Lecture 20/ Donaldson-Thomas theory There are two main paradyms for presenting curves: · Parameterized curves, i.e. image of maps was GOW theory · Curves given by equations, i.e. ideal showes (subschanes was DT shows DT theory began as a theory which counts bundles on a C43 as holomorphic Chern-Simons theory. The idea is that the holomorphic forms on a C43 Hosk (X) looks like Hor (M3) Delhan columbers of a real 3-mfd. Chara-Simus theory is a theory of 3-mfd invariants and some of the constructions in the real 3-mfl case can be imitated. The notione is that if M(x, ch) is a compact model space of vector bundles then there is [m(x,ch)]" \(H_o(m(x,ch)) \) a virtual class. to construct $\overline{M}(X,ch)$ we not to fix $ch \in H^{*}(X)$ the chern character of the budles and more subtly, we must fix a subility condition. algebraic geometry we identify a holomorphic vector bundle on X with its short of sections (such shows are locally free shows of Ox mobiles).

DT theory not only works for moduli of bundles, but in fact for moduli

spaces of coherent shows more smeally.

For curve counting we consider very special Kinds of Shewes, namely ideal shapes $I_z \subset O_X$, i.e. the shap of functions which vanish on small Subschene ZCX. On a C43, if a sheef has the chern character of C (curve) an ideal sheaf, it must actually be an ideal sheaf so there is a bijective cossespondence Iz COx C- ZCX between ideal shares and subschanes. In the early 1960's Grothendieck constructed the Hilbert scheme which is a Scheme that parameterizes subschanes (of a fixed Hilbert polymenial). Madeli space of ided shewes can thus be identified with the Hilbert schane. Defin Let X be a CY3 and $\beta \in H_2(x, \mathbb{Z})$ a corn closs and $n \in \mathbb{Z}$. Let In (x, B) be the Hilbert scheme parameterizing subschemes ZCX [2] = β and $\chi(\theta_z) = n$. Equivalently, $I_n(x, \beta)$ may be regarded as the modeli space of ideal shares $I_{2} \subset O_{X}$ with $Ch(I_{2}) = (cho, ch., ch_{2}, ch_{3}) = (1, 0; \beta, -n)$ Since [Z] = Hz(X,B) Z has dim 1 (although it may have Odin'l components). If $Z \subset X$ is a smooth curve by genus g, then $X(O_Z) = 1-g$ In general, subschemes can be non-reduced and or contain embedded points.

Schenes vs Varieties closed algebraic sets Z < A" com> radical idals Iz C[K, V.] idads Iz C[x,...k] closed subschemes ZCA" com> so for a subschene ZCA", its ring of functions $O_Z = C[x_1 - x_n]/I_Z$ can have nilpotent elements. the ideal (z, x^2) examples: C[x,y,7] (z, x²) describes a subscheme which is supported on y axis $\sqrt{(z,x^2)} = (z,x)$ but is infinitesimally thickned into the xy plane. The "firetim" x is a nilpotent elament & the functions of a subschane. C[xyz] (2, x², xy) away from x=z=z=0 the ideal in radical, boot the fruction x is solill a nilpotent. Thus curve and hadded against at the origin. hecture 21 Let XCP be a projective variety and let ZCX be a subscheme. The Hilbert polynomial of Z is Pz(m) = x(Oz(m)). For noro, P2 (m) = 4°(2,0(m)) = dim of space of lagree N polynomials on 2. P2 (m) is a polynomial of algree dim 2

											proj													
G	rotherd	ieck	sk	wed	l in	4	he (0's	3	a	Su	lang	ł	1:16 ¹	۲(x)	whe	n b	wints	c	Ylej	porl		
Subs	chemes	2	-c	Χ	wi 11	.	Ρ,	_=P		1	T _{ere}	÷	4 0	niver'	sal	51	bsch	ml		I	c i	4:15	P(x)	×χ
Such	that	- j,	f	7 :	H	ilb ^P ((x) × ,	X –	>	Hil	16 ^P (×)	and	P	e Hi	150	·) (PLLE	spndk	ю	•	Z , <	-X	
Nen	\mathcal{I}	1 T-1/P	·) =	- 2	P ·		Nu	red	Ner	, is	f		γ	c	B×	χ	íg	•	fani	4	ð	sabs	clones	
.	В	علد		4.	_	udl		ام	P.	M	v	ا ح	2 x X	į.	1,44	ار ر ما	£		H.	. An'i wa	ue.l	P.	!la	10tha
0		(GIVA	- C	ar Ska		Luite	a, 6	7	,		,		<i>.</i>	•		الم ع			J-4 (New a-	4 321	ď	19	7,01
a	กมเริง	//0.4	NO.	Ø	} <u>f</u>	→ H	i lb ^p	(x)								tp.	^ / ·				_			
	·		T	•								5	£.											
																				X	-		Ha	b×X
		В×	χ	f en	 	Hilb	(4)	×X							X									
		Υ)		- >	3																		
		ĺ				1																		
		1		f		₩ 11-11	رم)°(1					-	Hill	9	
		Ē)			Link	ט נוי									7								
																								const
Ex	ample	ì	F	ζc	X	i	• 0) die	٠١	and	cons	ists	ą	K ((ada	w)	poin	ıtı	Men		P2 (m) =	K	مدرابم
	Hilbk	(*)	2	Hill	tree	selv	m(B K	poi	nts ,		Hil	b ^k (x) -	4	- b	5ym'	,(x)	(Hill	u rt	- Cl	w	morphi
														_/	[aia=		mp							
												On on	ly o	in is	اه ه	len	dinx	=						
i	Hilbr(i	k) is	. 140	m-Sia	g.br	if	. di	~X =	1 4	r Z														
(for	din X	-2	H	illo ^k (x) -	o S	m*()	k) .	b a	re	فسامي	'n.	Z 5.	iagula	i he)								
						,																		
	Hi	15-(k)	2	BIS		Sym²	(X)	4								K 2	re	u bor s	4	h d	irechi	-	
											2	co in	ts c		4	zethe	4		_ L		r k in		mple	
								_											وط سر	, v	. b	الله	egui) N
E	x. IR	- C	,cX	k	, 0		ww	l	c]=	β	16	κ [']	P _c (n)	=	7(Oc) .	t M	H·F		_	L. 8.1	Anna.	xcl	
	n	. 1		χl A	, 1					_				<u> </u>		. 1				V	ek (e^ '		
	(5)	end	W =	MO	C/	w	ŧ w	ill o	all	 	lilh	[=	\mathbf{N}	[X, /	6)	in 1	ی رنبا	S.		70	1		

Scheme phenomena are forced on us when we consider moduli speces of curves: we may have a family Z+ < X + < A | with [Z+]= B, X(O2+)=n where Z to are smooth, reduced curves but Zo has an embedded point. (families of curves in a projective threefold with constant B and n are flat). ex. Zt CTP3 (not CY but serves do illustrate). family of trusted cubics degenerating to a plane cubic ~~~ b if curve didn't have an P1 C 7 73 embedded point at origin, then $n = \chi(O_{z_0}) = 0$ since arithmetic game (X:y) - (x3: x2y: xy2: y3) of plane cubic is 1. [ocal model: 2+0 = { x= 2=0 } u } y = z-t=0 } c c3 $I_{z_{+40}} = (x,z) \cdot (y,z-t) = (xy,zy,xz-ty,z^2-tz)$ limit $T_{z_{\pm}} = (xy, zy, xz, z^2) \subseteq (z, xy)$ nilpotent elt in O_z is z

In fout we can get flat families of subschemes like this: Smooth glows 0 (1/21) planar model curve class 3[L] cubic with embedded point smooth planar cubic planar nodal with point for away cubic with point for away χ(Eυρ+)= χ(E)+χ(pt) = 0+1=1

	W	ę	su	the	*	Wi	4h	sab	schu	ines	,	wł	MVS	,t 4	ekn	d	is ca	nnect	ત્ર	thi	45	Qu	1	lef		
mu	t	alle	N.	Odia	ts	A 6	اامسا	46	CUTY	. (
		We	USI	٤ <	K	rotal	lia	J	In C	x, 6)		rati	her	Shan	H	lilb'	1+ M	B·H ((x)	į	elca.	u 6/	W	m	5 r	regard
it	ac	_	and d	L .(;	-0	ر د د د د	اء د		: 5													CY3				
ch	(I) =	(1	- ره ر	·β,-	n) e	÷ H ^e	' & H	² ⊕ H	1 ⁴ 0 h	16		then	16	. (Lanor	ical	<i>)</i> **	4P	I	ے	→I"	٧¥ (O _K		
																						idal				7
																		~e/	The	a	4 (idal	SM	<i>†</i> .	1 ≒ .	15
the	n]	I.	5 a	atom	afical	ly .	stabl	a a	ml	Į	2]= 6	3	7/	02)	= N										
																		/v	A)	_		e r			1	
han	r i	arp	Mens	45	ક	di	ffea	nt-	dim	lusij	n,	В	a t	like	. 5	to bl	; W4	ys.	4	hey	bel	hove	W	ell	bec	aust
																						io				
by	th	4 1	mhi	m ,	z e	a pe	rfea	f d	obstr	vetia	n	松	wy	u	Hick	k i	. 0		gad	get	4	hat	Kee	کم		
											loca	ally														
41	ack		в	how	4	he	med	a li	Spar	e i	6	cut	· out	8	a	SME	,th	S	MUR I	67	eg	mta	۶,			
ha	imel	ঠ	if		M		Sa	me i	nole(i	S	pue	Pe	ramı	steris	eing	واواه	ets	E	, 4 1	len	lo	cally	٨	I W	[= .]e M
n a				(1			ف											·								
Į.v.	ю	0	tesc	ribed		as			Zero					May												
								7.	f(E)		K #	+ C	Kurin V / =	iski_ :	سر ر ه	andy!	hic I fin	حنك								
												10	ישו ב	•												
							1	afait	esimo	. dh T	mh M	us			Spau	the lay in	obst Glasia	ruch	3 5							
							8	E ,	ì.e.	(E) ` `				_	tion o										

for example if $[f: C - o X] \in M_2(X, \beta)$ is an embedding of a smooth curve, Then $Def(f) = H^0(C, f^*V_{cis})$ and $Ob(f) = H^1(C, f^*V_{cis})$ For any mobile of showes on a C43 we have Def(E) = Ext'(E,E)Ob(E) = Ext2(E,E). In the case where E is a bundle then $Ext^{i}(E,E) = H^{i}(X,E^{*}oE) = H^{i}(X,EME)$ Serce duality says that for my smooth X of dim d Exti(F,6) = Extd-i(G, Fokx) In particular, for X a C13 Ext'(E,E) = Ext2(E,E) Key fort Deformations are dual to obstructions So the Hilbert scheme / mulali of ideal shows In (X,B) is locally near Iz given by K'(0) C Def (Iz) where Def (Iz) H 06(Iz) $\operatorname{Ext}'(I_2,I_2)$ $\operatorname{Ext}^2(I_2,I_2) \supseteq \operatorname{Ext}'(I_2,I_2)$ So K is a section of T*Def(I), namely a differential 1-form on Def. Since Def is just a vector space, every t-form is exact so R=df where $f: Ext'(I_2,I_2) \longrightarrow C$ (Jargan f: the local superpotential)

Locally at a subschane $Z \in X$ [2] $\in I_n(X,\beta)$ In (X,β) is given by Edf=05, i.e. it is the critical locus of a function f: Ext'(Jz, Jz) -> C • Since dim Ocf = dim Ob vdim = 0 and we get $[I_n(x, \beta)]^{vir} \in H_0(I_n(x, \beta); Z)$ Defin $N_{n,\beta}^{0T}(x) = \int 1 \quad \in \mathbb{Z}$ $\left[\sum_{n} (x_{n}\beta) \right]^{vir}$ Recall that one property of the virtual class is the following: if M is a moduli space with a virtual class [M] and M is smooth but not of the expected dimension, then [M] = [M] (Crop (Ob) . In particular, if vdim =0 Then $\int 1 = \int c_{mp}(0b)$ where $0b \rightarrow M$ is the obstruction bundle $[m]^{vir}$ [m]For DT theory Ob = Def = T*M so $\int 1 = \int C_{TOP}(T^*M) = (-1)^{din}M e(M)$ $[m]^{vir} [m] \qquad [m]$ [m] vir [m]

Amozingly, a formula like the above holds oven if M is singular Theorem (Behrand) Let M = In(x, B) or more grownly any moduli space of showes on a C43, then $\int 1 = e_{vir}(M) := \sum_{k \in \mathbb{Z}}^{l} K \cdot e(\mathcal{D}_{m}^{-l}(k))$ EmJ^{vir} $\text{where } \mathcal{D}_{M} : M \longrightarrow \mathbb{Z} \text{ is the Behrood function a constructible function}$ defined by $\mathcal{P}_{M}(EII) = (-1)^{\dim Ext^{1}(I,I)} (1 - e(MF_{f_{I}}))$ where $MF_{f_{\pm}}$ is the Milner fiber of $f_{\pm}: Ext'(I,I) \longrightarrow C$ the local superpotential at [I] & M The Milner fiber is a classical invariant in singularity theory. $MF_{f_{\epsilon}} = \left\{ f_{\underline{I}}^{-1}(\delta) \cap B_{\epsilon}(\delta) : 0 < \delta << \epsilon << 1 \right\}$ Ext'(I,I) {df_I = 0}

B₀(0) Example 1f M is smooth Men f = 0 and $MF_f = 65$ $V_{M}([I]) = (-1)^{\dim Ext'(I,I)} = (-1)^{\dim M}$ In general, Ym weights singularities and mon-reduced structure.

example:	M =	Spec (C[x]	,	, i.e	. i+	6	a "	fet'	Point	8	longth	A .
The tengent space	Tpr	M = C		and	f : 0	· -•	¢	4.3					
sime {df =0	{ (=)	X*=0			X		Ð X"	`*					
				- 11 · 1	-1.0	,,,,	1						
) _A (pt) =	(-1)(1- e			<u> </u>	/							
			_		es to §	X**/=	- (} :	= halp	rts				
So Dm (p	t) = (-	1)(1-	(n+1)	= n									
so whil	R	e(n)=	•	evir	(M) = N								
cture 24													
Compare	Pan	dyms:											
Not (() =	(1		=	2,	ĸe	(ช	'(*))					
", В	ĺ	In(X,B)	J ^{vir}		KEZ		<u> </u>						
		itegal				weigh	ited	Euler	- ch	Y			
A a a													
Advantages of													
· Can be	Compa	ited st	rata la	7 -	stata.	Eul	er	char	6	motiv	nic_	:	
e(x)= e(x	-2)+	e(Z)	for	Z	closed		e(;	X × Y) =	e(x)	ely),			
												C	ماه ۱
• Doe			-										py it
X is non-compact	f) w	can	define	N	n,p(x)	3	Ri	15		fin	d poi	at locus	
• If										• • • • • • • • • • • • • • • • • • • •			

· Suggests the existence of Categorified DT Invariants: ordinary Euler char $e(M) = Z'(-1)^k din H^k(M)$ is there some cohomology $\widetilde{H}^*(M)$ so that $e_{vir}(m) = \sum_{i=1}^{n} (-1)^k dim \widetilde{H}^k(m)$? (429!). Such a thing H*(m) is the categorified DV invariant associated to M
enter char

Numbers 5 Graded Vector spaces (set) (category) Comportations X = total (O(-3) -0 P2) = "local P2" $I_1(X, ER'J) = \begin{cases} \\ \\ \\ \end{cases} = \begin{cases} \\ \\ \\ \end{cases}$ in $R^2 = R^2$ so N', [r] = evir (R2) = (-1) dia R2 e(R2) = 3 5 dim' 1 Iz (X, [R']) = {

| in X (when point is on line, it has the structure of an embedded point) and smooth need to check local str. at embelled ponets $N_{2,[R']}^{UT}(X) = e_{vir}(I_{2}(X,[R'])) = (-1)^{5}e(I_{2}(X,[R'])) = -e(I_{2}(X,[R'])^{C^{2}})$ subschmis fixed by CX C (Cx)3 - torvs acting on toric X.

$$T_{2}(X, Er)^{C^{2}} = \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right\} \cup \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \cup \left$$

example bocal elliptic curve X= Tot (LOC' -OE) L is generic degree O line bundle. In GW theory we chose L to be ghoric so ECX is super rigid: E doesn't determ and no multiple of E determs. In DT theory we are less concerned about non-compactness. We first compute for $\tilde{\chi} = \operatorname{Tot} (O_E \circ O_E \to E)$ X = C2xE $N_{n,d[e]}^{DT} = e_{vir} \left(I_n(\tilde{X}, d[e]) \right)$ the group $(C)^2 \times E$ acts on $I_n(X,d[E])$ and $e_{vir}(I_n(\widetilde{X},d[E])) = e_{vir}(I_n(\widetilde{X},d[E])^{(c^*)^* \times E})$ What subsidences ZC C2 x E are preserved by (Cx)2 x E? First just consider $I_n(\tilde{X},d)^E = no$ embedded points and such subschans $Z \subset C^2 \times E$ are determined by their restriction to 2 crop a length & zero din'l sabadanp $I_{n}(\tilde{X},d(\epsilon))^{E} = \begin{cases} \phi & n \neq 0 \\ Hilb^{d}(C^{2}) & n = 0 \end{cases}$ C² $N_{n,d[e]}^{p\tau}(\hat{x}) = \begin{cases} e_{vir}(Hilb^d(c^2)) & n=0 \\ 0 & n\neq 0 \end{cases}$ e_{vir} (Hilb⁴(e^{2}) = (-1)²⁴ e (Hilb⁴(e^{2}) = e (Hilb⁴(e^{2})²) = # { Ice[x,4], I generated by measured?}

Aim C[x,4]/ e^{2}

GW/DT Correspondence Recall the GW potentials and partition function For (x) = E' Nor VB genus g potential $F^{GW}(x) = Z' F_0 \lambda^{2g-2}$ all gens potendial F' = FGW - FGW | v=0 + F' doesn't include \$=0 invariants Z_{GW} = exp(F_{GW}) = GW partition function, generating function for possibly disconnected invariants

Z_{GW} = exp(F_{GW}) = Z_{GW} = guarating for possibly disconnected invariants

with no collapsing connected components governting function for DT invs (with a sign (-1)" for convenience). $Z_{DT}(X) = \sum_{n,p}^{\prime} N_{n,p}^{DT}(X) V^{p}(-g)^{n}$ DT theory is in hormatly disconnected and includes point contributions so it is most closely analogous to Zow, hoveror we perfor Zow to Zow (no ill defined torus eg.). For DT sheery we remove degree zero contributions formally: Defin 2' = 201 s a priori, it's not clear what this is the generaling for geometrically (torus out to be PT theory)

GWIDT correspondence conjectural in 2003 MNOP, proven by Pardon in 2023: $Z'_{OT}(x) = Z'_{ON}(x)$ after the change of variables $g = e^{i\lambda}$ Same function, GW invariants are taylor coefs, OT invs are Fourier coefs. The variable change $g=e^{i\lambda}$ is stronge. For this change of variables to even make sense requires the following property (conj by MANOP 2003, prom by Bridgeland ~ 2010): then The coefficient of vB in Z'DT is the Laurent orponsion of a rational function in g i.e. a palendromic Laurent polynomial 3g-2, 7g-1+2+7g +3g2 or Something like $8+28^2+38^3+\cdots = \frac{8}{(1-8)^2} \iff \frac{9^{-1}}{(1-5^{-1})^2} \cdot \frac{8^2}{8^2} = \frac{3}{(1-8)^2}$ Correspondence makes sense for fixed & (can compare VB terms of Z'DT and Zow separately), but for find B one must know all g to get a single n and vise-vorsa. Physicists call this a non-parterbetive deality. ZGW is an expension for small string capting constant 1 Z'_{DT} " " " g \Leftrightarrow $\lambda \rightarrow i \infty$ (large string coupling constant) 5-duality between A-model and B-model.

Example local elliptic curve
$$X = \text{total}(Lali-o E)$$
 $N_{n,A}^{DT} = \begin{cases} P(l) & a = 0 \\ 0 & \text{alliented} \end{cases}$
 $Z_{DT} = Z_{T}^{-1} N_{n,A}^{DT}(-g)^{n} V^{d} = Z_{P(l)} V^{d} = \frac{1}{11} (1-V^{n})^{-1}$
 $Z_{DT} = Z_{T}^{-1} N_{n,A}^{DT}(-g)^{n} V^{d} = Z_{P(l)} V^{d} = \frac{1}{11} (1-V^{n})^{-1}$
 $Z_{DT} = Z_{T}^{-1} N_{n,A}^{DT}(-g)^{n} V^{d} = Z_{P(l)} V^{d} = \frac{1}{11} (1-V^{n})^{-1}$
 $Z_{DT} = Z_{T}^{-1} N_{n,A}^{DT}(-g)^{n} V^{d} = Z_{T}^{DT}(-g)^{n} V^{d} = Z_{T}^{DT$

Suppose that X is a toric CY3: it has a $T = (C^{\times})^3$ action with an orbit as a dense your set. E.g. Total (0(-1)00(-1) -> P') or tot (0(-2,-2) -> P' = P') T acts on X with isolated fixed points and each fixed point is the origin of an affine coord that $C^3 \subset X$. The induced action of T on In(X,B)has fixed points given by ideal showes generated by monomials in each coordinate patch. So T-fixed subschemes configurations of boxes in each coord patch. How can we handle the Belarent fraction? There is a 2-dim'l stris ToyeT which acts trivially on the fibers of $K_X \cong C \times X$. In a C^3 coordinate patch of X, with (t,,t2,t5) = T acting by (t,x,t29,t32) Tey = { (t,,t2,t5) : t,t2t3=1 } you can check that Tay fixed ideals ICC[49,2] are still those generated by mammils. If $[I] \in I_a(X,\beta)^{T_{CY}}$ then T_{CY} acts on $Ext^i(I,I)$ and the Kurinishi map Ext'(I,I) -> Ext2(I,I) is Tex equivariant. More nor Serve duality Ext2 (I,I) => Ext(I,I) is Tox equivariant (but not T equiv!) and so the superpotential $f: Ext'(I,I) \longrightarrow C$ is T_{CY} invariant T_{CY} and trivially here. Try outs, 0 is only fixed point (if there was as fixed linear subspace, then [1] & In(48) would not be an isolated fixed print).

	har hand					
2501	= 5 evi	r(In(x,[r]))	(-9)			
2.1						
	± 5 #	{I,(x,[r/1) ^T }	8"			
lf subsch	ome has no	embalded point	s, it is just -	the zero suchi	n TP'CX and	
= 2/0-1:	= 1	en charte et	n=1 and 6	real Sign is	mantivo	
				(4)		
Z1 = -	ž & Z	\$ # 1 ways	A adding A, box	jes 40		
) (pous)	
= - 8	(Z 6(1)5")				call this b(no)	
e. I		<i>u</i> ,				
SWIDI 6	thus predicting	Tet				
19	\					
1 2 Maja	3 6/4)	` = + + +	· 602 + 1307 + · · · \	. /	١ ١	
A			· 6g³ + (3g¹ +···)	· (1+8 +8+ 8)	→ 5⁴→····)	
A						·
A					+8"+) 1+28+582+1283+ 2484.	
A						
A		number of the stack of the stac				એ ► 22
A						·
A						4 ~ 11
A						4 • 11
A						- -
A						**************************************
A						
A						***
A						*
A						

hecture 32 (The full computation for X = Tot (O(+)@ O(+)). First application of the topological vartex. The topological vartex is a look counting generating function: Defor Let (4,2,2) be triple of 20 partitions viewed as young diagrams: where III = number of boxes in II with each VANA (8) = 5 8/11

To 30 partitions

assume to the to

AVA box counted by 1- # of lays look is contained in example VD & B (8) counts things like this; This configuration To has $|\pi| = 4 - 2 = 2$ the two 4 added boyes in black boxes count negative Such IT correspond to monomial ideals IC C[x,7,2] so that in C[x,y,z,x'] I = (y,z), in C[x,y,z,y'] I = (i), and in C[x,y,z,z'] $I = (x^2,xy,y^2)$

Okamber-Reshitikin-Vala gave a form la for Varia (8) in torus of Schur functions for example: \sqrt{hm} $V_{44\lambda}(g) = M(g) g^{-\binom{\lambda}{2}} S_{\lambda^{\pm}}(1, g, g^{2}, ...)$ where $M(g) = \frac{m}{11}(1-g^{m})^{m} (=V_{444})$ $\binom{\lambda}{2} = \sum \binom{\lambda_i}{2}$ $S_{\lambda^{\pm}}(K_1, K_2, \cdots)$ Schur symmetric function labelled by λ^{\pm} conjugate partition. example $S_{D}(X_{1}, X_{2}, \cdots) = X_{1} + X_{2} + \cdots$ so $S_{D}(1, 9, 9^{2}, \cdots) = 1 + 9 + 9^{2} + \cdots = \frac{1}{1-9}$ In fact, $g^{-\binom{\lambda}{2}} \leq_{\lambda^{c}} (1,8,8^{2},...) = \frac{1}{1-8^{N(0)}}$ N(D) = hook longth. $Z^{DT}(X) = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} N_{n,d[x^n]}^{DT}(X) V^{d}(-g)^n$ = \frac{7}{2} v^{\partial} (-1)^{\sigma(1)} \frac{7}{2} \frac{4}{2} \left[I_n(x, a[\text{In}'])^T \right] \frac{9}{2}^n $=\sum_{A=0}^{\infty}V^{A}\left(-1\right)^{\varphi(A)}\sum_{\lambda\vdash A}^{\omega}V_{\varphi\varphi_{\lambda}}\left(g\right)V_{\varphi\varphi_{\lambda}'}\left(g\right)V_{\varphi\varphi_{\lambda}'}\left(g\right)g^{\chi}\left(\varrho_{C_{\lambda}}\right)=$ CACX is T-inversit subschap with cross section of and no embedded points. $= \sum_{d=0}^{\infty} \sqrt{(-1)^{\sigma(d)}} \sum_{\lambda=1}^{d} g^{-\binom{\lambda}{2} - \binom{\lambda'}{2}} M(g)^{2} S_{\lambda}(1,g,...) S_{\lambda'}(1,g,g^{2},...) g^{\lambda(0_{C_{n}})}$ The only two things we don't know in the above is $\chi(O_{G_1})$ and $\sigma(a) = \dim \operatorname{Ext}'(\Sigma_{G_1}, \Sigma_{G_2})$ and ZMNOP gives general formulas for this but we can also compute directly using 0(2) 0(3) 0(4) TxOcx = D $T: X \to \mathbb{P}'$. For example $\chi(\mathcal{O}_{c_{\lambda}}) = \chi(\pi_{*}\mathcal{O}_{c_{\lambda}})$ 8(1) 8(2) 8(2) 0 061 00 $\pi_* \mathcal{O}_{\mathcal{G}} = \bigoplus_{i=1}^{\ell(\lambda)} \bigoplus_{j=1}^{\lambda_i} \mathcal{O}(i+j-2) \quad \text{so}$

$$\chi(T_{1}Q_{1}) = X_{1}^{(1)} X_{1}^{(1)} + i - 1 = X_{1}^{(2)} X_{1}^{(1)} + X_{2}^{(1)} X_{2}^{(1)} - |A|$$

$$\chi(X_{1}^{(2)} X_{1}^{(2)} = X_{2}^{(1)} X_{2}^{(1)} = X_{2}^{(1)} X_{2}^{(1)} + |A|$$

$$\chi(X_{1}^{(2)} X_{2}^{(2)} = X_{2}^{(2)} X_{2}^{(2)} + |A|$$

$$\chi(X_{2}^{(2)} = X_{2}^{(2)} X_{2}^{(2)} = (X_{2}^{(2)} + |A|)$$

$$\chi(X_{2}^{(2)} = X_{2}^{(2)} X_{2}^{(2)} = (X_{2}^{(2)} + |A|)$$

$$\chi(X_{2}^{(2)} = X_{2}^{(2)} X_{2}^{(2)} + |A|$$

$$\chi$$