l<¢§—¢’5)dt=0}- (3.26)

Clearly X C Y C Z C (L*((—1,1);R?) x R)™. The norms of X, Y, and Z are given by

e = 33 Ik + Z

k=11i=0

e3> = ZZ||¢k||H1+Z (3.27)
k=1 i=0

oz = ZZII¢’“IIL2+Z(77'“)2
k= k=1

where || - |1 and || - ||g= are the usual H' and H? norms of Sobolev spaces H!(—1,1) and H?(—1,1)
respectively, and || - ||z is the L? norm of L?(—1,1). Let

I 2105 < R {0h ) € P10 <R : [ @b aba= [ 5 - ua=o)
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be the orthogonal projection operator given by

k 1 0
1
k Lk k k 1k k k
By | V3| Vi, ¥z, %o 0 |_ Y, vz %o 1
nwh ¢ = | i [/_1(3+6+6)dt} ; [_1(6+3 G)dt} |G
¢k 0 0
Note that II has no effect on the fourth component ¢*.
The gradient of J; is an operator S; from a neighborhood of (0,4) in X to Z such that
d
% g:()js((QS, 77) + 5(1/% C)) = <Ss(¢)a 77)7 (’l/)a C)>n (329)

for all (¢,¢) € X. Similarly one defines S; and S, the gradients of J; and J respectively. From (3.17) one
sees that

- it
Ss(p,m)=1[ .. where S¥(¢* nF) =Tle %( %’nk) ) (3.30)

Sn(¢n nn) ’CO( 0177 )

R Kk (¢, n)

The gradient of 7, is

SHe 1) yilrpy +v12dr(py)

’ I + yo2I7 (P,
Sion) = | .. here S¥(¢,n) = ITe> N2 (Py) (P2) . (331
1(¢,m) o where S;°(¢,n) € (i1 — 712)]T(P12£+ (12 — 722)IT(P2) ( )

S Q*(¢,m)

A remark regarding the I7(p,)’s in (3.31) is in order. Recall that each Ir(p,y, i =1,2, is a function on D
given in (1.6), and the set T'(P;) is determined by the internal variables ¢¥, ¢§ and n* for k = 1,2,...,n. The
Irp,y)’s (i = 1,2) in the first three components on the right side of (3.31) are now considered as outcomes of

the operators
If] : (¢i7¢0777) - IT(P,)(r_]]C(t))a i = 172a .] = 172a07 k= 172,...,7?,. (332)

where j = 1,2,0 corresponds to the first, second, and third component in (3.31) respectively. Note that in
(3.32)

(¢i7 d)Oa 77) = (d)zlv ¢(1)7 771) X ( zza ¢(2)7 772) X X (¢:L7 ¢(7)L7 77”) (333)
represents T'(P;).
The gradient of J is
S=8,+8. (3:34)
Therefore
S'(p,m)
S(p,n) =
S™(¢,m)
where

k¥ (o7, ") + € (vl + 12lr(p,))
ela(¢5,n") + € (valr(p,) + Y22 lr(py)) (3.35)
K (95, ") + 62(N“Yu —y12)Irp) + (2 — v22)Irpyy |- ’
KF (¢, 1%) + Q¥ (4,n)

SH(p,n) =11

The domain of S is taken to be

D(S) ={(¢,n) € X: [[(¢,n = h)|[x <&} (3.36)

where ¢ in (3.36) is the same as the ¢ in (2.68). Consequently, D(S) C D(J).
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Lemma 3.3 It holds uniformly with respect to t that
8*(0,1) = (O(Iy[e"), O(I7[e"), O(n1€h), O([v[e*))
for all k=1,2,....n. Consequently, there erists C > 0 such that IS(0, )]z < 5’\7|e4.

Proof. Calculations from (3.18) and (3.19) show that

K5 (0,n") =

in the asymmetric case and

i=1
in the symmetric case. By (B.22) in Appendix B,
KKF(0, h*) = 0.
Consequently, by the virtue of the projection operator IT and the fact that # - % = %,
Kk (0, h*) 1/rk
SF(0, %) = T Eggg Zg = Ile %:ﬁ; =0.
Kk (0, h*) 0

Regarding Sl”C (0, h) let f*f be the boundaries of the exact double bubble B¥, i.e.,

ey = § e b i i=1
' rkelit 4 pk if i=2,0

and r¥ be the boundary of T*(EF), i.e.,
rf(t) = el ¥ () + ¢~

One then deduces

75(0,0,h) = / G(rh(t),y) dy
T(B;)
1 1
= log dy+/ R(r*(t),y) dy + / G(r*
/Tk(Blc) 2T |I'§(t> | Tk(Bk) (]<) ) #Zk Tl(Bé)
1 1
= 62/ — log — — djj + O(€?)
BE2m 7 elt(t) — g
€2 1
= —(log—)|BF 2/ dj + O(é?
g (BB + [ 5 lo8 i+ O()
2

Consequently, with the help of (3.16) of Lemma 3.2,

Q" (0,h) = /11 [Vn%(log %)wlf +712%<10g %)w’g}g{“(o,hk}dt
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1 2 1

/ %27 log )w’f+vggi(log7)w§}8§(o,hk)dt
2 €

62

/ (M1 — v12) — 62 (IOg 1) + (712 *’722) (log )wk}gk(o hk) dt+0(|’7|62)
o0 € 2 0 )

1 1
_ € (log )w’f/l(f) (0, %) + EE(0, %)) dt

2 €
1

Y12€? 1 k k k
+1= (loge)w (R0, ) + (0, hF)) dt

1

€

’7126
2

1 ,
+7226 (10g = )} / (£5(0,h%) = £5(0, h™)) dt + O(|y|€*)
1

(1og w/ (EF(0, h*) — E5 (0, h¥)) dt

= O(lle).
Therefore

4 'Vllwlf + ’712'[0%

! Wy + Yo2w
SF(0,h :i<1 7>H V12w 2 10 4
Hon am\ B (11 — y12)wf + (712 — Yo2)wh (1€%)

0
64 ]. O 0 1 1
= %<log E) Y1 wi Tl 1 + y12w51I 1 + YWl 1 + Yoowh Tl o + O(|y]eY)
e 1IN o o o o A .
= - (log =) @+0+3+0) +O(rle") = O(lyle"). (3.38)

The lemma follows from (3.37) and (3.38).

4 The second variation

The Fréchet derivative of the operator S at any (¢,7) € D(S) is denoted S'(¢,n). It is a linear operator
from X to Z. For every (¢, () € X, it yields the second variation of J:

d*J((¢,n) +£(¥,¢))

de? e=0

Similar formulas hold if J is replaced by Js and S replaced by S, or J by J; and S by ;.

We show that the operator S’'(0, k), the Fréchet derivative of S at the exact double bubble assembly is
positive definite and derives a upper bound for the inverse operator (S’(0,h))*

Define the € independent part of 7; by P so that Js; = €P where

PO =33 [ LM@Y okt (o€, (42)

k=1 1=0

= (S, (¥, ), (¥, ) (4.1)

Calculations show that, in the asymmetric case,

0°Lf(0,0,9*) 1 9°LF(0,0.9*) 1 9*L{(0,0,9") _ d?(ofpf)
o(e5)N?  (afpf)® o) af(pb)P Oh)? d(n*
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92L;(0,0,1") 9?L;(0,0,1%) 9’Ly(0,0,n*)  d (1
=), - —0, . :7(7), (4.4)
A(¢7) 0d; a(¢7) onk Op; on* dnk Pi
and in the symmetric case
LSO _ 1 @LhO0a) _ 0LhO0a) ws)
a(eg))* ()P o) Loo(gg)yont '
The second variation of P at (¢,7n) = (0,h) is
d*P(0+ e, h +eC) B
de? =0
n 2 1 2(~ k Kk
1 NI 1 w2, @(aipf) kN2 ii k sk
;Z/ [ O = G0+ i | (€ 4 2 () ot e

However the constraints (2.60) that the 1¥’s satisfy and the condition (2.46) on the p¥’s imply

2 1 X
;/126;71’“(;)116) . nk:hk(/,lw dt)g’C =0.

Hence the integral of the last term vanishes, and

2P0+ e, h+ ¢ LRSS 1 , 1 d?(akpk
(;25”MZZ/J «m%774mui%ﬁn

1 i=0 (afrf)® ai (ri)?

d 1 1 1
pichar =2 (5 - 5 - )
=h* dn ok ph pf

k

This is a quadratic form on ). A simple lemma is needed at this point.

Lemma 4.1 Let g € (0,7) and T € R. The inequality

/Jmmwf—ffa»a> T

1 2(tang — q)
holds for all y € H}(—1,1) that satisfies the constraint f_ll y(t)dt="7.
The proof of this lemma is given in Appendix A.

Lemma 4.2 There exists d > 0 such that

d*P(0 + e, h + &)

2
de? —o > 2d||(, QI3 (4.7)
for all (,¢) € X. In other words for (¢,() € X,
(850, ) (¥, €), (¥, €))n = 2de|| (v, O[3 (4.8)
Proof. Let ) . X
ko7 _ ~k kg, _ o~k k7o _ rk
/_11/J0dt—T, /_1w1dt— 1k, /_1w2dt T (4.9)
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because of the constraints (2.60). By Lemma 4.1, one deduces

2 by
BP0+ e, h + () L:o —2d> > vF|in

de? ;
k=1 =0

33 [ (e 20000 - (g 20) /] e Sy Gl
(

k=1 1i=0 k=1 1i=0
no2 (1 Qd)(’rk)z(qk)3 n_ 2 2( ok o
apry)? ¢ k2 4° (5 p7)
> ) +Y > 2k (4.10)
k_ & k)2 _
k=1 i=0 2(tang;’ — q;) k=1i=0 dn™)? lnr=nt
where
k s+ 2d
q; = o (4.11)
(afrf)3
If d = 0, then
i(( b —24) (0}’ R 122: !
—  2(tang; —q;) 2 & (rf)3(tanaj — af)
B 1 ZQ: sin® af
~ 2(Rk)3 — tanak — a¥
2 .
_ 1 . coiaf 81;13 a¥ . (4.12)
2(h*)? 2 sinaf — af cos a
By Lemma B.1 in Appendix B, (4.12) is positive. Hence for d > 0 sufficiently small,
22: (famtey = 24) (1@’ >0 (4.13)
k_ k = :
prd 2(tangf — ¢¥)
for all k. By (B.23) in Appendix B,
2
G
—_— > 0. 4.14
; d(n*)? lnr=nr 1)
Hence )
(o py)
2(¢*)2y " ——icis > 2d(¢*)? 4.15
(€30 i e 20 (1.15)

if d is sufficiently small. The lemma now follows from (4.10), (4.13), and (4.15).
The above argument is carried out with the assumption that all exact double bubbles B* are asymmetric.
However if a B¥ is symmetric, one simply makes the changes

k k k
aOpOHna

- (4.16)

and the same argument also covers the symmetric case. Note that in the symmetric case (B.31) plays the
role of (B.23). o

In the rest of the paper, if only the asymmetric case is presented in a proof, then the same proof will also
work for the symmetric case with the suitable modification of (4.16).
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From the quadratic form (4.6), one finds the explicit formula for S(0, h):

3 (Wf)” k(rk)z 1/)1
Wﬁ)” k(r 3’(/}2
0)" =
0

- )% . (4.17)

=t )G

a17"1)

(85)/(0,h*) (¢, ¢*) = e Gt E
53
2 d

k
2(21 0 d((nl )5 )

Next study

kv 2 v12(Z15)' (0,0, h %/11,1/107 +722 122 0,0, h) (2,0, ¢
(SO =T\ ) (@h)(0,0, o ) O )m)(zzwo, 0, h) (2, Y, ©)
07

(4.18)
Lemma 4.3 There exists C > 0 depending on D, m and n only such that

1570, h) (%, )|z < Clyle*ll (¥, )|z
for all (,¢) € X.

Proof. To compute the Fréchet derlvatlves of T U, deform (¢,n) to (¢,m) + (1), ¢) and denote the corre-

sponding deformation of r¥, r§ and rf by r{*, r5* and rg’k respectively. Then

0
G Jy)dy + —
E_O/T(P;) (e4 (1)) dy + o

Since (¢,n) is (0, k) in this lemma, T'(P) becomes T'(B) and its deformation is denoted T'(B¢). Applying
Lemma 2.3 to the first term on the left side of (4.19) with the boundaries of T'(B) parametrized by

k\/ . . 2 e,k
(T8 (6 0.m) + (v, ) = 5 ooy, G @)

rb(t) = THrbl =D 1), e (1) = TF(rbet +08), rh(t) = TH(rhel™t + b)), (4.20)

one obtains

0
_— G(r*(t),y)d
5% s—O/T(B;) (x(t),y) dy
—/ G(I‘f(t), I'1)N1 . X1 ds — / G(r?(f),ro)No . XO ds if i=1
T(0B1)\T(0Bz2) T(0B1)NT(0B2)
_ (4.21)
—/ G(I‘?(t), I‘2)N2 - Xods + / G(I‘?(t)71'0)No -Xods if i=2
T(8B2)\T(B:) T(8B1)NT(0Bx)

In (4.21) some shorthand notations have been used. For instance T'(0B1)\T(9B2) stands for the union
U THOBYO\T (0BL); r1, N1 and X refer to r{, N! and X} respectively on each T'(OB!)\T'(0BY) of the
union T(0B1)\T(0B3z). With the help of (3.10), one finds that

—/ G(r?(t),rl)Nl -Xids
T(BBl)\T(BBz)

/ () (W () + E1(0, k) (r)¢Y) dr
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bl 1 k k k\ -k 2 ! k k(o k k &y K
= [ 5 (on gy e + B0 a4 [ R+ ER0.1 ¢ e

£ [ aumatel + o ar

Ik
€2 ky k
- §<10g )/ (WF + EF(0,hF)¢F) dr
+i 1 (1og ! — )(% +EF(0,h*)¢F) dr 4+ O(e Zn: (152 +1¢')
or |, ke iakt + bk — rhei(r—ain) — pk| =1
€2 1 -
_ g(loge)/ (F + EF(0,F)¢F) dr + O() D (Il 2 + ['])-

=1

The above estimate holds uniformly with respect to . Also the term rkel® it above is valid if j = 0,2; if
j = 1, it should be replaced by r¥e! i(m—a¥t) " Similar estimates hold for the other three terms in (4.21). By

the constraints (2.60) on ¥ and (3.16) of Lemma 3.2 one deduces that

7]
P 8_0/T(BE) G(r}(t),y) dy
21 1 1 2 1 1
o (102 0) [ whretouncar+ (1o 7) [ wh+ 850006 dr + 0.0z
B 2 1 1 2 1 1
o= (102 0) [ @b +ebocar = o (1os7) [ wh+ (0.6 dr + 0.0z
= 0w,z (4.22)

holds uniformly with respect to ¢.
The second part on the right side of (4.19), for (¢,n) = (0, h), is written as

9
Oe

[ awtoma= [ veeko.w) - Xiod (1.23)

e=0.J1(B;) T(Bs)

where VG stands for the gradient of G with respect to its first argument. Clearly

[ veetw.mldy =0 (424
T(B:)

holds uniformly with respect to ¢. Calculations from (3.3) and (3.6) show that

o [ 0 + a0 (@l CHe O (i + (316 i =1
1"

XF(t) =

i iak . . .
el [ (0 alrh (Y e 4 ey R+ (8 ] it j=2,0
a;r
(4.25)
where (p¥)’, (%), and (BF)" refer to the derivatives of p¥, o, and BF with respect to n* evaluated at h*,
respectively. Then (4.24) and (4.25) imply

H% e=0 /T(Bj) G(r5(t),y)

bk‘

= O(e*)([I¥f | z= + ¢*]).- (4.26)

.
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By (4.22) and (4.26) one finds that
I(Z5)' (0,0, k) (%3, %0, Ol 22 = O(E)[(%, ) 2. (4.27)

This allows us to handle the first three components of (SF)’ in (4.18).
Finally consider (QF) in the last component of (SF)’. Note that

(Q%)'(0,h)(¥.0)
= /_1(711(151)/(07 0’ h)(z/]h 1/}07 C) + '712(151)/(07 07 h)(¢27 ¢07 C))gf(m hk) dt

1

+ /_1(712 (I{E)/(Oa 07 h) ('(/11, ’(/}07 C) + Y22 <I§2)/(07 O’ h) (¢27 ¢0a C))g§ (Oa hk) dt
1

+ /_ 1((711 — Y12)(Z10) (0,0, h) (Y1, %0, €) + (712 — 722) (Zhy) (0,0, h) (2, b0, €))EF (0, h*) dt
1

+ / mZh(0,0.1) + 12T 0,0, W)(EL) 0.1 (0 &)

1
+ / (1aTEy (0,0, 1) + 722 Thy (0,0, h))(ELY (0, W¥) (. ¢*) dit

+[1((711 — 712)Z15(0,0, k) + (v12 — 722)Z5,(0,0, k) (EF) (0, B¥) (1, ¢F) at. (4.28)

Denote the six terms on the right side of (4.28) by I, IT, ITI, IV, V, and VI respectively. Then the estimate
(4.27) implies that

I, 11, ITT = O(7|e*) | (%, Q) = (4.29)
Regarding IV, V, and VI, note that
k
5.0 = [ cuho.md
T(B;)
1 1
= *logidzﬁ/ R(x}(t),y) dy + / G(rf(t),y) dy
/T’“(B}f) 2 7 [rj(t) — y| TRBE) 0 ; By
_ B N o ok
= §<logz>e + €A (1)
where
1 1
—log ————————— + R(Y (), T*(9))) dj /G’“tTlAdA if j=1
/Bf(% o8 =g R 0.746) y+; | Gt TGy i
Al (t) = ) ) .
/ (5 108 i + ROK(), TH(3) ) di + 3 / GEh(E, T G)dy i j=2,0
BE 2T kel ® — g 12k / Bi
(4.30)
Then

/1 T5.(0,0, ) (E4) (0, 1) (0, ¢*)

7@01621k/kkk 621k kN (o RNk ok
= So(eeg)e [ Eyomnwh G [ abmEyomwh i @

2w € 1

Calculations from (2.58) and (3.11) show that
k ky(pk kY ok
(€5)/(0,h7)(1h,¢") = (e5)'(t) (4.32)
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where (ef)’(t) stands for the derivative of e;? (t) with respect to ¢ and

k\/ hk k\’ hk d
(-l PO it ok + (| Cakob ()t (st sinal))o*
1 1'1
k) = . (4.33)

L smaie) ok + (o] @ b smalkn) ¢
J

One then estimates the second term on the right side of (4.31) via integration by parts:

/A ) (0, B*) (15 g’f)dt:éA?j(t)e;?(t)‘ll—eZ/I(A?j)’(t)ef(t)dt. (4.34)
Then
eaywsm| | = eabo[gr] @bkt e snalc|
= O (4.35)
& [ @abywdmal < @Iy
= O()([[fllz2 +1¢*) (4.36)

since (A};)'(t) is bounded with respect to ¢. By (4.31), (4.34), (4.35), and (4.36) one concludes that

[ o.0mEy om0 ya =2 (o 1) [ eyt ¢ i o)z + 16,

2 €
(4.37)
By (3.16) of Lemma 3.2,
1 1
| erontwh.e dt+/ Y(O.KE)Wh Y dt = 0
[ (erons.c / (0, Rk, Myt = o, (4.38)
—1 1
Following (4.37) and (4.38) one arrives at
2
V4V +VI=0(1e) O ¥5]2 + [¢F]. (4.39)
j=0
v (4.29) and (4.39), (4.28) becomes
(Q)(0. h)(¥, Q) = O(17[e) (¥, Ol z- (4.40)
By (4.27) and (4.40) one deduces that there exists C' > 0 such that
1500, h) (1, )|z < Clrle!(l(v, )= (4.41)

for all (1,¢) € X.

Lemmas 4.2 and 4.3 give a lower bound on the operator S’(0, h).
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Lemma 4.4 There exist d > 0 and o > 0 such that when |y|e3 < o,

(80, 1) (¥, 0), (1, C))n > de|| (0, O3
for all (,¢) € X.

Proof. Let d be the positive number given in Lemma 4.2 and o = % where C' comes from Lemma 4.3.

Then Lemma 4.3 shows that for |vy|e® < o,

1570, W)@, Oz < CIle"(¥, )|z < Coell(@, )|z = del| (¥, Ol 2 (4.42)
for all (¢,{) € X. By Lemma 4.2 and (4.42)

(S(0,h)(¥, ), (¥, O (S2(0, 1) (¥, Q) (¥, ) + (S[(0, ) (¥, C), (¥, C))m

2de| (1, )13 — del| (¥, ON% > de|l (v, O3

Y

for all (v,¢) € X. o
A consequence of the positivity of S’'(0, h) is its invertibility.
Lemma 4.5 Let o be the number given in Lemma 4.4.
1. There exists d > 0 such that if |y|e® < o, ||S'(0,R) (1, )|z > de||(¥, ¢)||x holds for all (1,¢) € X.
2. The linear map S'(0,h) is one-to-one and onto from X to Z; moreover ||(S'(0,h))™| < L where

de
|(S'(0,h))~Y| is the operator norm of (S'(0,h))~L.

Proof. By Lemma 4.4 it is easy to see that if |y|e3 < o, then for all (¢,() € X

16,0z < 280, 1)@, Ol - (1.43)

The first part of Lemma 4.5 asserts that the Z-norm of (¢, () on the left side of (4.43) can be strengthened
to the stronger X'-norm, if d is replaced by a possibly smaller d.

If part 1 is false, then there exist sequences v,, €,, and (,,(,) € X such that |y, |€3 < o, [|(¥y, ()||x =1
and with e = ¢, and y =, in &,

e, ' S'(0,0) (¥, Gl =z = 0, as v — oo. (4.44)

By (4.43),
' H(wm CV)HZ — 0. (445)

Moreover, due to the compactness of the embedding H?(—1,1) — C[—1,1] and ||(¢, ) |lx = 1, [ |lcr —
0 and in particular for all £ and ¢,
(F ) (£1) = 0 as v — oo. (4.46)

Since §’(0,h) = S.(0,h) + S/(0, k), and (4.42) and (4.45) imply that
e, 'S (0, 1) (¢hu, Go) | 2 — O, (4.47)
one derives from (4.44) and (4.47) that

e, 'S840, 1) (¥, C) |z — . (4.48)
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By (4.17) write

~ e (V) G
_ 1 k \/ 1/}
—1/cky/ k k rk s (Vr2) ’”(rk)s
GUSHY O I Wk ¢y =11 | T EEDE )
~ @t (V0o)" A
0 2(2 =0 ~agreys lnr=nr)C
By (4.45) one finds that
ak k)swul
1
ak k)3'¢)
II — 0
k(rk)Swu2

2 &
2(2i—o d({;kfé [ —=n )C*

for all k. Then (4.48), (4.49) and (4.50) show that

L2((—1,1);R3) xR

—0

L2((—1,1);R3)xR

- (allcillcp (¢’§,1)”
I - (a’2€71"]2€)3 (%’iz)”
_ 1 (d}k )//
(afrf)e 0
1
(ak,}‘k)s (7/}5,1)” (S(a’flrf )3 (Wi,l)' + 6(,1151745)3 (%’f,z)/ + 6(a§1r(’§)3 (Wﬁ O)/) |_1
1
_ (a’grk)s 7/1]5,2)” + (6(0,’1‘17‘{“)3 (1115,1)/ =+ 3(a§1r§)3 (wluc,Q)/ - G(Q’SITS)J (1/)570)/) |71
k \n 1
@y (Vo) (seamem W00) = g (Vh2)' + samems (Who) )|y
0 0

Moreover, (4.46) implies that

1 k 1 k 1 k 1
(3(allcrllc)3 (% 1)/ + 6(a1_§r§)3 (%,2)' + G(a(’;r(’;)? (7/}1/,0),) |1_1 0
(s (V)" + sty (i)' = G ()0 | 0| ert
. B 0

Therefore, by (4.51), (4.52) and (4.53), for all k£ and i

Il( 5@)”||L2 — 0 as v — oo.

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

From (4.45) and (4.54) we deduce that ||(¢,, ()| — 0, a contradiction to our assumption at the beginning

that ||('¢)u7<u)||/¥ =1

For part 2, it suffices to show that S’(0, h) is onto. First note that by the standard theory of second order
linear differential equations, 8’(0, k) is an unbounded self-adjoint operator on Z with the domain X C Z.

Second if (1, C) € Z is perpendicular to the range of §’(0, h), i
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then the self-adjointness of S’(0, h) implies that (¢,¢) € X and §'(0,)(1,¢) = 0. By (4.43), (1,¢) is zero.
Hence, the range of §’(0, k) is dense in Z. Finally (4.43) implies that the range of §’(0, k) is a closed subset
of Z. Therefore S’'(0, h) is onto.

Finally in this section we state two properties regarding 8", the second Fréchet derivative of S or the
third variation of J.

Lemma 4.6 There exists C > 0 such that for all (¢,n) € D(S),
18" (6, m) (8, Q) (#, )|z < Cle+ eI, Ol ]l (@, Ollx
holds for all (,¢) and (¥,() € X.

The proof, which is skipped, is straight forward estimation, similar to the proofs of [27, Lemma 3.2] and
[26, Lemma 6.1].

Lemma 4.7 There exists C > 0 such that for all (¢,n) € D(S),
(8" (6, m) (%, Q) (8, ), (1, Ol < Cle + 1D, Ol (¥, O3
holds for (1,¢) and (¢,() € X .

See [27, Lemma 4.1] or [26, Lemma 7.2] for the proofs of similar formulas.

5 Minimization in a restricted class

For each (§,0,w) € ?g x S™ x W that specifies the exact double bubbles B¥, k = 1,2,...,n, and the
transformation T¢ ¢ g, we find a locally J minimizing perturbed double bubble in the restricted class of
perturbed double bubble assemblies. This restricted class is identified by (£, 6, w). One starts by solving

S(¢,m) = 0. (5.1)

Lemma 5.1 There exists 0 > 0 such that (5.1) admits a solution (¢*,n*) € D(S) C X satisfying ||(¢*, 1) —
(0,h)]|x < %, provided |y|e* < o.

Proof. For (¢,n) € D(S) write

S(¢,n) = S8(0,h) + 80, h)((¢, ) = (0, ) + R(¢,m) (5-2)
where R(¢,n) is a higher order term defined by (5.2). Define an operator 7 from D(S) C X into X’ by
T(¢,n) = (0,h) — (8'(0,h))"1(S(0, h) + R(¢,n)), (5:3)

and re-write the equation S(¢,n) = 0 as a fixed point problem T (¢,n) = (¢,7).
Let ¢ € (0,¢), where ¢ is given in (3.36), and define a closed ball W = {(¢,n) € X : ||(¢,n) — (0, h)]|x <
¢} C D(S). For (¢,n) € W,

Rz < & sup |8"((1-)0,h)+ (o m)(6.n-n). (6n -z < D 6wy, (5.

r€(0,1) 2
by Lemma 4.6. Then by Lemmas 3.3 and 4.5

IT(@,m) = (O.h)lx < 1S (0,R)THIUS©O, Rz + IR(¢, 1) 2)

A 4
Clet e 2
2

IN

1/~
—(Cly|e* +
~(Ch
Co C+Co
— +

d 2d

IN

. (5.5)
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Let (¢,7) € W. Consider
1T (6,1) = TS, ) 168" (0, k) M1 IR (6, m) = RS, )| 2

~118(0.1) ~ S(@,7) = §'0.0)((6.) ~ (B.7)|z

IN

IA

IN

1S(60m) = SG.7) — S G )((6m) — (3,72
F2I(S'G1) — S OM)(6) — (B2

IN

2ed re(0,1)

~ sup [187((1 = D)) + (6. [(6.m) — (B

L sup [87((L = )01 + 7@ DI 16,7 = WLel@m) — (B,

ed r¢(0,1)
Cle + yle)
ed
2C(1+o0)c ”
d

IN

(e+e)l@.m) — (G.0)l

IA

(¢v 77) - ((57 77)”2(

Take

(i )
c=min{ —, —¢.
6C 2
Let o be small enough so that Lemma 4.5 holds, and moreover

o< min{l, ;—é}

It follows from (5.5) and (5.6) that

1T~ (O.1)llx < e and [T(6,m) — T@)lla < 5116, — (6

(5.9)

for all (¢,n), (¢,7) € W. The Contraction Mapping Principle says that 7 has a fixed point in W. This

fixed point is denoted by (¢*,n*), and it solves (5.1).

To prove the estimate of (¢*,n*), revisit the equation (¢,n) = T (¢,n), satisfied by (¢*,n*), and derive

from (5.3) and (5.4) that

I¢*,n" =mllx < (S"(0,h)THI(IS©, B[z + IR(&", 7" 2)
~ 9 € 64
< %(Ch/‘ﬁék 4 C( +2|/V| )

Rewrite the above as

6(1 + |v|e®) 5’|'7|e3
1— 28Ty e — = )| < 2
(1= Dy o - e <
In (5.10) estimate
C(1+ |y]e?) Cl+pe)  Ce(l+o) 1
2T Tt = )| < ! < 9 <=
D) gy < CLEDIS),  Cellro)

by (5.7) and (5.8). The estimate of (¢*,n*) follows from (5.10).

I = mII%).

(5.10)

(5.11)

The first part of the next lemma shows that the assembly (¢*,n*) is locally energy minimizing, hence sta-
ble, within the restricted class of perturbed double bubble assemblies. The second part gives a measurement

on the non-degeneracy of (¢*,n*) within the restricted class.
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Lemma 5.2 1. There exist d > 0 and o > 0 such that if |v|€® < o, then the solution (¢*,n*) found in
Lemma 5.1 satisfies (S'(¢*,1*) (4, C), (1, C))n = del| (¥, Q)3 for all (¢,C) € X.

2. There exist d >0 and o > 0 such that if |y|e® < o, the solution (¢*,n*) satisfies ||S'(¢*,n*) (¥, C)||z >
del| (v, Ollx for all (¥,¢) € X.

Proof. There exists 7 € (0,1) such that

(6", 1) (1, €), (¥, O))n
= (S0, (%, ), (¥, ) + (S"((1 = 7)(0,h) + 7(6", ")) (&, 0" = h), (¥, O)), (¥, O)) -

By Lemma 4.7,

(S"((1=#)(0,h) + 76" n)) (6" 0" — ), (1, Q)), (1, Ol < Cle + DI (%, 1" = Bl ll (@, Q13- (5.12)

Consequently by Lemmas 4.4 and 5.1

V

(S'(@" )W, Q) (0, O = de]| (W, QI3 — Cle+ |y]e?)
(d— QCC(O'N—‘FJQ))

20
20 e, 018

v

€

d
I, 015 = FIw.Ql3

if o is sufficiently small. The first part follows if d= %
By Lemmas 4.5, 4.6 and 5.1,

1S"(¢"n") (¥, O)llz 15°(0, h) (¢, )l = — Sup IS"((1 = 7)(0,h) + 7(¢", ")) ((¢", 0" = D), (4, ) =

Y

Y%

el — Ble + e (6" " = )|, )l
(7= B+ ley 2120, 012
(J_ 20(1(0:%—0 ))

%

Y

M%OM;z{W%OM

€

if o is sufficiently small. Part 2 follows if d = g -0

One interprets the equation S(¢*,n*) = 0 and proves the following. Let T(P*) be the assembly repre-
sented by (¢*,7*) and T(P;) = Up_, T*(PF) for i = 1,2.

Lemma 5.3 The perturbed double bubble assembly described by (¢*,n*) satisfies the equations

ekl (o7, k) + € (yilrpyy + m2lrpyy) = Af (5.13)
K5 (03" 0" F) + E(alppry + 22 lr(py)) = A (5.14)
eKh (6" %) + € (1 — M2)Irpr) + €2 —v22) ey = M= (5.15)

on the boundaries of each perturbed double bubble T*(P**), k =1,2,...,n. Moreover at the triple points,
2 1
ZT?~XS”“‘ -0, k=1,2,...n, (5.16)
; -1

where the Tf ’s are unit tangent vectors of the boundaries of the k-th perturbed double bubble and X5F is
given in Lemma 3.1.
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Proof. By the virtue of the projection operator II, the first three components of each S* in (3.35) imply
that for each k there exist A\¥, A5 € R such that the equations (5.13)-(5.15) hold.
From the fourth component of S* in (3.35) one sees that

eKF(¢™F k) + €2 QF (6%, 1%) = 0.

By the expression of K in (3.22) and the definition (3.24) of QF, the last equation asserts

2 1 1
ZT? . Xs’k‘ ) + / (elC’f(ngT’k,n*’k) + 62(’711]T(P1*) + '712IT(P2*)))5{€(¢T’]€,7]*’]€) dt
i=0 - -1

1
+/ (K5 (05" n™*) + € (malrpy) + Yoo lriry))) 5 (05" n™F) di
-1

1
+/ (K& (b5, 1%) + (y11 — M) Irpy) + (12 — Y22) Irpg))) EX (05" ™) dt = 0.
-1

The equations (5.13)-(5.15) reduce the last equation to

2 1 1 1 1
>oTh-XSH 4 / AEL (@7 ") dt + / ANSES (03" ") dt + / (AT = X5)EG (07, m™") dt = 0.
i=0 B ! -1

- —1

Formula (3.16) of Lemma 3.2 further simplifies the above to

2 1

kE ~Sk
SoTEX L
=0

completing the proof.

Lemma 5.3 does not assert that the perturbed double bubble assembly T'(P*) is a critical point of J.
There are two reasons. First the constants A¥ in (5.13)-(5.15) depend on k, but the constants \; in (1.2)-(1.4)
are independent of k. Therefore (5.13)-(5.15) do not imply (1.2)-(1.4). Second the equation (5.16) does not
imply (1.5).

The next section will resolve these two issues.

6 Proof of Theorem 1.1

Recall that the locally energy minimizing perturbed double bubble assembly T'(P*) found in the last section
was constructed under two conditions:

1. The perturbed double bubbles P** are mapped into D by the transformation T ¢0 with given £ =
(&, ...,€") € Bz and 0 = (0*,...,0™) € S™.
2. Each Pi*’k, for k=1,2,...,n and i = 1,2, has the prescribed area w”

i -

In this section one minimizes J (¢* (-, £, 6, w), n* (£, 0, w)) with respect to (£,6,w) € 5 x S" x W to obtain
a minimum (£*,0* w*). With the particular £*, 0* and w*, (¢*(-,&*, 6%, w*), n*(£*, 6*,w*)) will yield the
final solution to (1.2)-(1.5).

The first lemma gives an estimate on the difference between the energy of (¢*,n*) and the energy of the
exact double bubble assembly T'(B).

10CC3 4,  10CC3
= + =
s (e 5

C2
Lemma 6.1 If o is small, then |T(¢*,n") — T(0,h)] < \’y|e4(7|'y|63 + (|’y|63)3)

holds uniformly for all (§,0,w) € Z5 x S™ x W.
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Proof. Expanding J(¢*,n*) yields

T ) = TOR) + (SO0, (60" — W)+ (S OM)G" 7 = 1), (61" — W)

(§"((A=7)(0,0) +7(¢",0")((¢",0" = 1), (6",0" = 1)), (¢", 0" = h))n  (6.1)

J(0,
1
6

for some 7 € (0,1). Also expanding S(¢*,n*) gives

I1S(6", ) = S(O.h) = SO, 1" = B2
< sup SIS = T)O,R) + (67 )@ — ), (6 — )z (62)

7€(0,1)

Since S(¢*,n*) =0, (6.2) shows that

1S(0,h) +8(0,h)(¢",n" = h)||z < sup *IIS"((l—T)(O h) +7(¢%,n" = h)((¢",n"), (¢",n" — h))| 2,

T€(0, 1)

which implies that

|<S(Oah)a (¢*777* - h)>n + <Sl(07h)(¢*777* - h)7 (¢*a77* - h)>n‘
< (5 5w 18" (=)0 0) + 76" a7 0" — ), (6" n" ~ W) 16" n e (63

7€(0,1)
By (6.3), (6.1) yields that

[T(6% ) = T, ) = (S0, (&%, 7" — W)

(2 sup 87((1 = )(O0.h) + (6" (@0 —h), (&%, 0" — W)= ) I(6* "~ m)le. (6.4
7€(0,1)

Lemmas 3.3, 4.6 and 5.1 show that
T (¢",n") — T (0, h)]

(2 sup 8" (1= 7)(0, )+ 76" ) (& " — ), (6" " = W)= ) (8", " — B
7€(0,1)

—_

Lo =4 QCME 4 26'|’Y|€3 3
< SE@RIHZI= 4 S e+ hle) (<)
C? 10CC3 10CC?
_ 42 |y]e3 + 3 3
= [l (G + S5 + 2= (hle)?) (65)

which proves the lemma.

The solution (¢*,n*) to (5.1) found in Lemma 5.1 depends on &, # and w. To emphasize this dependence,
write ¢* = ¢*(+,&,0,w) and n* = n*(£,0,w). The exact double bubble T'(B) whose internal representation
is (0, ) also depends on &, 6 and w. Now let £ vary in Z5, 6 vary in S”, w vary in W, and set

'](5707“]) = J(qb*(-,ﬁ,@,w),n*(f,G,w)). (66)

In (6.6) J is treated as functions of (&,60,w) € E5 x S" x W. Since E5 x S" x W is compact, J attains at
least one minimum. The next lemma shows that such a minimum must be in the interior of the set.
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Lemma 6.2 Let (£*,0* w*) € ?g x S" x W be a minimum of J. When 0 and o are sufficiently small and
o is sufficiently large, (§*,0%,w*) must be in Z5 x S™ x W, the interior of S5 x S" x W.

Proof. Suppose
(&7,0",w*) — (£°,0°,w°) (6.7)

as € — 0 and |y|e — 0, possibly along a subsequence.
First show that w® = w where

o= (152 (2 15)). =

b W — A and ﬁ — I as ¢ — 0, possibly along a subsequence. (6.9)
By condition 2 of Theorem 1.1
0<A< % (6.10)
and by condition 3
<A <A < (6.11)

where A\(T') and i(F) are the two eigenvalues of I'. Then by Lemmas 2.1 and 6.1, as e — 0,

I 0, w) "2 Tywkwk
N(7)etlog L log 1 QAZZG Jrz Z TJ (6.12)

=11i=0 k=11i,j=1

uniformly for (£,60,w) € E5 x S™ x W. The right side of (6.12) is a function of w, since af and r¥ depend
on w¥ and w§ only. If & is sufficiently large, then A is sufficiently small and by Appendix C the right side
of (6.12) is minimized at w = w. If w® were not w, then J(&*, 0%, w*) > J(£*,0*,w) when € is sufficiently
small, a contradiction to the assumption that (£*,60* w*) is a minimum of J.

Next show that

F(E) = min F(©) (6.13)
Let
HEO) = — {6.0.07) -~ [¢ -y QaI’krf’k—k(log )e! Y 22: ”w*kw ‘
Aly)et k=1 i=0 h=14,j=1
n 2
+3 Y sz/Bk /Bk %logﬁdi’dﬂ}. (6.14)

k=11i,j=1

In (6.14) B** is the exact double bubble determined by wr’k and w;k By Lemmas 2.1 and 6.1, and the
fact that w* — w, one obtains that, as e — 0 and |y|e3 — 0,

H(§,9)—>%(F11(n) +2r12( )(1_ )+I‘22<1;m)2)F(§) (6.15)

n

uniformly for (£,6) € Z5 x S™. If £° were not a minimum of F, then let gbe a minimum of F. By (2.14) :g:

must be in Z5. One finds that H(*,60%) > H(E,6%) when € and |y|€® are sufficiently small, a contradiction
to the fact that (£*,0*, w*) is a minimum of J.

Since w is in W and any minimum of F is attained in Z5 by (2.14), one sees that when € and |y|e* are
sufficiently small (£*, 0%, w*) is in Z5 x §" x W.
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The proof of Lemma 6.2 is the first instance that requires ¢ to be large. It is the second time, with (2.17)
being the first, when ¢ is assumed to be small. It is also in this proof that the condition 3 of Theorem 1.1 is
first used. From this moment on, §, ¢ and ¢ become dependent on ¢.

The dependence of (¢*,n*) = (¢*(t,&,0,w),n*(£,0,w)) on £F, and 6F is investigated in the next lemma.

Lemma 6.3 When o is sufficiently small, ||M||X = O(|y|e®) where k = 1,2,....,n and i = 1,2, and

E %0,:7 )||X = O(|7|e*) uniformly with respect to all (£,0,w) € Z5 x S™ x W.

Proof. The equation (5.1) is now written as

S(#,n,€,0) =0, (6.16)

with the operator S acting as

St (o,n) x (£,0) = S(¢,n,&,0) (6.17)
from D(S) x Dy x S™ to Z. Estimate Ds(g,go;,g,e) and DS%’;’,‘;&’Q), the Fréchet derivatives of S with respect to
¢F and 6F respectively. Let T(P) be the pefturbed double bubble assembly represented by (¢,m). Suppose

that the boundaries of P! are #(t) and the boundaries of T'(P') are r}. Hence r} = T'(#}). Note that P'

and T rj are independent of & and 6. The operator S acts on £ and 6 via the transformatlon T, and only the

parts involving I7(p,) in S depend on § and 6 as follows:

Ly 6mdon) = Iya@) = [ G0 dy
T(Pp)
1 1
- sl dyt [ RE O+ Y [ Gy
/Tl(P]g) 2 7 [rl(t) — ey ; Ta(py)
= / i log _r djj + €* R(eeielfl- (t) + & eeiglg) + & dy
P 2m el #(t) — g Pl ! ’
+Z e h(t) + ¢ e g+ €7 dy
a#l P
Then clearly
Olr(p,) 2 Olr(p,) 5
oeF = O(e”) and 0k O(e”) (6.18)
hold uniformly with respect to ¢, £, 6, and w. Consequently
DS(¢3777£ 9 4 D'S ¢7777§ 0) 5
[P50) _ots wa | 224859 ot o

Here the Fréchet derivatives are operators from R to Z and the above are estimates on the norms of these
operators. On the other hand Lemma 5.2 part 2 shows that at (¢*(+,&, 6, w),n* (&, 6, w)), the solution found
in Lemma 5.1,

H(DS oL 9)) H <di (6.20)

if o is small. Note that D‘S%Tﬁ)’w here is the same as §’(¢*,n*) in Lemma 5.2. The implicit function
theorem asserts that when o is small enough,

H D(¢*,n")
Dgk

‘ = O(]y|€*) and H

P = O(fylet). (6.21)
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Since

(6.22)

and H

H ng ‘7H agk ’X Dek lfH aek ‘X

the lemma follows.
Finally we complete the proof of the main theorem.

Proof of Theorem 1.1. In Section 5 it is proved that there is an assembly (¢*(-,&, 6, w),n*(€,0,w)) for

each (§,0,w) € E5 x S" x W which satisfies the equations (5 13)-(5.15). Lemma 6.2 shows that J(&,0,w) =
J(@*(-,£,0,w),n (5 0,w)) is minimized at (£*,0*,w*) € Z5 x S* x W.

The proof of Theorem 1.1 is divided into two steps. In the first step one shows that the assembly
(¢*(-, &%, 0%, w*), n*(£*, 6%, w*)) satisfies the triple junction condition (1.5), and in the second step one shows
that at (¢*(-, &%, 0%, w*), n*(€*,0%,w*)) the constants A\F in equations (5.13)-(5.15) are independent of k.

In the first step of the proof w is taken to be w*. The dependence on w* is not explicitly stated in this step.
By choosing (&,0) € Z5xS™ in different ways, one constructs various deformations of (¢*(-,£*,6%),n*(£*,0%))
to discover properties of (¢*(-,&*,0%),n*(£*,60%)). These deformations no longer keep assemblies in the
restricted class.

First fix k and take (¢}, €5, 0") = (€1, €5, 0%1)+2(5,0,0) for each I, where 6% = 1if | = k and 6'% = 0 if
l # k. The deformation (¢*(-,£,0),n*(&,0)) w1th (£, 0) chosen this way represent approximately a horizontal
translation of the k-th perturbed double bubble in the assembly (¢*(-,&*,6%),n*(£*,0*)). The infinitesimal
element of this deformation is

or}!(t,€,0)

XHk )y —
) ock (€,0)=(¢*,6%)

forl=1,2,...,n, i=1,2,0.

Here r:-"l(t,f, 0), with ¢ = 1,2,0, form the boundaries of the I-th perturbed double bubble in the assembly

(¢*(’§70)7T}*(§79)) Since l l
e (8,6,0) = e (up e T 4 Bi() +- ¢!

and 207" = ol (n*!)(u;")? — o (n*™") (p} (n"))?, Lemma 6.3 implies that

ol (t,€,0) 1+ O(eh) if 1=k

XH’k’l t = = { .
i) ock (£.0)=(*,0%) O(|yle*) if 1#k

(6.23)

uniformly with respect to t.
Second for every fixed k take (€1, 4,0Y) = (€51, €5",0%1) +¢(0,6%,0) for each I. This is nearly a vertical
translation of the k-th perturbed double bubble and the infinitesimal element of this deformation is

Vik,l _8r:’l(t7§a9) [ i+ O(yleh) if 1=k
X =" ‘@9) oy L O(le)  if 1#£k (6.24)

Third for every k take (¢4,¢5,01) = (&7, €51,0%1) 4+ £(0,0, 6'%) for each I. Then it is almost a rotational
deformation of the k-th perturbed double bubble and the infinitesimal element is

orrl(t,€,0) (e7F(t,65,0%) — €5+ O(]|e®) if 1=k
xRkl gy — i (LS V) = i \Hso v . 2
) = 250 e { O(jyle) it 14k (0:29)

At the triple points they are

i0F xkex pr 5\ s
xRk Ly = ] Fee® 0 (&5,0)+O(v|e’) if 1=k ' 9
= S it 14k (6:26)

Here the estimates O(|y|e®) hold uniformly with respect to t.
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By Lemma 6.3, since (£*,60*) is an interior minimum of J (with w = w*),

) _ (&) _ 7(6.0) _ 627
ot le.o)=(e .07 gk le.o= .07 0% l(e.0=¢.07) '
On the other hand Lemma 2.4 shows that % , % , and % are
1 ¢ 1 (579):(5*’0*) 2 (6’9):(5*)0*) (‘5:9):(5*79*)
equal to
n 2 n
O T XZ‘ ) / (k1 +y1Irpy + Yizlrpsy) NG - X ds
; ( ; g [T r(pp) + N2l )Ny
- Z/ (K2 + m2lr(pr) + 722IT(P2*))N12 -X!ds
=1 JoTH (P NOT (P
- / (ko + (v11 — y12) I (pyy + (12 — '722)IT(P2*))N£) X' ds (6.28)
=1 JoT (P HNaT (P )

with X being XH k XYk and XFF respectively. In (6.28) T! and N are the tangent and normal vectors
of the curves ri"!(t, f* 6*). But these curves satisfy the equations (5.13)-(5.15) of Lemma 5.3. Hence, (6.28)
is simplified to

T!) Xl / e 2NN} - X! ds
;( Z: Z TPy N\oTL (P e

n n

e 2N, - X ds — Z/ e2(A\ — AN - X! ds.
9

=1 /BT%P* \oTH (PP 1=1 JoT (P HnaT!(P; )

By (2.36) and (2.37) of Lemma 2.4, the above is equal to

n 2 1 n d lP*,l n d ZP*’I
Z((ZTﬁ).XlL) +Z€72Aa% FOJﬁZ(a)\é%

=1 =0 =1 - =1

e=0 ’

When w is fixed at w*, |TH(P;")| = wi' and |THP;!)| = w}' are constants independent of &, so the second
and the third terms above vanish and one deduces from (6.27) and (6.28) that

n 2 1
) X!| ) =0 6.29
> (Cmh-x| (6:29)
for X equal to X+ XV:k or XHk,
The equations (6.29) are linear homogeneous equations for variables Z?:o T!(-1) and Z?:o T!(1). Since

1=1,2,...,n and each of 7 Ti(—1) and 3 >_, TL(1) is a vector in R?, there are altogether 4n variables in
(6.29). Since X can be taken to be X*F Xk or X®F and k = 1,2,...,n, there are 3n equations in (6.29):

i((iﬂ).xff’”’ ) 0, i((iTﬁ).x‘W‘ll)_o Z(Z XR’”’ 1):0, k=1,2,....n

=1 " i=0 =1 =0 i=0
(6.30)
They are supplemented by n more equations
2 1 0%k
T -XS»’“‘ =0, k=1,2,..,n, where X%k(+1)=+eel? i (6.31)
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obtained in (5.16) of Lemma 5.3. The equations (6.30) and (6.31) form a 4n by 4n system of linear homoge-
neous equations. The coefficients of the system are given in (6.23), (6.24), (6.26), and (6.31). One sees that,
when € is sufficiently small, they form a non-singular coefficient matrix. Hence

(TY 4+ T + TH() = (T + T5+ T (1) =0, k=1,2,....,n. (6.32)
In (1.5) the 1;’s are the unit inward tangential vectors at the triple points, so v; = —T; at each upper triple
point corresponding to ¢t = 1 and v; = T; at each lower triple point corresponding to ¢ = —1. Hence (6.32)

implies (1.5).

In the second step of the proof take £ = £* and § = 6* but vary w in a neighborhood of w*. In this step
the dependence on £* and 6* is not stated explicitly. For each k =1,2,...,n and i = 1,2, let w be given by
wé = w;’l + 56%? for il =1,2,...,n and j = 1,2 where 5%“ is1if I = k and 7 = i and is 0 otherwise. The
infinitesimal element of this deformation is denoted X?’k. Note that these deformations do not satisfy the
constraints > ;_, wf = m and >_,_, w§ = 1 — m. However, since J(w) is minimized at w* under these
constraints, there exist Ay, As € R such that

8. (w)

8wf ’w:w*

=N, k=1,2,..,n, i=1,2. (6.33)

On the other hand (2.34)-(2.35) of Lemma 2.4, (6.32), (5.13)-(5.15) of Lemma 5.3, and (2.36)-(2.37) of
Lemma 2.4 in turn imply that

- 2 Akt
S

=1

0J(w)
owk

w=w*

(— / (k1 + v Ir(pr) + M2l (py) NG 'Xfik’l ds
oT! (P{'\OT! (P5")

HM:
I

|
S~

LProT z)w +mialr(py) + 22 Iropy))Ng - Xi5™ ds
oT (P;’ \oT (Pl*’

_/ L(PrhynaT( L)(fio + (y11 =2 Irpyy + (12 — Vgg)IT(P;))Né ) X;\(,)k,l ds)
T (P )NATH (P}

n
= Ze*%(— / N - X5 ds — / NG - X ds)
oT! (P N\OT!(P5!) ’ oT! (P{1)noT! (P;") ’

=1
+Ze—2A§(—/ , NG X ds+/ l NG XA ds)
P AT (PyY\OT! (PP AT (P )NATH(Py ™)
n ow' n ow
_ —2y1 W —2y1 YWy
= QNG ey g
=1 ¢ 1= v
_ 6_2)\?. (634)

Comparing (6.33) and (6.34) one derives e 2\F = A, for all k. This shows that when (¢,0,w) = (€%, 6%, w*),
the AF’s in (5.13)-(5.15) of Lemma 5.3 are independent of k. This establishes (1.2)-(1.4) and completes the
second step.

According to Lemma 5.1 the solution (¢*(-,£*, 0%, w*),n*(£*,0*,w*)) is found in the space X, so the
functions qb;.k’k(-, £*,0%, w*) are in H?(—1,1). The standard boot-strapping argument applied to the second
order integro-differential equations (1.2)-(1.4) shows that the ¢ "(-,£*,6% w*)’s are all C>®. Hence the
perturbed bubbles in the solution assembly are enclosed by continuous curves that are C'™ except at the
triple points.

A systematic study of stability of solutions to (1.2)-(1.5) is beyond the scope of this paper. Our assertion
that the solution (¢*(-,&*, 6%, w*),n*(£*, 0%, w*)) is stable is interpreted by its local minimization property.
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Recall that the solution (¢*(-,&*, 0%, w*),n*(£*,0*,w*)) is found in two steps. First for each (£,0,w) €
=5 x S™ x W, a fixed point (¢*(-,&,0,w),n*(§,0,w)) is constructed in a restricted class of perturbed double
bubble assemblies. This fixed point is shown to be locally minimizing J in the restricted class in Lemma
5.2 part 1. In the second step J is minimized among the (¢*(+, &, 6, w),n*(£,0,w))’s where (&, 0, w) ranges
over Z5 X S" x W, and (¢*(-, &%, 0%, w*),n*(£*,0*, w*)) emerges as a minimum. As a minimum of locally
minimizing assemblies from restricted classes, (¢*(-,£*, 0%, w*),n*(£*,0%,w*)) is locally energy minimizing
with respect to both restricted deformations and some non-restricted deformations; hence, we claim that
(p*(-, &%, 0%, w*),n*(£*, 6*,w*)) is stable.

The deviation of our solution from an exact double bubble assembly is ||(¢*(£*, 6%, w*), n*(£*, 6%, w*)) —
(0,h)||x and this quantity is of the order |y|e* by Lemma 5.1. Therefore, the smaller |y|e? is, the closer the
solution is to an exact double bubble assembly.

7 Discussion

While the locations £** of the perturbed double bubbles in the solution are near the points that minimize
F, the directions §** of these double bubbles can not be ascertained from our proof. Note that in (6.15)
the limit of H(&,0) is a constant multiple of F(¢) which does not depend on #. The directions §** cannot
be determined from this level of convergence. One would have to move to a higher level of convergence to
see dependence on 6, but that would require better estimate on the energy of (¢*(-,&,0,w),n*(§,0,w)) than
the one in Lemma 6.1. On the other hand not knowing the asymptotic limit of * does not hinder the proof
of Theorem 1.1, since f varies in S™, a compact manifold without boundary. The other two variables, £ and
w, live in ?g and W, which are manifolds with boundary, and one must know the dependence of the energy
on £ and w to show that £* and w* of the minimum are in the interior of these manifolds.

Ideally one likes to find solutions to (1.2)-(1.5) that locally minimizes [J in a natural topology like the
one defined by the L' norm as follows. For two pairs (21, Q) and (£21,€s) of Lebesgue measurable subsets
of D satisfying the conditions

] = [Ql, [Q] =0, [ NQ| =0 N =0,
define a metric

dist((Q1,9Q2), (1, D)) = lIxa, — Xa, l21(0) + X2 — Xa, l21(0)-

The functional J is lower semi-continuous under this metric. One can prove the existence of a global
minimizer by the standard argument. It is also an ideal metric for a I'-convergence theory to connect the
model here to a diffusive interface system; see [25]. However finding local minimizers of 7 under this metric
is challenging, since any neighborhood defined by the metric contains very irregular elements. We do not
know if the solution found in this paper is a local minimizer with respect to this metric.

The functional [J has a simpler counterpart in a binary inhibitory system. Let w € (0,1) and v > 0. For
) C D with the fixed area: |Q2| = w|D]|, the binary free energy of € is

Ta(®) =Po@ + 3 [ [(-8) P (xa - w) da. ()
D
A critical point of this functional satisfies the equation

/Q-i—’)/IQ =\ (7'2)

on 9. The equation (7.2) or the functional (7.1) may be derived from the Ohta-Kawasaki theory [20] for
diblock copolymers; see [19, 23]. The equation can also be derived from the Gierer-Meinhardt system [30].
This binary problem has been studied intensively in recent years. All solutions to (7.2) in one dimension
are known to be local minimizers of Jp [23]. Many solutions in two and three dimensions have been found
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that match the morphological phases in diblock copolymers [21, 27, 26, 28, 29, 13, 14, 30, 33, 36]. Global
minimizers of Jp are studied in [2, 34, 17, 5, 16, 15, 10] for various parameter ranges. Applications of the
second variation of Jp and its connections to minimality and Gamma-convergence are found in [7, 1, 12].

A relevant result in [26] states that when w and ~y are in a proper range, (7.2) admits a solution that is
an assembly of perturbed discs. The discs have approximately the same size, and the centers of the discs
nearly minimize the same function F' of (1.10).

Appendix A

We prove Lemma 4.1. Let F be the functional

f@»:/'mmwf—ff@»m (A1)

-1
for y € H}(—1,1) and fil y(t)dt = T, where q € (0, 7).
Step 1: F is bounded below.

37”)2 be the first three eigenvalues of the problem
_f// = ef’ f € H(%(_la 1)7

and fi(t) = cos It and fo(t) = sin7t be eigenfunctions corresponding to A; and Ag. Note that

Let ey = (5)?, ea = 2, and e3 = (

1 1 1 4 1
2 — 2 g 1 = — ==
[1f1(t)dt—[1f2(t)dt—l, and [1f1(t)dt - [1f2(t)dt 0.

For every y € H}(—1,1), decompose y = c1 f1 + ca2 f2 + 2 where z € H}(—1,1) is perpendicular to f; and fo:
f_ll fi(t)z(t) dt = f_ll f2(t)z(t) dt = 0. By the variational characterization of the eigenvalues

Fw) = e - )+ dlea =) + F(2) 2 e~ )+ Bl - )+ - ) [ AOd (1

—1

Note ) )
4
T:/ y(t)dtzﬂwL/ 2(t) dt.
-1 ™ -1
Then L L
4 2
(T— ﬂ) - (/ (1) dt)? < 2/ 22(t) dt
™ -1 -1
and
1 41\ 2
Fly) = cler—a?) +dler—a*) + 5(e— ) (T - =)
8 47 Y2
= (a-+(e—d)5)d (- ) (S e+ (e - D)+ (e2 - )
T T 2
Since
2 2y 8 3 2 2 2
el —m —|—(e3,—7T)P:—T—|—1O>O7 and eg — ¢ > 7" —7° =0,

F(y) is bounded below for all y € Hg(—1,1) with f_ll y(t)dt ="7.
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Step 2: A minimizing sequence is bounded in H}(—1,1).

Let y, be a minimizing sequence. Decompose as above y, = ¢ f1 + ¢§ fo + z,. Then

2 2 8 v\2 2 47 v 2 Tz 2 V)2

Fly) = (o1 = ¢+ (es = )= ) (1) = (es = a*) (= )ef + (es = 4*) 5 + (e2 — 4)(c5)2
Since F(y,) is bounded below and above (for y, is minimizing), |c¢f| and |c§| are bounded with respect to
v. By (A.2), f_ll 22(t) dt is also bounded. Consequently f_ll y2(t) dt is bounded. From (A.1) we deduce that

f_ll(y{,(t))2 dt is bounded. Hence v, is bounded in H}(—1,1).
Step 3: A minimizer v exists.

From the minimizing sequence y,, there is a subsequence again denoted by ¥, that converges weakly
in H}(—1,1) and strongly in L?(—1,1) to a limit v € H}(—1,1) with filv(t) = Y. By the weak lower
semi-continuity of the H' norm,

F(v) < liminf F(y,).
V—00
Hence v is a minimizer.

T2q3
2(tang —q)

As a minimizer, v satisfies the equation —v” — ¢?v = X, v(&1) = 0, for some A € R. Solving the
equation, we find v(t) = C cos(qt) — q%, A = Cq?cosq. Hence v(t) = C(cos(qt) —cosq) and T = f_ll v(t)dt =

Step 4: F(v) =

C(zsi% —2cos q). It follows that C = m and
Y (cos(gt) — cosq)
U(t) = 2sing .

m — 2cosq

If we multiply the equation for v by v and integrate, then

1 ) T2q3
.Fv:)\/vtdt:AT:CT cosq = ————.
(v) B (t) @S = =)

This proves Lemma 4.1.

Appendix B

We explain in more detail the first part of the restricted perturbation. The asymmetric case and the
symmetric cases are dealt with differently.

For the asymmetric case, one starts with a somewhat different way to perturb an exact double bubble and
later return to the perturbation setting described in Section 2. Since only one double bubble is considered
in this appendix, the superscript k£ will be dropped from notations like rf , af , etc. One simply writes r;, a;.

From an exact double bubble specified by the radii r;, the angles a; and the height A of the upper triple
point, move the triple points (0, £h) vertically by the same distance in the opposite directions to (0,7).
Connect the new triple points by three arcs with the radii p;, the angles «;, and the centers (8;,0) for
i =1,2,0. However at this point we do not impose the condition P1_1 — ,02_1 = pal. Hence the choice of p;,
«;, and (; is not unique.
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Define
wi = p2(e; —cosagsina;), i=1,2,0 (B.1)
as before. Since p; sin a; = 1, one can re-write u; as
n?(a; — cos oy sin ;)

Hi = ) : (B2)
sin” oy

The p;’s must still satisfy the area constraints

p1+po = w1,  pl2 — Ho = W2. (B.3)

If a; is treated as a function of p; and 7, implicit differentiation shows that

Oay; _ . sin® oy (BA)
O 2n2(sin oy; — v cos ;)
da; _ (o —.cos o sin ;) sin @ (B.5)
an n(sin ; — oy cos a;;)
The total length of the three arcs is
2 2 no
P=2 ipi =2 —. B.6
2 e B9

Since «; depends on p; and 7, and the u;’s are subject to the constraints (B.3), we take po and 7 as the
independent variables and treat «;, and P all as functions of ug and 7.

oP

Compute Do Since
oP 0 a; Do O
=2y ( : ) (B.7)
o = O \sinay/ Opi Ao
and P .
Q5 Sl &; — & COS (5
_ B.8
aOLi (sin o ) Sin2 o ’ ( )
one deduces by (B.4) and (B.3) that
oP 2 -1 i i
OP _ 5~ (El)sinag (B.9)
Ao =0 n
Note that the right side of (B.9) is —p; " + py ' + py '
Next compute %f; . Note that
2
oP o 0 a; \ Oa;
=y (S ()5,
an 2 \sinq; Oa; \sina;/ On
By (B.5) and (B.8) one finds
oP 2
an Q;COS Q. (B.10)
Note that at a critical point where g—P = %—P =0,
Ho n
—sinaj +sinag +sinag = B.11)
cosay +cosag +cosag = 0 (B.12)
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which imply that a; = 5F

—ap and ag = —“ + ap, i.e. an exact double bubble.

Now proceed to calculate the second derivatives of P. First

1 2 2
0?P sin i cos a; Doy O cos «; Jay;
R 10 D D D 18 T S 74

oud = n Opi Opo n O
By (B.4)
521;’ _ Lg i .cos a; sin® oy . (B.13)
oug 2n o sina; —ajcosay
Next ) )
9P 0 —1)'sinay - sina;  cosq; Oy
() Sy (- T )
Opodn O\ = U pard U n on
Using (B.5) one finds
’pP 1 i (—1)*sin’ a; (B.14)
Opedn 1?2 — sin oy; — oy CoOS oy ’
Finally
PP 9 [ o :
pye = a—ﬁ(QZcosozz) = 2Zsma,
i=0 i=0
By (B.5) one derives
o*P _ 2 i (s —‘cos o sin ;) sin? o ' (B.15)
on? 1 — sin a;; — o COS Q5
In summary the Hessian matrix of P is
i 22: COoS sin® [e% i 22: s1n4 oy
2n3 — sin oy; — oy; €OS @y 72 sin oy — oy cos oy
D?P = ) (B.16)
1< sm4 Q; 2 < (o; — cos v sin ;) sin? oy
5 By

sina; —a;cosa; M sin a; — «; cos o

i=

This matrix is evaluated at the exact double bubble where a; = a; and n = h. The a;’s satisfy a; = %” —ay
and as = 2{ + ag.

Lemma B.1 The matriz D?P at the exact double bubble is positive definite.

This Lemma is proved rigorously in [32, Appendxi B]. Here we offer some numerical evidence by plotting

2 .. 3
cos a; sin® a;
Z _ B.17
- sl a; — a; CoS a; ( )
1=0
and
2 . 2 . . 2 i
(Z cos a; sin® a; )(Z (a; — cosa; smai)sm2 ai) (Z (—1)Lsm4 a; )2 (B.18)
= sina; — a; cos a; — sina; — a; cos a; — sina; — a; cos a; ’
1= 1= 1=

against ag € (0, %) in Figure 10. Both (B.17) and (B.18) are positive, so the matrix D?P is positive definite
at the exact double bubble.
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Figure 10: Left plot: the quantity (B.17) against ag € (0, ). Right plot: the quantity (B.18) against ao.

Lastly we connect the setting here with the setting in the rest of the paper regarding P versus pg and 7.
After P is treated as a function of uy and 7 here, one sets up the equation

OP (o, 1)
——= =0, B.19
Do (B.19)
and uses it to define pg as a function of 7 implicitly. This can be done near the exact double bubble because
o?pP
0 B.20
Gu% ,u():rg(aofcos ap sinag), n=h ?é ( )
by Lemma B.1. As seen after (B.9), equation (B.19) is just the condition

it =pt=p0t (B.21)

precisely the one requirement, (2.46), in the setting of restricted perturbations in Section 2 that is not
implemented in this appendix before (B.19).

Once o = po(n) becomes a dependent variable, P = P(uo(n),n) is a function of 1 only, and

dP_ 0P dw 0P _ 0P
dn Opo dn — On on
2
PP PP dw PP PP (- £0§n>+a2p
dn?  Ouedn dn - On®  Ouedn oy on?
0
8°P 9%pP _( 8P )2
_ Oug on? Opodn
- 2P
8“3
Consequently by (B.10),
dpP opr 2
il - = ZZCOS a; =0, (B.22)
d'l] n=h 877 /L():rg(ag—cosaosinao), n=h —o
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and by Lemma B.1,
d’P

—_— . B.2
e >0 (B.23)

In the symmetric case, we do not use p; since they are constants during a restricted perturbation. One
starts directly with the equation for the area of the two bubbles

p2(a; — cos i sin o) = w;, i = 1,2, (B.24)

where p; = p2, a1 = as and w; = wy, and the equation

1N = p; sin ;. (B.25)
Implicit differentiation from (B.24) and (B.25) shows that
@ (o — cosaysinay) sin (B.26)
dn n(sina; — a;cosay) ’
In this case P is give by
2 2
no
P=2 ipi+2n=2 - 2 B.27
;ap+n ;s1nai+" (B.27)
It follows that P
p 2cosay +2cosas + 2. (B.28)
n
Note that at the exact double bubble where «; is ?,
dP
= = (B.29)
d’l] n=h
Moreover )
?P 2 (oi — cos a sin a;) sin? oy
—_— = - . B.30
dn? 1 ; sin o; — oy oS oy ( )
At the exact double bubble
4P 2 (2 — cos 2 sin 20)sin? 28 3.9631...
. f—z i)’y _ >0, (B.31)
dn? ln=h h P sm? — 2 cos I h

Hence (B.23) remains true in the symmetric case. The value in (B.31) may also be obtained from the
asymmetric case by taking the ag — 0 limit.

Appendix C

Let
—QAZZ(LZTZ + - ZZI‘”w , weW. (C.1)
k=1 1i=0 k 14,j=1

Here af and r¥ depend on w} and w4 implicitly through the equations

()2 (a} — cosa¥ sinak) + (r§)?(af — cosal sinal) = wh (C.2)
(r5)2(ah — cosak sinak) — (rf)?(ak — cosal sinaf) = wh (C.3)
risina® = rhsinad = rfsinaf (C4)

()™ =3) = )™ (C.5)

cosal + cosak 4 cosal = 0 (C.6)
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as explained in Appendix B. In this appendix we show that f is minimized at w, given in (6.8), if A is
sufficiently small.
Because of the constraints

iw’f:m, iw’;:lfm, (C.7)
k=1 k=1

a critical point of f in W is a solution to the equations

of(w) _,  0f(w)

E AL E
owy ows

= AQ, k= 1,2, e n (08)

where A;, Ay € R are Lagrange multipliers from the constraints (C.7). Since for each k, a¥ and r¥ (i = 1,2,0)
depend on wi and w4 only, w is clearly a critical point of f.
For w € W, define

n 2
filw) = 3 Diwfwy.
k=14,j=1
Let z; = w} and y, = wh for k=1,2,...,n — 1. Then

n

wl=m—(x1+x2+...+Tp—1) andwy =1—m—(y1+y2 + ... + Yn—1).

Treating f; as a function of (z1,...,2,—1) and (y1, ..., yn—1), without constraint one differentiates f; to find

o n—1 n—1
8—2 = 2uag+ 200 (D@ —m) + Wiy + 2 Yw - (1-m))
=1 =1
8f n—1 n—1
8731116 = 2lhpxr + 2012 ( > - m) + 2l22yn + 2020 ( > (1 m)>~
=1 =1
Let 2, =z — > and y;, =y — I:Lm. Then at a critical point of f;
[ 4Ty, 20y .. 2Ty Al 204y .. 2 [ [, ] [0 ]
2F11 4F11 2F11 2F12 4F12 2F12 .’EIQ 0
2F11 2F11 4F11 2F12 2F12 4F12 95;171 0
= (C.9)
4I'g 2l ... 2IN9 49 2l99 ... 2@99 yh 0
2o 42 ... 2I'2 29y 429 ... 2@ yh 0
L 2F12 2F12 4F12 2F22 2F22 4F22 1L y’;lfl i L 0 i
Let
2’ = Az" and y" = Ay (C.10)
where
4 2 2
A 2 4 .02 (C.11)
2 2 4

is an n — 1 by n — 1 matrix. Then the last linear system can be written as

[z’ + Ty’ =0
[igz” + T2y’ =0
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Since I" is non-singular,

" =y" =0. (C.12)
Next write the matrix A as
A=B+2] (C.13)
where
2 2 2
B_ 2 2 2
2 2 2

and I is the n—1 by n— 1 identity matrix. B is a rank one matrix with two eigenvalues: 0 and 2(n—1). The
eigenvalue 0 has multiplicity n —2 whose eigenvectors span the subspace that is perpendicular to (1,1, ...,1)7.
The eigenvalue 2(n — 1) is simple corresponding to the eigenvector (1,1,...,1)7. By (C.13) we deduce that
the eigenvalues of A are 2 (of multiplicity n — 2) and 2n (of multiplicity 1).

Hence by (C.10) and (C.12), since A is non-singular,

' =y =0. (C.14)
This shows that the only critical point of f; is

1—m

xk:T and Yp = ——, ]{1:172,...,77/—1- (015)
n n

The second derivative of fi with respect to x and y is the same matrix

I'nA TI'ipA
[ s e
given in (C.9).
For any (u,v) € R2™=1 introduce
u' =VAu and v =V Av. (C.17)

Here, since A is positive definite, v/ A is the positive squre root of A. Then consider the quadratic form
I'nA TsA u
T ,T 11 12 _ T T T T
[u",v"] { FisA TopA } [ v } = T'ju' Au+Tiou’ Av +Ti9v' Au 4+ Tagv” Av

= Ty@) e + )T v + Tia)Tu 4 T (v) o'
n—1

= [1—‘11(u;€)2 + 2F12u;€1};c + FQQ('U;C)2:|

=1

vV
[l

i

since I is positive definite. The equality holds only if « = v = 0. This shows that D2f; is everywhere
positive definite.
Hence f7 is minimized at w. Moreover when A is small, f is minimized at w.
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