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ABSTRACT. For the three dimensional axisymmetric Euler flow, we construct a
family of solutions with multiple travelling vortex rings, with large speed of order
O(| ln ε|), where ε > 0 is a small parameter. Our construction is based on the
analysis of the following nonlinear elliptic equation:{

∂rrψ + 3
r ∂rψ + ∂zzψ = −F((ψ− α

2 | ln ε|)r2), (r, z) ∈ R2,
ψr(0, z) = 0 for r = 0,

for some special functions F, where α is a parameter. The location of the vortex
rings are governed by some balancing systems, which can be solved by the poly-
nomial method in several special cases. For the non-swirl case, in the core of each
vortex ring, our solutions can be regarded as a rescaled finite mass solution of the
Liouville equation. The results can be generalized directly to the case with swirl,
for which we also construct different types of solutions with multiple vortex rings.

1. INTRODUCTION

The Euler equation for an ideal imcompressible homogeneous fluid in dimen-
sion 3 can be written in the form:

ut + (u · ∇)u = −∇p in R3 × (0, T),
divu = 0 in R3 × (0, T),
u(·, 0) = u0 in R3,

(1.1)

where u = (u1, u2, u3) is the 3-dimensional velocity vector of the fluid and p is the
scalar pressure.

An important quantity associated to the velocity u in the equation (1.1) is its
vorticity, which is defined by

w = curlu.
In terms of this quantity, under suitable conditions, the Euler equation (1.1) is
equivalent to its vorticity-stream formulation:

wt + (u · ∇)w = (w · ∇)u in R3 × (0, T),
u = curlψ0, −∆ψ0 = w in R3 × (0, T),
w(·, 0) = curlu0 in R3,

(1.2)

where ψ0 is the vector stream function. Note that the velocity can actually be
recovered from the vorticity from the Biot-Savart law, at least under some natural
conditions. We refer to [28] and the references therein for a detailed introduction to
the mathematical aspect of the Euler equation. In particular, a rigorous treatment
of the vorticity-stream formulation of 3D Euler flow can be found in Section 2.4 of
[28].
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In this paper, we shall use the vorticity-stream formulation to show the exis-
tence of solutions with multiple vortex rings and having the form of travelling
wave type. Our solution can be regarded as a special family of the so called
vortex filament solutions. Roughly speaking, vortex filament solutions to the 3-
dimensional Euler equation are those solutions whose vorticities w are large and
uniformly concentrated near an evolving smooth curve Γ(t).

The study of vortex filaments traces back to Helmholtz and Kelvin. In 1867,
Helmholtz considered the situation where the vorticity is concentrated in a circular
vortex filament, he found that the vortex rings have steady form and travel with a
large constant velocity along the axis of the ring. In 1970, Fraenkel [15] established
the first rigorous construction result of a vortex ring concentrated around a torus
with fixed radius of small section ε > 0, travelling with constant speed of O(| ln ε|).
After this pioneering work, existence of steady vortex rings and their asymptotics
have been analyzed in many works. For instance, in [1, 31], variational method
for the stream function is used to construct a single vortex ring with vanishing
circulation in the limit. In [5, 6], vortex rings are constructed via rearrangement
of functions. The paper [16] established the existence of vortex ring by analyzing
a kinetic energy associated to the vorticity function. [13] constructed vortex rings
in various domains and studied their asymptotic limit as a small parameter tends
to 0. In the recent papers [8, 9], single vortex rings are shown to exist for a broad
class of nonlinearities. The method used there is also of variational nature, for
the corresponding elliptic equations. Finally, let us mention the paper [30], where
magnetic relaxation method is used to formally show the existence of steady vor-
tex rings. We would like to point out that most of these work deals essentially with
one steady vortex ring.

The dynamics of the Euler equation for vortex filaments have been studied long
time ago. Da Rios [10] and Levi-Civita [23] formally found the general law of mo-
tion of a vortex filament with a thin section of radius ε > 0, uniformly distributed
around an involving curve Γ(t), see also the survey paper by Ricca [33]. If Γ(t)
is parametrized as x = γ(s, t), where s designates its arclength parameter, then
γ(s, t) asymptotically obey a law of the form

γt = 2c| ln ε|(γs × γss)

as ε→ 0, or scaling t = | ln ε|−1τ,

γτ = 2cκbγ(τ) (1.3)

where c corresponds to the circulation of the velocity field on the boundary of
sections to the filament. Here for the curve Γ(τ) parametrized as x = γ(τ, t),
we denote by tΓ(τ), nΓ(τ), bΓ(τ) the tangent, normal, binormal unit vector, κ be its
curvature.

In [21], Jerrad and Seis studied the evolution of the vortex filaments under mild
assumption of vorticity concentration, by establishing new estimates for the cor-
responding Hamiltonian-Possion structure. They showed in a rigorous way that
Γ(τ) indeed evolves by the law (1.3), up to some errors which can be precisely
controlled.

As explained in [21], solutions of the Euler equation for which the vorticity re-
mains close for a significant period of time to a filament should exist and evolve
by the binormal curvature flow may be loosely termed vortex filament conjecture.
This conjecture in its full generality is still not completely resolved. The case of
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steady vortex filaments can be regarded as a special situation of this type. Besides
those steady vortex rings mentioned above, we also have the example of knotted
vortex filaments with small vorticities, studied in [14]. Recently, Davila, Del Pino,
Musso and Wei [12] consider the case when the curve Γ(τ) is given by the trav-
elling helix which satisfies the binormal law (1.3) and construct solutions of (1.2)
with concentrating vorticity for this helix. We also point out that in [7], evolution
of multiple vortex rings in a short time period is analyzed.

It is worth mentioning that the nearly parallel interacting filaments of the 3D
Euler equation have also been studied in [22] and the law for it is the same for
the dynamics of almost parallel vortex filaments for the Gross-Pitaevskii equation
[20]. Construction of vortex filament with small vorticities around general set has
also been studied in [14].

In this paper, we would like to study the existence of vortex filament solutions
of travelling wave type, where the concentrating region of the vorticity w has the
shape of multiple travelling rings. More precisely, we will construct solutions of
multiple vortex rings, for which m rings have positive circulation and the other
n rings have negative circulation. Moreover, the vortex rings will collapse to the
same circle of radius of O(1) as the parameter ε goes to zero, and the mutual dis-
tances between these rings are of the order O( 1

| ln ε| ), which is much smaller than
the radius of the rings.

Our construction is based on the Lyapunov-Schmidt reduction. The reduced
system we obtain here tells us that the location of the rings(represented by the
points aj, bk) are essentially determined by following system (Balancing condi-
tion): 

m

∑
j=1,j 6=k

γ̃j
ak−aj

−
n

∑
j=1

β̃ j
ak−bj

= σ̃k, for k = 1, ..., m,

−
n

∑
j=1,j 6=k

β̃ j
bk−bj

+
m

∑
j=1

γ̃j
bk−aj

= −ρ̃k, for k = 1, ..., n.
(1.4)

Here aj, j = 1, ..., m, b`, ` = 1, ..., n, are complex numbers in the right half plane Π
defined in (2.2), γ̃j > 0, −β̃ j < 0 correspond to the circulation of the rings, and
σ̃j, ρ̃j are constants related to the radius and speed of the travelling rings. More-
over, the solvability of our original problem is related to the non-degeneracy of the
solution to (1.4) which will be explained in Definition 7.1.

We remark that similar reduced system has been obtained when we study the
multi vortex ring solution for the 3-dimensional Gross-Pitaevskii equation in our
previous work [4], when all the degree of the standard vortex are equal to +1 or
−1. It has been shown there that the existence and non-degeneracy of symmetric
(aj, b`) are related to some generalized Adler-Moser polynomials.

To make our construction possible, the solution aj, b` to the system (1.4) has
to satisfy some extra symmetric properties. We therefore introduce the following
conditions:

(M1). The points aj, b`, j = 1, ..., m, ` = 1, ..., n are all distinct. The set of points of
{a1, ..., am} and {b1, ..., bn} are both symmetric with respect to the r axis.

(M2). aj, b`, j = 1, ..., m, ` = 1, ..., n is nondegenerate solution of (1.4) in the sense
of Definition 7.1.
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To state our results in a more precise way, let us now introduce some notations.
For i = 1, · · · , m + n, given distinct points (ri, zi) ∈ Π, let Γi(τ) be a circle with
radius ri translating with constant speed along its axis parametrized as

γi(s, τ) = (ri cos
s
ri

, ri sin
s
ri

, zi +
ci
ri

τ)T . (1.5)

Then we have the following existence result:

Theorem 1.1. Suppose aj, b`, j = 1, ..., m, ` = 1, ..., n is a solution of (1.4) satisfying
condition (M1)-(M2). For any r0 > 0, there exist distict points (ri, zi) ∈ Π for i =
1, · · · , m + n, and a smooth solution wε to (1.2), defined for τ ∈ (−∞,+∞) such that
for all τ,

wε(x, τ| ln ε|−1) ∼
m+n

∑
i=1

κiδΓi(τ)
tΓi(τ)

,

where κi is the circulation(see (2.16) and (7.4)), Γi is the traveling circle parametrized by
(1.5), δ is the Dirac mass, and tΓ(τ) is unit the tangent vector of Γi at the point tΓ(τ). The
corresponding velocity vector is axisymmetric. Moreover, the solutions have the following
properties:

1. The vortex rings satisfy |(ri, zi)− (r0, 0)| = O( 1
| ln ε| ) as ε→ 0;

2. After suitable translation in the r direction with the order O(1) , and a scaling by
a factor | ln ε| , the position of the vortex rings in the (r, z) plane is close to those
points

{a1, ..., am, b1, ..., bn}.
In other words, the locations of the vortex rings are determined by the balancing
condition.

Solutions described in our main theorem can be constructed for the cases ei-
ther with swirl or without swirl. More precise description of the solutions will
explained in the following sections. The motion of vortex filaments correspond-
ing to our solutions is the natural generalization of the motion of point vortices for
the 2D incompressible Euler equations. In that case, their desingularization has
been analyzed in [11, 29, 35] and reference therein.

When β̃ j = γ̃i = 1 in (1.4), it has been shown in [4] that for (m, n) ∈ S where

S := {(2, 1) , (3, 2) , (4, 3) , (5, 4) , (6, 5)},
there exists solution to (1.4) satisfying (M1)-(M2). Hence one can construct so-
lutions to (1.2) with such m + n travelling vortex rings. In Section 8 of this paper,
we show that there exist abundance of balancing configurations for many choices
of different circulations. In particular the case with two different circulations and
three different circulations will also be studied.

We point out that solutions with vortex rings in other PDE settings have been
built in [3, 24, 25]. Partial results on spectral stability of a columnar vector for the
3D Euler has been obtain in [17, 18] and nonlinear stability of point vortices in [19].

Let us now sketch the main ideas of the proof. We will use the method of finite
dimensional Lyapunov-Schmidt reduction. The first step is to reduce our problem
to a 2D problem in Π× (0, T): rwt +∇⊥(r2ψ) · ∇w = 0 in Π× (0, T),

−(∂2
r +

3
r ∂r + ∂2

z)ψ = w in Π× (0, T),
∂rψ(0, z) = 0 ∈ ∂Π× (0, T).

(1.6)



CLUSTERED VORTEX RING FOR 3D EULER EQUATION 5

After some manipulation, in the case with swirl, we are lead from this system to
the equation (2.15). This reduction from 3D to 2D case is done in Section 2.1. We
will find travelling wave solutions to (1.6) with multi vortex rings by analyzing
the nonlinear elliptic equation (2.15). Our second step is to choose the nonlinear
function F(s) in (2.15) to be of the form es. We then build suitable approximate
solutions by using a combination of solutions of the classical Liouville equation.
This is contained in Section 2.2. This approximate solutions can be perturbed into
a genuine solution by Lyapunov-Schmidt reduction method. The balancing condi-
tion comes from the requirement that the projection of the error of the approximate
solution to kernels of the corresponding linearized operator should at the main or-
der be equal to zero. Once we have this balancing condition, then a true solution
can be found using implicit function theorem.

This paper is organized as follows. In Section 2, we will reformulate our prob-
lem and reduce it to a two dimensional elliptic problem and introduce the approx-
imate solution. In Section 3, we will get the error estimate caused by the approx-
imate solution ψ0 introduced in (2.22). Section 4-6 are devoted to the inner-outer
gluing procedure which solves a nonlinear projected problem. Section 7 is devoted
to the reduced problem and the fully solvability of our Theorem 2.1. Theorem 1.1
is a direct consequence of Theorem 2.1. In Section 8, we are devoted to the study
of the balancing condition (2.23). In the last section, we study the case with swirl
and construct multiple vortex ring solution such that the mutual distance and the
radius are both of O(1) due to the effect of the swirl. We emphasize that this type
of solutions are in general not available for the case without swirl.

Acknowledgement W. Ao is supported by NSFC no. 12071357 and no. 12131017.
Y. Liu is partially supported by NSFC no. 11971026 and “The Fundamental Re-
search Funds for the Central Universities WK3470000014”, and the National Key R
and D Program of China 2020YFA0713100. J. Wei is partially supported by NSERC
of Canada.

2. FORMULATION OF THE PROBLEM

2.1. Reduction to elliptic equation in 2D. As we mentioned in the introduction,
we will construct travelling solutions to (1.2) with multi vortex rings. In this paper,
we are in particular interested in the axisymmetric Euler flows. In this case, the
velocity field u can be expressed in the following form:

u(r, z) = ur(r, z)er + uθ(r, z)eθ + uz(r, z)ez

where {er, eθ , ez} is the usual cylindrical coordinate frame given by

er =
1
r
(x, y, 0)T , eθ =

1
r
(−y, x, 0)T , ez = (0, 0, 1)T .

We also denote the corresponding vorticity w and the stream function vector
ψ0 in (1.2) as

w(r, z) = ωr(r, z)er + ωθ(r, z)eθ + ωz(r, z)ez

and

ψ0(r, z) = ψr(r, z)er + ψθ(r, z)eθ + ψz(r, z)ez.
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Under these notations, the 3-dimensional Euler equation (1.1) becomes
uθ

t + uruθ
r + uzuθ

z = − 1
r uruθ in Π× (0, T)

ωθ
t + urωθ

r + uzωθ
z = 2

r uθuθ
z +

1
r urωθ in Π× (0, T)

−(∆− 1
r2 )ψ

θ = ωθ in Π× (0, T)
(2.1)

where uθ , ωθ and ψθ are the angnular components of the velocity, vorticity, and
stream function vectors, respectively and

Π = {(r, z)|r > 0, z ∈ R} (2.2)

is the right half plane.
Now the relation between velocity and stream function is given by

ur = −ψθ
z , uz =

1
r
(rψθ)r (2.3)

in which the incompressibility condition
1
r
(rur)r + uz

z = 0 (2.4)

is automatically satisfied.
The axisymmetric Euler equations have a formal singularity at r = 0, which

sometimes is inconvenient to work with. To remove the artificial singularity we
introduce

u1 =
uθ

r
, ω1 =

ωθ

r
, ψ =

ψθ

r
. (2.5)

The transformed equation becomes
u1,t + uru1,r + uzu1,z = 2u1ψz in Π× (0, T)
ω1,t + urω1,r + uzω1,z = (u2

1)z in Π× (0, T)
−[∂2

r +
3
r ∂r + ∂2

z ]ψ = ω1 in Π× (0, T),
ψr(0, z, t) = 0 on ∂Π× (0, T).

(2.6)

In terms of the new variables, we have

ur = −rψz, uz = 2ψ + rψr. (2.7)

We may also write the transformed equation as
(r3u1)t + (rur)(r2u1)r + (ruz)(r2u1)z = 0 in Π× (0, T)
rω1,t + (rur)ω1,r + (ruz)ω1,z = r(u2

1)z in Π× (0, T)
−[∂2

r +
3
r ∂r + ∂2

z ]ψ = ω1 in Π× (0, T),
ψr(0, z, t) = 0 on ∂Π× (0, T).

(2.8)

Note that
rur = −(r2ψ1)z, ruz = (r2ψ)r.

one has
(rur, ruz) = ∇⊥(r2ψ).

Hence
(rur)r + (ruz)z = 0

and
rurνr + ruzνz = 0

are satisfied
As mentioned in the introduction, for solutions with large vorticities and uni-

formly concentrated along a smooth curve, the travelling speed is of O(| ln ε|). We
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therefore introduce t = | ln ε|−1τ. In the new variable (r, z, τ), replacing ω1 by W,
and letting

û = r2u1, ψ̂ = r2ψ,

we find that the equation (2.8 ) becomes
| log ε|rûτ +∇⊥(ψ̂)∇û = 0 in Π× (0, | ln ε|−1T)
| log ε|rWτ +∇⊥(ψ̂)∇W = (û2)z

r3 in Π× (0, | ln ε|−1T)

−∆θ(
ψ̂
r ) = rW in Π× (0, | ln ε|−1T)

ψr(0, z, t) = 0

(2.9)

where

∆θ =
1
r

∂

∂r
(r

∂

∂r
)− 1

r2 +
∂2

∂z2 .

In this way we have reduced the original 3D problem to a 2D problem with
Neumann boundary condition. The purpose of this paper is to construct regular
solution W(r, z, τ) which resemble a superposition of point vortices of the form
∑N

i=1 κiδ(x − pi(τ)) such that pi(τ) does not change form as time evolves. We
focus on travelling solutions with constant speed α such that

pi(τ) = pi + ατe2.

Note that due to the Galilean invariance of the Euler equation, travelling wave
solutions can be transformed to a steady state solutions, and they are expected to
play important roles in the long time behavior of the full Euler flow.

In our context, a travelling solution of speed α with the form W = W(r, z− ατ)
will be correspond to solutions of the following system:

−α| log ε|rûz +∇⊥(ψ̂)∇û = 0 in Π

−α| log ε|rWz +∇⊥(ψ̂)∇W = (û2)z
r3 in Π

−∆θ(
ψ̂
r ) = rW in Π

ψr(0, z) = 0.

(2.10)

Note that the first equation of (2.10) will be automatically satisfied if there exists
some function H : R→ R such that

û = H(ψ̂− α

2
| ln ε|r2). (2.11)

For function û in this form (2.11), the second equation in (2.10) is satisfied if there
exists some function F : R→ R such that

W = F(ψ̂− α

2
| ln ε|r2) +

G(ψ̂− α
2 | ln ε|r2)

r2 (2.12)

where
G(s) = H(s)H′(s).

Combining (2.11) and (2.12) and consider the third equation in (2.10), we are
lead to the following equation for ψ̂:{

∆θ(
ψ̂
r ) = −r

(
F(ψ̂− α

2 | ln ε|r2) +
G(ψ̂− α

2 | ln ε|r2)

r2

)
in Π

ψr(0, z) = 0.
(2.13)
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Recall that ψ̂ = r2ψ. Coming back to ψ, one has{
−∆5ψ = F((ψ− α

2 | ln ε|)r2) +
G((ψ− α

2 | ln ε|)r2)

r2 , in Π
ψr(0, z) = 0

(2.14)

where

∆5ψ = ∂rrψ +
3
r

∂rψ + ∂zzψ.

This family of equations is sometimes referred as the Long-Squire equation [26,
34] or more generally the Grad-Shafranov equation in plasma physics [2] in the
form

−∆5ψ = F((ψ− α

2
| ln ε|)r2) +

G((ψ− α
2 | ln ε|)r2)

r2 + r2K((ψ− α

2
| ln ε|)r2),

where F, G, K are arbitrary functions.
Once a solution ψ satisfying (2.14) for an arbitrary choice of functions (F, G)

is found, one can easily construct travelling solutions for the original 3D Euler
equation (2.1).

In the literature, vortex rings are divided into two cases depending on whether
the swirl velocity uθ is zero. This is equivalent to say whether the function H is
zero. When H = 0, this is the non-swirl case while H 6= 0 is the swirl case. There
are more results for the non swirl case for different choice of the functions F.

2.2. The approximate solutions. In this paper, we will mainly focus on the exis-
tence of solutions with multiple vortex rings for the non swirl case. Our result can
be extended to some case with swirl which will be discussed in the last section. In
the following we will consider the following equation:{

−∆5ψ = F((ψ− α
2 | ln ε|)r2) := W in Π

ψr(0, z) = 0. (2.15)

We aim to construct multi vortex points solution to (2.15). We devote the rest of
the paper to build such a solution by elliptic singular perturbation and Lyapunov-
Schmidt reduction method.

In the following we will mainly introduce the approximate solutions. First we
fix r0 > 0, we want to construct multiple vortex ring solution to the 3D Euler
equation (2.1) such that

ωθ → 8π
N

∑
j=1

κjδpj (2.16)

where N corresponds to the number of rings and pi are distinct points in Π, and κj
can be regarded in some sense to be the circulation of the individual vortex ring.
We will work in the following configuration space:

I := {pj = (rj, zj) ∈ Π , |rj − r0| = O(
1
| ln ε| ), |pi − pj| = O(

1
| ln ε| )}. (2.17)

By the relation of ωθ and W, (2.16) implies that

W → 8π
N

∑
j=1

κj
δpj

rj
:= Ws. (2.18)
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For p ∈ Π, let G(x, p) be the Green’s function of the problem{
−∆5G(x, p) = 8πδp, in Π
∂rG(x, p) = 0 on ∂Π. (2.19)

From (2.15) and (2.18), we should have the formal limit

ψ→
N

∑
i=1

κi
G(x, pi)

ri
:= ψs. (2.20)

We will choose generation function F(s) of the form es, whose precise form will
be given explicitly below. We can achieve the above limit by solving the elliptic
equation

−∆5ψ = F(r2ψ− α

2
| log ε|r2) = W (2.21)

with

F(s) =
N

∑
i=1

ε
2− α

2κi
ri κi

ri
fi(

s
κiri

)χ δ1
| ln ε|

(pi),

where fi(s) = esηi(s) and ηi(s) is cutoff function to be defined in (3.4)-(3.5) and
δ1 > δ0 for the constant δ0 to be given below.

We look for a solution that at main order looks like

W = F(r2ψ− α

2
| log ε|r2) ≈ 1

ε2 U
( x− pi

ε

)
,

near each vortex point pi where

U(x) =
8

(1 + |x|2)2 .

Since as ε→ 0,
1
ε2 U

( x− pi
ε

)
→ 8πδpi .

Note that
−∆Γ0 = eΓ0 in R2,

where Γ0 = log U and ∆ = ∂rr + ∂zz.
Roughly speaking, we want to construct solutions such that W has compact

support and concentrate near each pi using the nonlinear function es. But this
function does not have compact support. So we use cutoff function ηi which is
chosen in such a way that it is supported in B δ0

| ln ε|
(pi) for some δ0 small. So in

this way W defined above has compact support near each pi and it behaves like
1
ε2 U

(
x−pi

ε

)
near each point. Since δ1 > δ0, so the solution to (2.21) is a solution to

the Euler equation.
To state our main result, we consider a ε-regularization of (Ws, ψs) given in

(2.16) and (2.18). To achieve this, we need to study the asymptotic behavior of
G(x, p) near the singular point p.

Locally around x = pi, the Green’s function can be expanded as

G(x, pi) = log
1

|x− pi|4
(
1− 3

2ri
(r− ri) + Hi,0(x)

)
+ Hi,1(x).
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Here Hi,0 and Hi,1 are smooth functions with

∆5Hi,1(x) = 0, and Hi,0(x) = O(|x− pi|2) as x → pi,

and it satisfies

∆5

(
log

1
|x− pi|4

Hi,0(x)
)
= −30

(r− ri)
2

rri|x− pi|2
+

9
2rri

log
1

|x− pi|4
.

Let us consider the following ε-regularization of G(x, pi).

Gi,ε = log
1

(µ2
i ε2 + |x− pi|2)2

(
1− 3

2ri
(r− ri) + Hi,0(x)

)
+ Hi,1(x),

and consider our first approximation as

ψ0 =
N

∑
i=1

κi
ri

Gi,εη0(x− (r0, 0)) + (1− η0)
N

∑
i=1

κi
G(x, pi)

ri
(2.22)

for some cutoff function η0(s) such that η0(s) = 1 for s < r0
4 and η0(s) = 0 for

s > r0
2 . Here µi > 0 are numbers to be fixed later.

We have the following existence result:

Theorem 2.1. Suppose aj, b`, j = 1, ..., m, ` = 1, ..., n is a solution of (1.4) satisfying
conditions (M1)-(M2). For any r0 > 0, there exists {p1, · · · , pN} satisfying (2.17) and
α > 0 such that there exists solution ψ of (2.21) of the form

ψ = ψ0 + o(1)

where ψ0 is defined in (2.22).

We point out that the solution in Theorem 1.1 contains multiple vortex rings
such that the mutual distance are much smaller than the radius of the rings. In the
last section, we also study the swirl case and construct different type of solution.
There the mutual distance and the radius of the vortex are all of O(1). This is due
to the effect of the swirl.

Remark 2.2. In fact, we can have more precise description of the vortex points. If we write

pi = (r0, 0) +
p̂i
| ln ε| .

Then p̂i will be perturbation from solution of the following system:
m

∑
j=1,j 6=k

γj
ak−aj

−
n

∑
j=1

β j
ak−bj

= σk, for k = 1, ..., m,

−
n

∑
j=1,j 6=k

β j
bk−bj

+
m

∑
j=1

γj
bk−aj

= −ρk, for k = 1, ..., n.
(2.23)

where m, n corresponds to the number of positive and negative circulation, γj, β j cor-
responds to the absolute value of the circulation, σj, ρj are some constants related to the
radius and travelling speed of the ring.

Remark 2.3. By our study for the balancing condition (2.23), the travelling speed α need
to be non-zero in our construction.
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3. ERROR ESTIMATE

In the previous sections, we have introduced the approximate solution as ψ0
defined in (2.22). In this section, we will estimate the error caused by this approx-
imate solution.

Let us define

S0(ψ) = ∆5ψ +
N

∑
i=1

ε
2− αri

2κi
κi
ri

f
( r2

κiri
(ψ− α

2
| log ε|)

)
ηiχB δ1

| ln ε|
(pi)

. (3.1)

Before proceeding, let us explain how we choose the cutoff function ηi such that
it has compact support near each vortex point. For each fixed index i, we shall do
the expansion near the vortex point pi using the rescaled variable y = x−pi

εµi
where

µi > 0 are to be determined in (3.16) :

Gi,ε(x) = (Γ0(y)− 4 log ε− log(8µ4
i ))
(

1− 3
2ri

εµiy1 + Hi,0(pi + εµiy)
)
+ Hi,1(pi + εµiy)

= Γ0(y)− 4 log ε− log(8µ4
i ) + Hi,1(pi) (3.2)

+ εµiy1[∂r Hi,1(pi)−
3

2ri
(Γ0 − 4 log ε− log 8µ4

i )]

+ ∂z Hi,1(pi)εµiy2 + O(ε2µ2
i |y|2 ln |εy|).

Moreover, for j 6= i, one has

Gj,ε(x) = log
1

|pi − pj|4
(

1− 3
2rj

(ri − rj) + Hj,0(pi)
)
+ Hj,1(pi) (3.3)

+ εµiy1

(
log

1
|pi − pj|4

(∂r Hj,0(pi)−
3

2rj
)−

4(pi − pj)1

|pi − pj|2
(1− 3

2rj
(ri − rj) + Hj,0(pi)) + ∂r Hj,1(pi)

)
+ εµiy2

(
log

1
|pi − pj|4

∂zHj,0(pi)−
4(pi − pj)2

|pi − pj|2
(1− 3

2rj
(ri − rj) + Hj,0(pi)) + ∂zHj,1(pi)

)
+ O(ε2µ2

i |y|2).

From the above expansion, we see that for |y| = c
ε| ln ε| , there holds

r2

κiri

(
ψ0(x)− α

2
| log ε|

)
=

αri
2κi

ln ε + 4 ln | ln ε| − ln µ2
i − 4 ln c− 4c + O(1).

We will choose our cutoff function such that

ηi(s) = 1, (3.4)

for s ≥ αri
2κi

ln ε + 4 ln | ln ε| − ln µ2
i + 2ci where ci > 0 is large enough, and

ηi(s) = 0, (3.5)

for s ≤ αri
2κi

ln ε + 4 ln | ln ε| − ln µ2
i + ci. Here ci is chosen large such that near each

vortex point pi, we have that

ηi(
r2

κiri
(ψ0(x)− α

2
| log ε|)) = 1 (3.6)
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for |x− pi| ≤
δ2

0
| ln ε| , and

ηi(
r2

κiri
(ψ0(x)− α

2
| log ε|)) = 0 (3.7)

for |x− pi| > δ0
| ln ε| for some δ0 small enough.

First we compute the error for ∆5ψ0. For |x− pi| < δ0
| ln ε| , set

∆5
Gi,ε(x)

ri
= (I1) + (I2)

where

(I1) =
1
ri

∆5

[
(Γ0 − 4 log ε− log(8µ4

i ))
(

1− 3
2ri

(r− ri)
)]

,

(I2) =
1
ri

∆5[(Γ0 − 4 log ε− log(8µ4
i ))Hi,0(x)].

By direct computation, one has for y = x−pi
εµi

,

(I1) =
1
ri

[(
− 1

ε2µ2
i

U(y) +
3

εµi(ri + εµiy1)
Γ′0(y)

y1

|y|

)(
1− 3

2ri
εµiy1

)
− 3

εµiri
Γ′0(|y|)

y1

|y| −
9

2rri
(Γ0 − 4 log ε− log(8µ4

i ))
]

=
1
ri

[
− 1

ε2µ2
i

U(y) +
3

2εµiri
U(y)y1 −

15
2

Γ′0(|y|)
|y|

y2
1

rri
(3.8)

− 9
2rri

(Γ0 − 4 log ε− log(8µ4
i ))
]
.

Moreover, using the fact that Hi,0 satisfies

∆5

(
log

1
|x− pi|4

Hi,0(x)
)
= −30

(r− ri)
2

rri|x− pi|2
+

9
2rri

log
1

|x− pi|4
,

we deduce

(I2) = −30
(r− ri)

2

rri|x− pi|2
+

9
2rri

log
1

|x− pi|4
+ O(

1
1 + |y|2 ). (3.9)

Combining the above estimates in (3.8) and (3.9), we obtain

∆5
Gi,ε

ri
=

1
ri

[
− 1

ε2µ2
i

U(y) +
3

2εµiri
U(y)y1 + O(

1
1 + |y|2 )

]
. (3.10)

We also have, for j 6= i,
∆5Gj,ε = O(ε2µ2| ln ε|4). (3.11)

Furthermore, away from the vortex points, one has

∆5Gi,ε(x) = O(
ε2µ2

i
1 + |x|2+σ

).

Hence from (3.10) and (3.11), we deduce
1
κi

∆5ψ0 =
1
ri

[
− 1

ε2µ2
i

U(y) +
3

2εµiri
U(y)y1 + O(

1
1 + |y|2 + ε2µ2| ln ε|4)

]
,
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while in the region where η0 ∈ (0, 1), we have

∆5η0

( N

∑
i=1

κi
Gi,ε − G(x, pi)

ri

)
+ 2∇η0 · ∇

( N

∑
i=1

κi
(Gi,ε − G(x, pi))

ri

)
= O(ε2µ2

i )

(3.12)

and it has compact support.

We now obtain, for |x− pi| <
δ2

0
| ln ε| ,

1
κi

∆5ψ0 =
1
ri

[
− 1

ε2µ2
i

U(y) +
3

2εµiri
U(y)y1 + O(

1
1 + |y|2 + ε2µ2

i | ln ε|4)
]
, (3.13)

and for |x− pi| >
δ2

0
| ln ε| ,

∆5ψ0 = O(
ε2µ2

i
1 + |x|ν ) (3.14)

for some ν > 2 independent of ε.

Now we come to the second nonlinear term. For |x − pi| <
δ2

0
| ln ε| , we write

y = x−pi
εµi

. In this region , ηi = 1. Near the vortex point pi, one has the following
expansion:

r2

κiri

(
ψ0(x)− α

2
| log ε|

)
=Γ0(y)− (4− α

2κi
ri) log ε− log(8µ4

i ) + Hi,1(pi) + ∑
j 6=i

κj

κi

ri
rj

G(pi, pj)

+
εµiy1

2ri

(
Γ0(y)− (4− 2

αri
κi

) log ε− log(8µ4
i )

+ 4Hi,1(pi) + 4 ∑
j 6=i

κj

κi

ri
rj

G(pi, pj) + 2ri

(
∂r Hi,1(pi) + ∑

j 6=i

κj

κi

ri
rj

∂rG(pi, pj)
))

+εµiy2

(
∑
j 6=i

κj

κi

ri
rj

∂zG(pi, pj)) + ∂zHi,1(pi)
)

+ O(ε2µ2
i |y|2 log(ε|y|)). (3.15)

We will choose µi such that

log(8µ2
i ) = Hi,1(pi) + ∑

j 6=i

κj

κi

ri
rj

G(pi, pj). (3.16)

Using the expansion of Gj, we have
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r2

κiri

(
ψ0(x)− α

2
| log ε|

)
=Γ0(y)− (4− α

2κi
ri) log ε− log µ2

i

+
εµiy1

2ri

(
Γ0(y)− (4− 2

αri
κi

) log ε + 4Hi,1(pi) + 2ri∂r Hi,1(pi)− log(8)− 2 log(µ2
i )

+ 2 ∑
j 6=i

κj

κi

r2
i

rj

(
log

1
|pi − pj|4

(∂r Hj,0(pi)−
3

2rj
)−

4(pi − pj)1

|pi − pj|2
(1− 3

2rj
(ri − rj) + Hj,0(pi)) + ∂r Hj,1(pi)

)
+ 4 ∑

j 6=i

κj

κi

ri
rj

(
log

1
|pi − pj|4

(
1− 3

2rj
(ri − rj) + Hj,0(pi)

)
+ Hj,1(pi)

))
+εµiy2

(
∑
j 6=i

κj

κi

ri
rj

(
log

1
|pi − pj|4

∂zHj,0(pi)−
4(pi − pj)2

|pi − pj|2
(1− 3

2rj
(ri − rj) + Hj,0(pi)) + ∂z Hj,1(pi)

))
+ ∂zHi,1(pi) + O(ε2µ2

i |y|2 log(ε|y|)).

For pi in the configuration space I defined in (2.17), we know that log µ2
i =

O(ln | ln ε|). By the choice of µi in (3.16), one has

ε
2− α

2κi
ri 1

ri
f
( r2

κiri
(ψ0(x)− α

2
| log ε|)

)
=

1
ε2µ2

i ri
U(y) (3.17)

× exp
[ εµiy1

2ri

(
Γ0(y)− (4− 2

αri
κi

) log ε + 2 log µ2
i −∑

j 6=i

κj

κi

2r2
i

rj

4(pi − pj)1

|pi − pj|2
+ Ai(p))

)
− εµiy2

(
∑
j 6=i

κj

κi

ri
rj

4(pi − pj)2

|pi − pj|2
+ Bi(p)

)
+ O(ε2µ2

i |y|2 log(ε|y|))
]

where Ai(p), Bi(p) are constants depending on p such that they are of O(1).

For δ2
0

| ln ε| < |x− pi| < δ0
| ln ε| , similar to (3.17), one has

ε
2− α

2κi
ri 1

ri
f
( r2

κiri
(ψ0(x)− α

2
| log ε|)

)
= O(ε2| ln ε|4).

Let

S(ψ0) = ε2µ2
i S0(ψ0)

= ε2µ2
i

[
∆5ψ0 +

N

∑
i=1

ε
2− α

2κi
ri κi

ri
f
( r2

κiri
(ψ0 −

α

2
| log ε|)

)
ηiχBδ1

(pi)

]
. (3.18)

We find that for |x− pi| <
δ2

0
| ln ε| ,

S(ψ0) =
κi
ri
[εEi,0 + O(

ε2µ2
i log(ε|y|)
1 + |y|2 )],
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where

Ei,0(y) =
µiy1U(y)

2ri

(
Γ0(y)− (4− 2

αri
κi

) log ε (3.19)

−∑
j 6=i

κj

κi

2r2
i

rj

4(pi − pj)1

|pi − pj|2
+ Ai(p)− 2 log µ2

i

)
− µiy2U(y)

(
∑
j 6=i

κj

κi

ri
rj

4(pi − pj)2

|pi − pj|2
+ Bi(p)

)
.

As one can see from section 7 , if we define pi = (r0 + s)e1 +
p̂i
| ln ε| , and choose

s = 0 with p̂i being solution of (7.4), then from the reduction (7.2)-(7.3) to (7.4), one
has

−(4− 2 αri
κi
) log ε−∑j 6=i

κj
κi

2r2
i

rj

4(pi−pj)1

|pi−pj |2
= O(1),

∑j 6=i
κj
κi

ri
rj

4(pi−pj)2

|pi−pj |2
= O(1).

Recalling the definition of our configuration space defined in (2.17), for all the
points pj with O( ln | ln ε|

| ln ε| ) perturbation from the above mentioned points, one has

−(4− 2 αri
κi
) log ε−∑j 6=i

κj
κi

2r2
i

rj

4(pi−pj)1

|pi−pj |2
= O(ln | ln ε|) = o(| ln ε|),

∑j 6=i
κj
κi

ri
rj

4(pi−pj)2

|pi−pj |2
= O(ln | ln ε|) = o(| ln ε|).

We have that

S(ψ0) = O(
ε ln | ln ε|
1 + |y|3 +

ε ln(1 + |y|)
1 + |y|3 +

ε2µ2
i log(ε|y|)
1 + |y|2 ) = O(

ε| ln | ln ε||
1 + |y|2+σ

) (3.20)

for any σ ∈ (0, 1). While for δ2
0

| ln ε| < |x− pi|, one can easily check that the following
estimate holds:

S0(ψ0) ≤
ε1+σ

1 + |x|ν
for some σ ∈ (0, 1), ν > 2.

4. THE INNER OUTER GLUING SYSTEM

We have constructed the approximate solution ψ0 in (2.22) in Section 2 andwe
will look for a solution ψ of the equation{

∆5ψ + F1(ψ) = 0 in Π,
∂rψ(0, z) = 0, (4.1)

where

F1(ψ) =
N

∑
i=1

ε
2− α

2κi
ri κi

ri
f (

r2

κiri
(ψ− α

2
| ln ε|))ηiχB δ1

| ln ε|
(pi)

with f (s) = es.
We look for ψ of the form

ψ = ψ0(x) + ϕ(x)
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where ϕ is a perturbation term. We decompose ϕ as

ϕ(x) =
N

∑
i=1

ηi(x)φi(y) + ξ(x) (4.2)

where ηi(x) = ηδ2(x− pi) for some δ2 < δ2
0 and y = x−pi

εµi
be the rescaled variable

near each vortex point pi. Recall that our problem (4.1) can be rewritten as

S0(ψ0 + ϕ) = L(ϕ) + N(ϕ) + E = 0 in Π,

where

E = S0(ψ0),

L(ϕ) = ∆5 ϕ− F′1(ψ0)ϕ,

N(ϕ) = F1(ψ0 + ϕ)− F1(ψ0)− F′1(ψ0)ϕ,

F′1(ψ0) =
N

∑
i=1

ε
2− α

2κi
ri r2

r2
i

f ′(
r2

κiri
(ψ0 −

α

2
| ln ε|))ηiχB δ1

| ln ε|
(pi)

.

We have the following expansion:

S0(ψ0 + ϕ) =
N

∑
i=1

ηi

[
∆5φi + F′1(ψ0)(φi + ξ) + E + N(

N

∑
i=1

ηiφi + ξ)
]

+ ∆5ξ + (1−
N

∑
i=1

ηi)
[

F′1(ψ0)ξ + E + N(
N

∑
i=1

ηiφi + ξ)
]

+
N

∑
i=1

[
∆5ηiφi + 2∇xηi · ∇xφi

]
.

It follows that ψ given in (4.2) will solve (4.1), if (φ, ξ) = (φ1, · · · , φN , ξ) solves the
inner and outer problem:

∆5φi + F′1(ψ0)(φi + ξ) + E + N(
N

∑
i=1

ηiφi + ξ), |x− pi| < 2δ2, (4.3)

and 
∆5ξ + (1−∑N

i=1 ηi)
[

F′1(ψ0)ξ + E + N(∑N
i=1 ηiφi + ξ)

]
,

+ ∑N
i=1

[
∆5ηiφi + 2∇xηi · ∇xφi

]
in Π,

∂rξ(0, z) = 0,

(4.4)

respectively.
Let us write the inner problem (4.3) in terms of the variable y = x−pi

εµi
. Note that

∆5φ = ∆xφ +
3
r

∂rφ

=
1

ε2µ2
i
[∆yφ +

εµi
ri + εµiy1

∂y1 φ].

By the estimate (3.17) in Section 3, one has

ε2µ2
i F′1(ψ0) = eΓ0(y) + b(y)
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where

b(y) = O(
εµi log(2 + |y|)

1 + |y|3 +
o(εµi| ln ε|)

1 + |y|3 ).

Similarly, one can get that

N (ϕ) = ε2µ2
i N(ϕ) = (eΓ0(y) + b(y))ϕ2.

Moreover, there holds

Ẽi = ε2µ2
i E = S(ψ0) = O(

εµi log(2 + |y|)
1 + |y|3 +

ε| ln ln ε|
1 + |y|3 +

ε1+b

1 + |y|2+a )

for some a, b ∈ (0, 1).
With these estimates at hand, the inner problem (4.3) can be written as

∆yφi + f ′(Γ0)φi + Bi[φi] +Ni(ϕ) + Ẽi + ( f ′(Γ0) + b(y))ξ = 0 in BR (4.5)

where R = c
εµi | ln ε| and

Bi(φi) = b(y)φi +
εµi

ri + εµiy1
∂y1 φi. (4.6)

We will solve this problem coupled with the outer problem (4.4) such that φi
has the size of error Ẽi with two powers less of decay in y where φi is the inner
perturbation defined in (4.2) and y is the rescaled variable near each vortex pi.

(1 + |y|)|Dyφi|+ |φi| ≤
cε| ln ln ε|
(1 + |y|a)

for some a > 0 independent of ε.
For the outer problem, it can be written as{

∆5ξ + G(ξ, φ) = 0 in Π,
∂rξ(0, z) = 0 (4.7)

where

G(ξ, φ) = V(x)ξ + No(ϕ) + Eo(x) +
N

∑
i=1

Ai(φi)

with

V(x) = (1−∑
i

ηi)F′1(ψ0),

No(ϕ) = (1−∑
i

ηi)N(ϕ),

Ai(φi) =
(

∆5ηiφi + 2∇ηi · ∇φi

)
,

Eo(x) = (1−∑
i

ηi)E.

From the previous estimate (3.17) and the estimates there, one has the following:

|V(x)| = O(ε1+σ), (4.8)

|No(ϕ)| = O(ε1+σ|ϕ|2), (4.9)

|Eo(x)| = O(ε1+σ) (4.10)

for some σ > 0.
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In this section, we have done the inner-outer decomposition for the perturba-
tion term ϕ defined in (4.2), and decompose our problem to the inner problem (4.5)
and outer problem (4.7) respectively. In the next two sections, we will study the
linear results that are the basic tool to solve the system (4.5)-(4.7) by means of a
fixed point argument.

5. LINEAR THEORY

In this section, we consider the linear theory related to the inner and outer prob-
lem (4.5) and (4.4) in the previous section.

We will consider the following two problems:

∆yφ + eΓ0(y)φ + Bi(φ) + h(y) = 0 in BR (5.1)

where Bi(φ) are defined in (4.6), this is the linear problem for the inner problem
in a bounded ball. The second one corresponds to the linear problem for the outer
problem: {

∆5ξ + g(x) = 0 in Π,
∂rξ(0, z) = 0. (5.2)

The following linear theory for (5.1) has been studied in [12]. In order to study
this problem, we first study the unperturbed linear problem:

∆yφ + eΓ0(y)φ + h(y) = 0 in R2. (5.3)

We first introduce the function space we want to work in : for m > 2, and β ∈
(0, 1), we consider the following norms:

‖h‖m = sup
y∈R2

(1 + |y|m)|h(y)|,

‖h‖m,β = ‖h‖m + (1 + |y|m+β)[h]B1(y),β,

[h]A,β = sup
y1,y2∈A

|h(y1)− h(y2)|
|y1 − y2|β

.

We also consider the functions Zi(y), i = 0, 1, 2 as

Zi(y) = ∂yi Γ0(y) = −
4yi

1 + |y|2 for i = 1, 2,

Z0(y) = 2 + y · ∇Γ0(y) = 2
1− 2|y|2
1 + 2|y|2 .

We have the following estimates:

Lemma 5.1 (Lemma 6.1 in [12]). Given m > 2 and β ∈ (0, 1), for any h with ‖h‖m <
∞, there exists a constant C > 0 and solution φ = T (h) of problem (5.3) such that

(1 + |y|)|Dφ|+ |φ(y)|

≤ C
(

log(2 + |y|)|
∫

R2
hZ0dy|+ (1 + |y|)

2

∑
i=1
|
∫

R2
hZidy|+ (1 + |y|)2−m‖h‖m

)
.
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Moreover, if ‖h‖m,β < ∞, then the following estimate holds:

(1 + |y|)2+β[D2
yφ]B1(y),β + (1 + |y|2)|D2

yφ|

≤ C
(

log(2 + |y|)|
∫

R2
hZ0dy|+ (1 + |y|)

2

∑
i=1
|
∫

R2
hZidy|+ (1 + |y|)2−m‖h‖m,β

)
.

Now we go back to the inner linear problem (5.1). As one can see from the
above lemma, in general, even h has sufficient decay, the solution φ has logarithmic
growth. In order to get better decay estimate of the solution φ and get rid of the
logarithmic growth, we can have the solvability for the following problem:

∆φ + eΓ0(y)φ + Bi(φ) + h(y) =
2

∑
j=0

cijeΓ0 Zi in BR (5.4)

for R > 0 large. For a function h defined in A, we denote by ‖h‖m,β,A the norm
only taken on A:

‖h‖m,A = sup
y∈A

(1 + |y|m)|h(y)|,

‖h‖m,β,A = ‖h‖m,A + (1 + |y|m+β)[h]B1(y)∩A,β.

Similarly, for a function in C2,β(A),

‖φ‖∗,m−2,A = ‖D2φ‖m,β,A + ‖Dφ‖m−1,A + ‖φ‖m−2,A.

Then we have the following solvability result:

Proposition 5.2 (Proposition 6.1 in [12]). There are number C > 0 such that for all R
large, problem (5.4) has a solution φ = Ti(h) for certain cij = cij(h) for j = 0, 1, 2 and it
satisfies

‖φ‖∗,m−2,BR ≤ C‖h‖m,β,BR .
Moreover, cij can be estimated as

ci0(h) = γ0

∫
BR

hZ0dy + O(R−(m−2))‖h‖m,β,BR ,

cij(h) = γj

∫
BR

hZjdy + O(R−(m−1))‖h‖m,β,BR , for j = 1, 2,

where γ−1
i =

∫
R2 eΓ0 Z2

i dy.

For the outer linear problem (5.2), we will restrict to the case of functions g(x)
that satisfy decay condition

‖g‖ν = sup
x∈Π

(1 + |x|ν)|g(x)| < ∞

for some ν > 2. This operator has been studied in [4] and [24].
Consider the barrier function as

B(x) = c1(1 + |x|2)−
σ
2 for σ ∈ (0, 1).

By direct calculation, one can check that

∆5B(x) ≤ −Cc1(1 + |x|2)−1− σ
2 .

Use this as a barrier function, we have the following estimate, whose proof will be
omitted here.
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Lemma 5.3. There exists a solution ξ to (5.2) that defines a linear operator ξ = To(g) of
g and satisfies

|ξ| ≤ C‖g‖ν(1 + |x|)−(ν−2).
for ν > 2.

6. SOLVING THE INNER-OUTER GLUING PROBLEM

In this section, we will solve the nonlinear projected inner outer gluing problem
as a fixed point problem, and in the next section, we will solve the reduced prob-
lem by choosing suitable pi. More precisely, for any pi in our configuration space
I, we solve the following projected problem:

∆yφi + f ′(Γ0)φi + Bi[φi] +N (ϕ) + Ẽi + ( f ′(Γ0) + b(y))ξ =
2

∑
j=0

cijeΓ0(y)Zj in BR,

(6.1)
and {

∆5ξ + G(ξ, φ) = 0 in Π,
∂rξ(0, z) = 0. (6.2)

Let Xo be the Banach space of all functions ξ ∈ C2,β(Π) such that

‖ξ‖ < ∞.

Then the outer problem (7.1) can be formulated as

ξ = To(G(ξ, φ)), ξ ∈ Xo.

For the inner problem, we write it as

∆yφi + f ′(Γ0)φi + Bi(φi) +Hi(φ, ξ) =
2

∑
j=0

cijeΓ0(y)Zj

where
Hi(φ, ξ) = Ni(ϕ) + Ẽi + ( f ′(Γ0) + b(y))ξ.

Let X∗ be Banach space of functions φ ∈ C2,β(BR) such that

‖φ‖∗,m−2,BR < ∞.

We decompose the inner problem as follows: We first introduce constants cij such
that

∆yφi,1 + f ′(Γ0)φi,1 + Bi(φi,1) + Bi(φi,2) +Hi(φ, ξ) =
2

∑
j=0

cijeΓ0(y)Zj in BR

where cij = cij[Hi(φ, ξ) + Bi(φi,2)]. This can be solvable by Proposition 5.2, and
for φi,1 ∈ X∗, we have

φi,1 = Ti[Hi(φ, ξ) + Bi(φi,2)].
We require that φi,2 solves the following equation:

∆yφi,2 + eΓ0 φi,2 + ci0eΓ0 Z0 in R2.

By Lemma 5.1, this can be solvable and can be written as

φi,2 = T [ci0(Hi(φ, ξ) + Bi(φi,2))eΓ0 Z0].
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Having in mind the apriori estimate in Lemma 5.1, we require that φi,2 ∈ C2,β(R2)
and it satisfies

(1 + |y|2+β)[D2
yφ]B1(y),β + (1 + |y|2)|D2

yφ|+ (1 + |y||Dφ|) + |φ| ≤ C log(2 + |y|).

Let ‖ · ‖∗∗,m−2,β be the infimum of C such that the above inequality holds, and
denote by X∗∗ the Banach space of functions φ ∈ C2,β(R2) with ‖φ‖∗∗,m−2,β < ∞.

Our aim is to find a fix point solution ξ, φi,1, φi,2 for the following problem:

(ξ, φi,1, φi,2) = A(ξ, φi,1, φi,2)

given by

ξ = To(G(ξ, φi,1 + φi,2)), ξ ∈ Xo,

φi,1 = Ti(Hi(φ, ξ) + Bi(φi,2)), φi,1 ∈ X∗,

φi,2 = T [ci0(Hi(φ, ξ) + Bi(φi,2))eΓ0 Z0], φi,2 ∈ X∗∗.

Let m > 2 and a ∈ (0, 1) and define

BM = {(ξ, φi,1, φi,2) ∈ Xo × XN
∗ × XN

∗∗ : ‖ξ‖∞ ≤ Mε1+a,

‖φi,1‖∗,m−2,β ≤ Mε| ln ε|
1
2 , ‖φi,2‖∗∗,m−2,β ≤ Mε| ln ε|

1
2 }.

We will show thatA is a contraction mapping from BM to itself. We first show that
A(BM) ⊂ BM.

First we have by the definition of X∗, X∗∗, we have

Ai(φ) ≤
1

1 + |x|ν (| ln ε|2|φ|+ | | ln ε|
εµi
|Dyφ|)

≤ εσ

1 + |x|ν (‖φi,1‖∗,m−2,β + ‖φi,2‖∗∗,m−2,β)

for some σ > 2. Combining this estimate with the estimates (4.8), (4.9) and (4.10)
in the gluing section 4, we have

|G(ξ, φi,1, φi,2) ≤
ε2| ln ε|4
1 + |x|ν (1 + |ξ|+ |ξ|

2 + |φi,1 + φi,2|2)

+
εσ

1 + |x|ν (‖φi,1‖∗,m−2,β + ‖φi,2‖∗∗,m−2,β).

From Proposition 5.2, we have

‖ξ‖∞ = ‖To(G(ξ, φi,1 + φi,2))‖∞ ≤ Cε1+a.

Next one has, for some σ0 ∈ (0, 1),

Hi(φ, ξ) ≤ |Ẽi|+
C

1 + |y|2+σ0
(

1
1 + |y|2−σ0

+
ε| ln ε|

1 + |y|1−σ0
)|ξ| (6.3)

+
c

1 + |y|4 (|ξ|
2 +

N

∑
i=1

(|ηiφi,1|2 + |ηiφi,2|2)) (6.4)

and recall that |Ẽi| ≤ cε| ln ln ε|
1+|y|2+σ0

, we have

‖Hi(φ, ξ)‖m,β,BR ≤ Cε| ln ε|
1
2 .
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From the expression for Bi in (4.6), we have

Bi(φi,2) ≤ C(εµi|Dφi,2|+
ε| ln ε|

1 + |y|3 ).

Thus one has

‖Bi(φi,2)‖m,β,BR ≤ C(
1
| ln ε| + ε| ln ε|)‖φi,2‖∗∗,m−2,BR ≤ Cε| ln ε|

1
2 (6.5)

and

ci0[Hi(φ, ξ) + Bi(φi,2)] ≤ C‖Hi(φ, ξ) + Bi(φi,2)‖m,β,BR ≤ Cε| ln ε|
1
2 .

Combining the above estimates, we have

‖φi,1‖∗,m−2,BR ≤ Cε| ln ε|
1
2

and
‖φi,2‖∗∗,m−2,BR ≤ Cε| ln ε|

1
2 .

We will show that A is a contraction mapping. Let ϕj = ∑N
i=1 ηi(φ

j
i,1 + φ

j
i,2) + ξ j

for j = 1, 2 such that

(ξ j, φ
j
i,1, φ

j
i,2) ∈ BM.

Let G(ϕj) = G(ξ j, φ
j
i,1, φ

j
i,2) and one has

G(ϕ1)− G(ϕ2) ≤ |V(x)(ξ1 − ξ2)|
+ (1−∑

i
ηi)|N(ϕ1)− N(ϕ2)|

+ ∑
i
|Ai(φ

1
1)− Ai(φ

2
1)|

+ ∑
i
|Ai(φ

1
2)− Ai(φ

2
2)|.

We will estimate it term by term. We compute

|V(x)(ξ1 − ξ2)|+ (1−∑
i

ηi)|N(ϕ1)− N(ϕ2)|

≤ Cε2| ln ε|2(|ξ1 − ξ2|+ ∑
i

η2
i (|φ1

i,1 − φ2
i,1|2 + |φ1

i,2 − φ2
i,2|2))

and

|Ai(φ
1
i,1)− Ai(φ

2
i,1)| ≤

εσ0

1 + |x|ν ‖φ
1
i,1 − φ2

i,1‖∗,m−2,β.

In order to estimate Ai(φ
1
i,2)− Ai(φ

2
i,2), we notice that

∆y(φ
1
i,2 − φ2

i,2) + f ′(Γ0)(φ
1
i,2 − φ2

i,2) + c12
0 eΓ0 Z0 = 0 in R2

where

c12
0 = ci0

(
Hi(φi,1 + φ1

i,2, ξ) + Bi(φ
1
i,2)
)
− c0

(
Hi(φi,1 + φ2

i,2, ξ) + Bi(φ
2
i,2)
)

.

By the definition of ci0, we have

c12
0 =

∫
BR

[
Bi(φ

1
i,2 − φ2

i,2) +N (ξ + ηi(φi,1 + φ1
i,2) + ∑

j 6=i
ηjφj)−Ni(ξ + ηi(φi,1 + φ1

i,2) + ∑
j 6=i

ηjφj)
]

Z0dy.
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Similar to (6.5) and (6.3), we then get

c12
0 ≤

1
| ln ε| ‖φ

1
i,2 − φ2

i,2‖∗∗,m−2,β + C‖φ1
i,2 − φ2

i,2‖2
∗∗,m−2,β.

Thus,

Ai(φ
1
i,2 − φ2

i,2) ≤ C(∆5ηi(φ
1
i,2 − φ2

i,2) +∇ηi∇(φ1
i,2 − φ2

i,2))

≤ C
εσ0

1 + |x|ν ‖φ
1
i,2 − φ2

i,2‖∗∗,m−2,β.

Combining the above estimates, we have

|G(ϕ1)− G(ϕ2)| ≤ εσ

1 + |x|ν [‖ξ
1 − ξ2‖∞ + ‖φ1

i,2 − φ2
i,2‖∗∗,m−2,β + ‖φ1

i,1 − φ2
i,1‖∗,m−2,β

+ ‖φ1
i,2 − φ2

i,2‖2
∗∗,m−2,β + ‖φ1

i,1 − φ2
i,1‖2
∗,m−2,β].

We conclude that for ϕi ∈ BM

‖To(G(ϕ1)−G(ϕ2))‖∞ ≤ Cεσ[‖ξ1− ξ2‖∞ + ‖φ1
i,2−φ2

i,2‖∗∗,m−2,β + ‖φ1
i,1−φ2

i,1‖∗,m−2,β]

Similarly, we can analyze each of the operator in A and get that A is a contrac-
tion mapping in BM.

7. THE REDUCED PROBLEM

In the previous section, we have find a solution (ξ, φ) such that they solve the
following system:

∆yφi + f ′(Γ0)φi + Bi(φi) +Hi(φ, ξ) =
2

∑
j=1

cijeΓ0(y)Zj in BR,

and {
∆5ξ + G(ξ, φ) = 0 in Π,
∂rξ(0, z) = 0 (7.1)

Then the full solvability of this problem is reduced to the following:

cij = cij[Bi(φi,2) +Hi(φ, ξ)] = 0 for i = 1, · · · , N, j = 1, 2.

By the definition of cij, we know that

cij =
∫

R2
[Hi(φi, ξ) + Bi(φi)]Zidy + O(ε1+σ).

Hence by the definition of Hi and the estimates for φi and ξ, we know that cij = 0
can be reduced to the following :∫

BR

ẼiZidy = O(ε1+σ).

By the expression of the error Ẽi in (3.19) in Section 3, one has

∫
BR

ẼiZ1dy =
κi
ri

εF1(p, α) + O(ε| ln ln ε|)

where

F1(p, α) = − µi
2ri

∫
R2

Uy1Z1dy
[
(4− 2

αri
κi

) log ε + ∑
j 6=i

κj

κi

2r2
i

rj

4(pi − pj)1

|pi − pj|2
]
.
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While ∫
BR

ẼiZ2dy =
κi
ri

εF2(p, α) + O(ε)

where

F2(p, α) = −µi

∫
R2

Uy2Z2dy ∑
j 6=i

κj

κi

ri
rj

4(pi − pj)2

|pi − pj|2
.

If we put

pj = (r0 + s)e1 +
p̂j

| ln ε| ,

where s is small perturbation, then the reduced problem becomes

∑
j 6=i

κj

κi

( p̂i − p̂j)1

| p̂i − p̂j|2
− (

1
ri
− α

2κi
) = O(

ln | ln ε|
| ln ε| ) (7.2)

and

∑
j 6=i

κj

κi

( p̂i − p̂j)2

| p̂i − p̂j|2
= O(

1
| ln ε| ). (7.3)

Similar reduced problem has been obtained when one study the multi vortex
ring solution for the 3D Gross-Pitaevskii equation in [4] when all the κj are either
1 or −1.

We relabel these p̂j such that κi > 0 for i = 1, · · · , m, and κi < 0 for i =
m + 1, · · · , m + n, and denote by ai = p̂i for i = 1, · · · , m and bj−m = p̂j for
j = m + 1, · · · , m + n.

Let us set γ̃i = κi for i = 1, · · · , m and β̃ j = −κm+j for j = 1, · · · , n. In this case,
we find that at main order, (a1, · · · , am, b1, · · · , bn) should satisfy the following
system:  ∑m

j=1,j 6=i
γ̃j

ai−aj
−∑n

j=1
β̃ j

ai−bj
= γ̃i

r0
− α

2 ,

∑n
j=1,j 6=i

β̃ j
bi−bj

−∑m
j=1

γ̃j
bi−aj

= β̃i
r0
+ α

2 .
(7.4)

This can be regarded as a balancing condition between the multiple vortex rings.
We require that the set of points {a1, · · · , am, b1, · · · , bn} are symmetric with

respect to the y1-axis. From now on, we will work in the space. It can be seen
that if (a1, · · · , am, b1, · · · , bn) is a solution to (7.4), then any translation is also a
solution, so the linearized operator of (7.4) around this solution has at least one
dimensional kernel given by (1, · · · , 1).

Next let us consider the linearized operator around the solution. Let us denote
the left hand side of the j-th equation of (7.4) by Fj. Then we can compute the
linearization dF of the map

F : (a1, ..., am, b1, ..., bn)→ (F1, ..., Fm+n) .

dF evaluated at the point (a1, · · · , am, b1, · · · , bn) is a matrix, which can be explic-
itly computed.

Definition 7.1 (Nondegeneracy). We call (a1, ..., am, b1, ..., bn) is a non-degenerate
solution of (7.4), if the kernel of the linearized operator dF is one dimensional.
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When γ̃i = β̃ j = 1, the balance problem (7.4) has been studied in [4]. It has been
shown in that paper that the problem is related to the roots of some polynomials
with rational coefficients, which can be regarded as a generalization of the classical
Adler Moser polynomial. Let us recall the results proved there briefly. We have
the following:

Lemma 7.2. For γ̃i = β̃ j = 1, then when the pair (m, n) ∈ S where

S := {(2, 1) , (3, 2) , (4, 3) , (5, 4) , (6, 5)},
there exists non-degenerate solution to (7.4).

Remark 7.3. Existence of non-degenerate solutions to the balance equation (7.4) for more
general circulation can be found in the next section.

Let us come back to our reduced problem (7.2)-(7.3). We will see that if there
exists a nondegenerate solution (a0

1, · · · , a0
m, b0

1, · · · , b0
n) of the balance problem

(7.4), we can solve the reduced problem by perturbation.
If we define vector q by

aj = a0
j + qj, j = 1, ..., m,

bj = b0
j + qj+m, j = 1, ..., n,

then the reduced problem takes the form

dF (q) = G (s, q)− sr−2
0 e1, (7.5)

where G (γ, q) = O
(

ln | ln ε|
| ln ε|

)
as ε→ 0, with higher order dependence on γ, q, and

e1 = (γ̃1, · · · , γ̃m, β̃1, · · · , β̃n)
T .

Since dF is non-degenerated, the kernel is spanned by e2 := (1, ..., 1) . We can first
project the right hand side G orthogonal to e1 and solve this projected problem,
and then adjust s such that the projection of G to e1 for G is zero. Moreover we
have the following estimates

|q|+ |s| = O(
ln | ln ε|
| ln ε| ).

8. BALANCING CONFIGURATION FOR MORE CIRCULATIONS AND THE
POLYNOMIAL METHOD

In this section, we would like to search balancing configuration for more general
circulation κj studied in the previous sections.

Let us assume there are m vortex rings with circulation γ̃j > 0 located in the
(r, z) plane at the points aj, j = 1, ..., m; and n vortex rings with circulation−β̃ j < 0
located at bj, j = 1, ..., n. We would like to point out that these circulations are not
necessary integers.

By the computation in the previous sections, the balancing condition of these
vortex rings is the following system:

m

∑
j=1,j 6=i

γ̃j
ai−aj

−
n

∑
j=1

β̃ j
ai−bj

= γ̃i
r0
− α1 := σi

2 , for i = 1, ..., m,

m

∑
j=1

γ̃j
bi−aj

−
n

∑
j=1,j 6=i

β̃ j
bi−bj

= − β̃i
r0
− α1 := − ρi

2 , for i = 1, ..., n.
(8.1)
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where α1 = α
2 .

In general, it is not easy to solve this system directly, even with numerical meth-
ods. On the other hand, for some special cases of β̃ j, γ̃j, the polynomial method
turns out to be quite powerful to tackle this type of problem. The case that all γ̃j

and β̃ j are equal to 1 has been treated in [4]. In this section, we consider the case
that there are at most three different circulations.

Let a1, ..., am̃ be those points with circulation γ̃ > 0; and b1, ..., bñ with circulation
−β̃ < 0; c1, ..., ct̃ with circulation k̃ > 0. Define generating polynomials

P (x) =
m̃

∏
j=1

(
x− aj

)
, Q (x) =

ñ

∏
j=1

(
x− bj

)
, R (x) :=

t̃

∏
j=1

(
x− cj

)
.

Let σ1 = γ̃
r0
− α1, ρ1 = β̃

r0
+ α1, δ1 = k̃

r0
− α1.

Lemma 8.1. Suppose the balancing condition (8.1) holds. Then P, Q, R satisfy

γ̃2P′′

P
+

β̃2Q′′

Q
+

k̃2R′′

R
− 2γ̃β̃

P′Q′

PQ
− 2β̃k̃

Q′R′

QR
+ 2γ̃k̃

P′R′

PR

= σ1γ̃
P′

P
+ ρ1 β̃

Q′

Q
+ δ1k̃

R′

R
.

Proof. This follows from direct computation, we also refer to [32] for the case of
σ1 = ρ1 = δ1 = 0.

P′ (x) = P (x)
m̃

∑
j=1

1
x− aj

. (8.2)

Similar formula holds for Q′ and R′. Differentiating (8.2) yields

P′′ (x) = 2P (x)
m̃

∑
i<j

1
(x− ai)

(
x− aj

)
= 2P (x)

m̃

∑
i<j

[(
1

x− ai
− 1

x− aj

)
1

ai − aj

]

= 2P (x)
m̃

∑
i=1

(
1

x− ai
∑
j 6=i

1
ai − aj

)
.

It follows from the balancing condition that

γ2P′′

P
= 2

m̃

∑
i=1

[
γ̃

x− ai

(
ñ

∑
j=1

β̃

ai − bj
−

t̃

∑
j=1

k̃
ai − cj

+
σ1

2

)]
,

k̃2R′′

R
= 2

t̃

∑
i=1

[
k̃

x− ci

(
ñ

∑
j=1

β̃

ci − bj
−

t̃

∑
j=1

γ̃

ci − aj
+

δ1

2

)]
,

β̃2Q′′

Q
= 2

ñ

∑
j=1

[
β̃

x− bj

(
m̃

∑
i=1

γ̃

bj − ai
+

t̃

∑
i=1

k̃
bj − ci

+
ρ1

2

)]
.
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On the other hand, using (8.2) , we compute

P′Q′

PQ
=

m̃

∑
i=1

ñ

∑
j=1

1
(x− ai)

(
x− bj

)
=

m̃

∑
i=1

ñ

∑
j=1

[(
1

x− ai
− 1

x− bj

)
1

ai − bj

]
.

Hence
γ̃2P′′

P
+

β̃2Q′′

Q
+

k̃2R′′

R
− 2γ̃β̃

P′Q′

PQ
− 2β̃k̃

Q′R′

QR
+ 2γ̃k̃

P′R′

PR

= σ1γ̃
P′

P
+ ρ1 β̃

Q′

Q
+ δ1k̃

R′

R
.

This completes the proof. �

We emphasize that one can’t use the scaling P (γ̃x) , Q
(

β̃x
)

, R
(
k̃x
)

to reduce
the equation to the usual(easier) case that all circulations are equal to ±1.

8.1. Two different circulations. In this subsection, let us assume the third gener-
ating polynomial R = 1, this corresponds to the case of two different circulations.
We are then lead to consider the following equation for the unknown polynomials
P, Q :

γ̃2P′′Q + β̃2PQ′′ − 2β̃γ̃P′Q′ = σγ̃P′Q + ρβ̃PQ′.
Solving this equation in the general case seems to be a nontrivial problem. We
would like to find solutions in some special cases. After a scaling, one can always
take γ̃ = 1, that is

P′′Q + β̃2PQ′′ − 2β̃P′Q′ = σP′Q + ρβ̃PQ′. (8.3)

Equation (8.3) is translational invariant. We first consider the case that

Q (x) = x.

This means that there is only one vortex ring with negative circulation −β̃. We
seek polynomials P with degree m, whose m (distinct) roots corresponds to the
location of m vortex rings of positive circulation 1. We therefore get the following
equation for the unknown polynomial P :

xP′′ − 2β̃P′ = σxP′ + ρβ̃P. (8.4)

Inspecting the highest order term in this equation, we find that a necessary condi-
tion for the existence of solution to (8.4) is

σm + ρβ̃ = 0. (8.5)

Suppose the polynomial P can be written as

P (x) =
m

∑
j=0

cjxj, with cm = 1.

Then (8.4) has the form
m

∑
j=2

j (j− 1) cjxj−1 − 2β̃
m

∑
j=1

jcjxj−1 = σ
m

∑
j=1

jcjxj + ρβ̃
m

∑
j=0

cjxj.
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FIGURE 1. Roots of P15 with˜̃β = 8, ρ = 3

Hence we obtain −2β̃c1 = ρβ̃c0 and

(j + 1) jcj+1 − 2β̃ (j + 1) cj+1 = σjcj + ρβ̃cj, j ≥ 1.

That is,

cj =
(j + 1)

(
j− 2β̃

)
σj + ρβ̃

cj+1, j = 0, ..., m− 1.

This uniquely determines cj.
If we assume that 2β̃ 6= j for all j = 0, ..., m− 1, then all the coefficients cj are

nonzero. In particular, 0 is not a root of P and P, Q have no common root.
Let us denote these polynomials by Pm = Pm,β̃,σ. Note that ρ is explicitly deter-

mined by m, β̃, σ through (8.5) . To obtain balancing configuration, the condition
σm + ρβ̃ = 0 becomes (

1
r0
− α1

)
m +

(
β̃

r0
+ α1

)
β̃ = 0.

That is,

α1 =
m + β̃2(

m− β̃
)

r0
.

Note that α1 can be positive or negative, depending on the value of m − β̃.
However, α1 can’t be zero. We can find a nondegenerate configuration for generic
choice of the circulation β̃ whose location is determined by the zeros of Pm.

To proceed, consider the equation

P′′ξ + β̃2Pξ ′′ − 2β̃P′ξ ′ = σP′ξ + ρβ̃Pξ ′. (8.6)

Previous analysis yields abundance of solution pairs (Pm, ξ) with ξ (x) = x. Recall
that if A, B are two functions and η1 is a solution of the second order ODE of η :

η′′ + Aη′ + Bη = 0.

Variation of parameter formula then tells us that this ODE has another solution of
the form

η1 (x)
∫ exp (−

∫
A (s) ds)

η2
1 (t)

dt.
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Hence (8.6) has another solution pair (Pm, ξ2) , where

ξ2 (x) = x
∫ (

s−2P
2
β

m e
ρs
β

)
ds.

Lemma 8.2. Assume 2
β̃
∈ N. The function e

− ρx
β̃ ξ2 (x) is a polynomial of degree 2m

β̃
− 1

for a suitable integration constant.

Proof. We write Pm as P and expand P
2
β̃ near s = 0. We see that the integrand

defining ξ2 has the form ( c1

s2 +
c2

s
+ c3 + c4s + ...

)
e

ρs
β̃ .

We compute(
P

2
β̃

)′
+

ρ

β̃
P

2
β̃ =

2
β̃

P
2
β̃
−1

P′ +
ρ

β̃
P

2
β̃ =

1
β̃

P
2
β̃
−1 (

2P′ + ρP
)

.

On the other hand, at s = 0, by (8.6) , we have

2P′ (0) + ρP (0) = 0.

Therefore,
(

P
2
β̃

)′
+ ρ

β̃
P

2
β̃ = 0 at s = 0. As a consequence, e

− ρx
β̃ ξ2 (x) is polynomial

for a suitable integration constant. This completes the proof.
�

To construct more balancing configurations, we need the following

Lemma 8.3. Suppose p, q satisfy the equation

p′′q + β̃2 pq′′ − 2β̃p′q′ = σp′q + ρβ̃pq′.

Let η = e
− ρx

β̃ q. Then p, η̃ satisfy

p′′η + β̃2 pη′′ − 2β̃p′η′ = (σ + 2ρ) p′η − ρβ̃pη′. (8.7)

Proof. This follows from direct computation. We omit the details.
�

Combining Lemma 8.2 and Lemma 8.3, for 2
β̃
∈ N, we get polynomial Qn =

Qn,β̃,σ, with degree n = 2m
β̃
− 1, which solves the equation

P′′mQn + β̃2PmQ′′n − 2β̃P′mQ′n = (σ + 2ρ) P′mQn − ρβ̃PmQ′n. (8.8)

Explicitly,

Qn = e
− ρ

β̃
x
x
∫

s−2P
2
β̃

m e
ρs
β̃ ds.

This provides us with more balancing configurations.
Suppose the corresponding vortex rings are located near (r0, 0) and with trav-

eling speed α, then there holds
1
r0
− α = σ + 2ρ,

β̃
r0
+ α = −ρ,

σm + ρβ̃ = 0.
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FIGURE 2. Roots of P2 and Q11 with β̃ = 1/3, ρ = 8/5

Therefore, we should have

α =

(
1 + 2β̃

)
m− β̃2(

β̃−m
)

r0
.

We also point out that due to the condition 2
β̃
∈N, α can’t be zero.

In the special case that β̃ = 2, the previous technique can be further applied to
yield a sequence of solutions. We also refer to [27] for related results.

Proposition 8.4. There exist sequences of monic polynomials pj, qj with deg
(

pj
)
=

2j + 1, deg
(
qj
)
= j, j ≤ 30, such that p0 = x− 4, q1 = x, and

p′′j qj − 4p′jq
′
j + 4pjq′′j = jp′jqj − (2j + 1) pjq′j,

p′′j qj+1 − 4p′jq
′
j+1 + 4pjq′′j+1 = − (j + 1) p′jqj+1 + (2j + 1) pjq′j+1.

Moreover, pj, qj are related through the recurrence relation:

q′jqj+1 − qjq′j+1 +
2j + 1

4
qjqj+1 =

2j + 1
4

pj.

p′j pj+1 − pj p′j+1 + (j + 1) pj pj+1 = (j + 1) q4
j+1.

Before proceeding to the proof, let us remark that with these recurrence relation,
we can find the sequence

{
pj, qj

}
of polynomials in the following order:

p0 → q1 → p1 → q2 → p2 → ...

We believe the condition j < 30 can be dropped. Indeed, if qj, pj have no
repeated roots, then the recurence relation gives a polynomial qj+1. Similarly, if
pj, qj+1 have no common roots, then we get a polynomial pj+1.

Proof. Let qj+1 = eµxη, where µ is a parameter to be determined later on. Let us
assume

p′′j qj − 4p′jq
′
j + 4pjq′′j =

jnj

2j + 1
p′jqj − nj pjq′j,

p′′j qj+1 − 4p′jq
′
j+1 + 4pjq′′j+1 = − j + 1

2j + 1
nj p′jqj+1 + nj pjq′j+1.
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Denoting n = nj, then η satisfies

p′′j η − 4p′j
(
µη + η′

)
+ 4pj

(
µ2η + 2µη′ + η′′

)
= − j + 1

2j + 1
np′jη + npj

(
µη + η′

)
.

We then get

p′′j η − 4p′jη
′ + 4pjη

′′

=

(
− j + 1

2j + 1
n + 4µ

)
p′jη + (n− 8µ) pjη

′ +
(

nµ− 4µ2
)

pjη.

Let us choose µ = n
4 . Then the equation for η becomes

p′′j η − 4p′jη
′ + 4pjη

′′ =
j

2j + 1
np′jη − npjη

′.

In particular, η solves the same ODE as qj. Therefore, denoting W (η1, η2) = η′1η2−
η1η′2, we get

W
(
qj, e−µxqj+1

)
= µpje−µx.

On the other hand,

p′′j+1qj+1 − 4p′j+1q′j+1 + 4pj+1q′′j+1 =
(j + 1) nj+1

2j + 3
p′j+1qj+1 − nj+1 pj+1q′j+1,

p′′j qj+1 − 4p′jq
′
j+1 + 4pjq′′j+1 = − j + 1

2j + 1
nj p′jqj+1 + nj pjq′j+1.

Let pj+1 = eαxφ, then(
α2φ + 2αφ′ + φ′′

)
qj+1 − 4

(
αφ + φ′

)
q′j+1 + 4φq′′j+1

=
(j + 1) nj+1

2j + 3
(
αφ + φ′

)
qj+1 − nj+1φq′j+1.

That is,

φ′′qj+1 − 4φ′q′j+1 + 4φq′′j+1

=

(
(j + 1) nj+1

2j + 3
− 2α

)
φ′qj+1 +

(
−nj+1 + 4α

)
φq′j+1 +

(
(j + 1) nj+1

2j + 3
α− α2

)
φqj+1.

Now we choose α such that
(j + 1) nj+1

2j + 3
α− α2 = 0.

This implies α =
(j+1)nj+1

2j+3 . Then the equation of φ becomes

φ′′qj+1 − 4φ′q′j+1 + 4φq′′j+1

= −
(j + 1) nj+1

2j + 3
φ′qj +

(2j + 1) nj+1

2j + 3
φq′j+1.

Therefore, if we take nj+1 such that

nj+1 =
2j + 3
2j + 1

nj,
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then φ and pj+1 satisfy the same ODE. This means that we can take nj = 2j + 1.
Hence we obtain

p′′j qj − 4p′jq
′
j + 4pjq′′j = jp′jqj − (2j + 1) pjq′j,

p′′j qj+1 − 4p′jq
′
j+1 + 4pjq′′j+1 = − (j + 1) p′jqj+1 + (2j + 1) pjq′j+1.

We also have the following recursive formula

W
(

pj, e−αx pj+1
)
= (j + 1) e−αxq4

j+1.

�

8.2. Three different circulations. Let us consider the case of t̃ = 1. In this case,

by translation, we may assume without loss of generality that c1 = 0. This means
that we have one vortex ring with circulation k̃.

By Lemma 8.1, in the case that the third circulation k̃ is positive, we are lead to
consider the following equation:

x
(

γ̃2P′′Q + β̃2PQ′′
)
− 2γ̃β̃xP′Q′+ 2γ̃k̃P′Q− 2β̃k̃PQ′ = σγ̃xP′Q+ ρβ̃xPQ′+ δk̃PQ.

After a possible rescaling, we may assume γ̃ = 1. The above equation becomes

x
(

P′′Q− 2β̃P′Q′ + β̃2PQ′′
)
+ 2k̃P′Q− 2β̃k̃PQ′ = σxP′Q + ρβ̃xPQ′ + δk̃PQ.

(8.9)
We consider the case that Q (x) = x − b1, where b1 is an unknown constant.

Substituting this into (8.9) , we obtain the following equation for the unknown
function P :

x (x− b1) P′′ +
[
−2β̃x + 2k (x− b1)− σx (x− b1)

]
P′ (8.10)

+
[
−2β̃k̃− ρβ̃x− δk̃ (x− b1)

]
P = 0.

Vanishing of the highest order term xm+1 requires

σm̃ + ρβ̃ + δk̃ = 0.

For generic parameters m̃, β̃, σ, ρ satisfying this condition, equation (8.10) can be
solved, yielding polynomial solution P̃m̃ = P̃m̃,β̃,σ,ρ,k̃. To obtain balancing configu-
ration, we need (

1
r0
− α

)
m̃ +

(
β̃

r0
+ α

)
β̃ +

(
k̃
r0
− α

)
k̃ = 0.

That is,

α =
m̃ + β̃2 + k̃2(
m̃ + k̃− β̃

)
r0

.

Now (P, Q) =
(

P̃m̃, x− b1
)

is a solution pair to equation (8.9). By the variation
of parameter formula,

(
P̃m̃, ξ

)
is also a solution pair to this equation , where

ξ = (x− b1)
∫ P̃

2
β̃

m̃ t
2k̃
β̃ e

ρt
β̃

(t− b1)
2 dt.
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FIGURE 3. Roots of P̃3 and Q̃19 with β̃ = 1/2, k = 2, ρ = 4, δ = 1

Similar arguments as Lemma 8.2 tells us that the function Q̃n := e
− ρx

β̃ ξ is a poly-
nomial, with degree n = 2m̃+2k̃

β̃
− 1, provided that 2k

β̃
∈ N and 2

β̃
∈ N. Moreover,

the coefficient before its highest order term equals β̃
ρ . We remark that ξ satisfies

(x− b1) ξ ′ − ξ =
ρ

β̃
x

2k
β̃ e

ρx
β̃ P̃

2
β̃ .

Hence Q̃n satisfies

(x− b1) Q̃′n +
(
(x− b1)

ρ

β̃
− 1
)

Q̃n =
ρ

β̃
x

2k
β̃ P̃

2
β̃

m̃ .

Lemma 8.5. Suppose p, q satisfy the equation

x
(

p′′q− 2β̃p′q′ + β̃2 pq′′
)
− 2k̃p′q + 2k̃β̃pq′ = σxp′q + ρβ̃xpq′ + δk̃pq.

Let η = e
− ρ

β̃
x
q. Then p, η satisfy

x
(

p′′η − 2β̃p′η′ + β̃2 pη′′
)
− 2k̃p′η + 2k̃β̃pη′ (8.11)

= (σ + 2ρ) xp′η − ρβ̃xpη′ + (δ + 2ρ) k̃pη

By Lemma 8.5, the pair (p, η) =
(

P̃m̃, Q̃ñ
)

satisfies (8.11) . This enables us to
find more balancing configuration with three different circulations, similar as the
two circulation case. Nondegeneracy can be proved by numerical methods.

9. AXISYMMETRIC FLOW WITH SWIRL

In the previous sections, we have constructed solutions to the axisymmetric
Euler flow without swirl, which corresponds to the equation{

−∆5ψ = F((ψ− α
2 | ln ε|)r2) in Π,

ψr(0, z) = 0. (9.1)
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Recall that in the case with swirl, we have the equation

−∆5ψ = F
(

r2ψ− α

2
|ln ε| r2

)
+

G
(
r2ψ− α

2 |ln ε| r2)
r2 := W.

The same method as that of the non-swirl case can be applied to this equation,
with the choice that F = G = es near the vortex rings(also using a cutoff function
to make them zero away from the vortex ring). Indeed, in this case, we can com-
pute the error of the approximate solutions following the same lines as before and
compute the projection of the error onto the kernel. To analyze the effect of the
term 1

r2 appearing before the function G, let us expand it near the point (ri, 0) . In
the notation adopted in the previous sections, we have

1
r2 =

1

(ri + εµiy1)
2 =

1
r2

i

(
1− 2εµiy1

ri
+ O

(
ε2
))

. (9.2)

Hence the contribution to the projection of the kernel due to this additional term
is of the form −2ε

ri
, compared to the term ε ln ε

ri

(
αri
κi
− 2
)

appeared in (3.17), this
is a higher order term. Hence one can construct solutions as the non-swirl case.
Moreover in the swirl case, we can also construct solutions different from the one
constructed in the previous sections, due to the presence of the term (9.2). Indeed,
we would like to contrusct a travelling wave solution with two vortex rings whose
distance is of the order O(1), and whose position in the (r, z) plane is close to the
points p1 := (r1, 0) and p2 := (r2, 0) , with r2 > r1 and positive circulation κ1, κ2,
and κ2 ≥ κ1.

The nonlinear function W will be chosen such that near pi, i = 1, 2,

W =

(
ai +

bi
r2

)
ε

2− riα
2κi κi
ri

e
s

κi ri .

We require

ai +
bi

r2
i
= 1, for i = 1, 2. (9.3)

Here ai, bi ∈ R. Let w = (w1, w2) be point in (r, z) plane. Up to a constant, one can
show that

Gj (x) =
p2

j,1

x1

∫ 2π

0

cos t√
x2

1 + p2
j,1 − 2x1 pj,1 cos t +

(
x2 − pj,2

)2
dt.

According to the computation of (3.16) , for each i = 1, 2, we should choose µi
such that

ln
(

8µ2
i

)
= Hi,1 (pi) + ∑

j 6=i

κjri

κirj
Gj (pi) . (9.4)

Using (3.17) and (9.2), we see that at the main order the balancing condition
for these two rings should have the form

(
α
κ1
− 2

r1

)
ln ε + κ2r1

κ1r2
∂rG2 (p1) + ∂r H1,1 (p1) +

2 ln µ2
1

r1
+ C0

r1
− 2b1

r1
= 0,(

α
κ2
− 2

r2

)
ln ε + κ1r2

κ2r1
∂rG1 (p2) + ∂r H2,1 (p2) +

2 ln µ2
2

r2
+ C0

r2
− 2b2

r2
= 0,

(9.5)
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where C0 is a constant indepenend of i. Therefore, we should choose α = α0 + αε

with αε = o (|1|) , such that
κ1

r1
=

κ2

r2
=

α0

2
. (9.6)

With this choice, from (9.5), we obtain the condition

r1∂rG2 (p1) + r1∂r H1,1 (p1) + 2 ln µ2
1 + C0 − 2b1

= r2∂rG1 (p2) + r2∂r H2,1 (p2) + 2 ln µ2
2 + C0 − 2b2.

Observe that (9.4) yields

ln µ2
1 − ln µ2

2 = G2 (p1)− G1 (p2) + H1,1(p1)− H2,1(p2).

Hence we arrive at

2(b1 − b2) = r1∂rG2(p1)− r2∂rG1(p2) + r1∂r H1,1(p1)− r2∂r H2,1(p2)

+ 2(G2(p1)− G1(p2) + H1,1(p1)− H2,1(p2)).

To conclude, we see that once the parameters r1, r2, κ1, b1 are chosen, we can
find κ2, α, b2, a1, a2, such that for ε sufficiently small, there is a solution with two
vortex rings to the Euler equation with swirl. Details of proof will be omitted,
since they will be similar as before.
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