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Abstract. We investigate the most likely time for the winning goal in an ice
hockey game. If at least one team has a low expected score, the most likely
time is at the beginning of the game; otherwise it is at some time during the
game.

1. Introduction

A local radio station once had a contest which involved guessing in which minute
of an ice hockey game the winning goal would be scored. This makes an interesting
exercise in probability theory, to calculate an optimal strategy for entries in such
contests. Since this is theoretical probability rather than practical statistics, we
make some simplifying assumptions:

Assume each team’s goals occur by independent Poisson processes
with constant rates λ1 and λ2 for time 0 ≤ t ≤ 1 (representing
“regulation time” - we’ll ignore overtime). If the final score is m to
n with m > n, then the winning goal is the (n + 1)’th goal scored
by the winning team. Let T be the time of the winning goal. We
want to find the density f(t) for T , and to determine at what time
f(t) is greatest.

Note that T will be left undefined if regulation time ends in a draw. Thus the
integral of the density from 0 to 1 will not be 1, but rather the probability that
regulation time does not end in a draw.

2. The density

The best way to approach this problem seems to be to condition on the number
of goals scored by one of the teams. What is the conditional probability that team
1 scores the winning goal in the time interval [t, t + h) where h is small, given that
team 2 scores a total of exactly m goals? Neglecting the event that team 1 scores
more than one goal in this interval (which has probability o(h)), this happens if
and only if team 1 scores exactly m goals in [0, t) and at least one in [t, t+h). Thus
the conditional probability is

λ1he−λ1t (λ1t)
m

m!
+ o(h)

Since the probability of team 2 scoring m goals in the game is exp(−λ2)λ
m
2 /m!,

we obtain the density
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f1(t) = λ1e
−λ1t−λ2

∞
∑

m=0

(λ1λ2t)
m

(m!)2
= λ1e

−λ1t−λ2I0(2
√

λ1λ2t)

for team 1 scoring the winning goal at time t, where I0 is a modified Bessel function
of order 0.

Adding the similar density for team 2, we find the total density for the winning
goal being scored at time t is

f(t) =
(

λ1e
−λ1t−λ2 + λ2e

−λ1−λ2t
)

I0(2
√

λ1λ2t)

The integral of this for t from 0 to 1 is the probability that regulation time does
not end in a draw, which is

1 − e−λ1−λ2

∞
∑

m=0

(λ1λ2)
m

(m!)2
= 1 − e−λ1−λ2I0(2

√

λ1λ2)

Now the question is to find where f(t) attains its maximum on the interval
0 ≤ t ≤ 1. It is extremely unlikely that this can be found in general in closed form,
but some qualitative results are possible. In particular we can investigate whether
the maximum will occur at an interior point or an endpoint.

3. Evenly matched teams

We first consider the special case of two evenly-matched teams: λ1 = λ2 (which
we may as well call λ).

Theorem 1. If 0 < λ ≤ 1, the maximum is at t = 0; if λ > 1 it is in (0, 1), and is

the only critical point in that interval.

Proof. We have

f(t) = 2λe−(1+t)λI0(2λ
√

t)

and

f ′(t) =
2λ2

√
t
e−(1+t)λ

(

I1(2λ
√

t) −
√

tI0(2λ
√

t)
)

The apparent singularity at t = 0 is removable: f is analytic at t = 0 with
f ′(0) = 2λ2(λ − 1)e−λ and f ′′(0) = λ3(λ2 − 4λ + 2)e−λ.

Thus for 0 < λ ≤ 1, t = 0 is a local maximum of f(t) on [0, 1], while for λ > 1
it is a local minimum.

The other endpoint, t = 1, is never a local maximum. We have

f ′(1) = −2λ2e−2λ(I0(2λ) − I1(2λ))

The fact that I0(2λ) > I1(2λ) for all λ > 0, and thus that f ′(1) < 0, can be seen
using series expansions and the Cauchy-Schwarz inequality: if ak = λk/k!,

I0(2λ) =

∞
∑

k=0

λ2k

(k!)2
=

∞
∑

k=0

a2
k

I1(2λ) =

∞
∑

k=0

λ2k+1

k!(k + 1)!
=

∞
∑

k=0

akak+1
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But by Cauchy-Schwarz,

∞
∑

k=0

akak+1 ≤
(

∞
∑

k=0

a2
k

)1/2(
∞
∑

k=0

a2
k+1

)1/2

≤
∞
∑

k=0

a2
k

Now we investigate critical points in (0, 1).

At a critical point of f(t) we will have I1(2λ
√

t)/I0(2λ
√

t) =
√

t. It is useful to
make the substitution s = 2λ

√
t, so this equation can be written as R(s) = 1/(2λ)

where R(s) = I1(s)/(sI0(s)). I claim that R(s) is a decreasing function of s > 0,
with

lim
s→0+

R(s) = 1/2 and lim
s→∞

R(s) = 0

Thus when λ ≤ 1 there is no positive critical point of f(t), while when λ > 1 there
is exactly one positive critical point of f(t). Moreover, since we know f ′(1) < 0,
this critical point satisfies t < 1.

To prove the claim, we use a phase-plane analysis of the differential equation

y′ = (1 − 2y)/s− sy2

which is satisfied by y = R(s).
Here is a phase-plane plot for the differential equation in the first quadrant.
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The solid curve is the solution y = R(s), while the two dotted curves are the null
isocline (1 − 2y)/s − sy2 = 0 (below) and y = 1/s (above). In the terminology of
Hubbard[1], we will show that the dotted curves are two fences forming a funnel,
within which the solution is trapped.

The equation for the null isocline can be solved for y: the positive solution is

y =

√
1 + s2 − 1

s2

The right side of this is a decreasing function of s > 0, since its derivative can
be written as
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−
(√

1 + s2 − 1
)2

s3
√

1 + s2

Since the slope (namely 0) of solutions of the differential equation is greater
than the slope of the null isocline at all points on that curve, this is a lower fence:
solution curves can cross the null isocline from below to above, but not vice versa.

On the other hand, the curve y = 1/s has slope −1/s2, while on that curve
the solutions of the differential equation have slope (1 − 2/s)/s − s/s2 = −2/s2.
Since the slope of the solutions is less than the slope of the curve at all points on
the curve, this is an upper fence: solution curves can cross y = 1/s from above to
below, but not vice versa.

As s → 0+ we have I0(s) → 1 and I1(s)/s → I ′

1(0) = 1/2. The solution R(s)
that we are interested in starts (as s → 0+) on the lower fence, and therefore
can’t reach any point below that fence, nor can it cross the upper fence. Thus it
is trapped between the fences for all s > 0. Since R(s) is above the null isocline,
R′(s) < 0; since it is below the upper fence, R(s) → 0 as s → ∞. �

We mention in passing that the function R(s) has an interesting continued-
fraction representation. This comes from the recursion

In(s) = In+2(s) +
2n + 2

s
In+1(s)

which can be written as

sIn+1(s)

In(s)
=

s2

2n + 2 +
sIn+2(s)
In+1(s)

Thus

R(s) =
I1(s)

sI0(s)
=

1

2 +
sI2(s)
I1(s)

=
1

2 + s2

4 +
sI3(s)

I2(s)

=
1

2 + s2

4 +
s2

6 +
s2

8 +
s2

. . .

While there is probably no closed-form expression for the location tmax of the
maximum when λ > 1, series and asymptotics are available. Thus by reversion of
power series we can obtain a series in powers of λ − 1:

tmax = 2(λ−1)−10

3
(λ−1)2+

43

9
(λ−1)3−841

135
(λ−1)4+

6217

810
(λ−1)5−51713

5670
(λ−1)6+. . .

We can also obtain a series in inverse powers of λ, useful as λ → ∞:

tmax = 1 − 1

2λ
− 1

8λ2
− 3

32λ3
− 3

32λ4
− 57

512λ5
− 309

2048λ6
− 471

2048λ7
− 201

512λ8
+ . . .
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Numerical evidence indicates that the absolute error in this series (truncated to
the terms shown) is less than 0.00075 for λ > 1.8.

4. Unevenly matched teams

Now consider the general case λ1 6= λ2. We have

f ′(t) =
√

λ1λ2

t (λ1 exp(−λ1t − λ2) + λ2 exp(−λ1 − λ2t)) I1(2
√

λ1λ2t)

−
(

λ2
1 exp(−λ1t − λ2) + λ2

2 exp(−λ1 − λ2t)
)

I0(2
√

λ1λ2t)

Again, the apparent singularity at t = 0 is removable, and

f ′(0) = λ2
2(λ1 − 1)e−λ1 + λ2

1(λ2 − 1)e−λ2 = λ2
1λ

2
2

(

λ1 − 1

λ2
1

e−λ1 +
λ2 − 1

λ2
2

e−λ2

)

The region of the λ1–λ2 plane where f ′(0) < 0, and thus t = 0 is at least a local
maximum of the density, is shown in the following Maple plot.
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Writing g(x) = (x − 1) exp(−x)/x2, this region corresponds to the inequality

g(λ1) + g(λ2) < 0. Since g is negative on (0, 1) and positive on (1,∞), the region
contains all of (0, 1] × (0, 1). We have

g′(x) =
2 − x2

x3
e−x

so g is increasing on (0,
√

2] and decreasing on [
√

2,∞). The maximum is at x =
√

2.
Thus for λ1 > 1 the boundary of the region is the curve λ2 = h(λ1) where h(λ1)

is the unique solution of g(h(λ1)) + g(λ1) = 0. For 1 < λ1 ≤
√

2, h(λ1) decreases

from 1 to approximately 0.8997630909. For
√

2 ≤ λ1 < ∞ it increases; as λ1 → ∞
we have g(λ1) → 0 so h(λ1) → 1.

Next we show that f ′(1) < 0, so that t = 1 is never a local maximum. Again
using the inequality I0(x) > I1(x) for x > 0, we have
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f ′(1) = e−λ1−λ2

(√
λ1λ2(λ1 + λ2)I1(2

√
λ1λ2) − (λ2

1 + λ2
2)I0(2

√
λ1λ2)

)

< e−λ1−λ2I0(2
√

λ1λ2)
(√

λ1λ2(λ1 + λ2) − (λ2
1 + λ2

2)
)

= −e−λ1−λ2I0(2
√

λ1λ2)
(

λ1 +
√

λ1λ2 + λ2

)

(
√

λ1 −
√

λ2)
2 ≤ 0

For 0 < t < 1, we can write the equation f ′(t) = 0 as

R(2
√

λ1λ2t) =
λ2

1e
λ1(1−t) + λ2

2e
λ2(1−t)

λ2λ2
1e

λ1(1−t) + λ1λ2
2e

λ2(1−t)
=

A(λ1, t) + A(λ2, t)

λ2A(λ1, t) + λ1A(λ2, t)

where A(λ, t) = λ2 exp(λ(1 − t)).
It seems likely that the behaviour is similar to that of the the case λ1 = λ2 in

that there is a single maximum in (0, 1) whenever 0 is not a local maximum, but
we have not been able to prove this.
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