6 marks 1. (a) Let $S \subseteq \mathbb{R}$ be a set. Define precisely what it means for S to be well ordered.
Solution: S is well ordered if every non-empty subset of S has a least element.
(b) Let $g: A \rightarrow B$ be a function. Define precisely what it means for g to be surjective.

Solution: g is surjective when for every $y \in Y$ there exists $x \in X$ such that $g(x)=y$.
(c) Let $h: A \rightarrow B$ be a function. Define precisely what it means for h to be injective.

Solution: h is injective when for all $a_{1}, a_{2} \in A, h\left(a_{1}\right)=h\left(a_{2}\right) \Rightarrow a_{1}=a_{2}$. Equivalently $a_{1} \neq a_{2} \Rightarrow h\left(a_{1}\right) \neq h\left(a_{2}\right)$.

6 marks 2 . Let $m, n \in \mathbb{Z}$. Prove that if $m \equiv n(\bmod 3)$ then $m^{3} \equiv n^{3}(\bmod 9)$.

Solution: We will use a direct proof.
Proof. Let $m \equiv n(\bmod 3)$, then $m-n=3 k$ for some $k \in \mathbb{Z}$. We can write $n=3 a+r$, where $a \in \mathbb{Z}$ and $r=0,1$, or 2 . Then $m=n+3 k=3 a+r+3 k=3 b+r$, where $b=a+k \in \mathbb{Z}$. Therefore

$$
\begin{aligned}
m^{3}-n^{3} & =(3 a+r)^{3}-(3 b+r)^{3} \\
& =\left(27 a^{3}+27 a^{2} r+9 a r^{2}+r^{3}\right)-\left(27 b^{3}+27 b^{2} r+9 b r^{2}+r^{3}\right) \\
& =9\left(3 a^{3}+3 a^{2} r+a r^{2}-3 b^{3}-3 b^{2} r-b r^{2}\right)
\end{aligned}
$$

This is divisible by 9 , since $3 a^{3}+3 a^{2} r+a r^{2}-3 b^{3}-3 b^{2} r-b r^{2} \in \mathbb{Z}$.

This could also be proved by cases (with $m \equiv n \equiv 0,1$, and $2(\bmod 3)$). The calculation would be similar.
3. Let $X=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$.
(a) (2 marks) Prove that if $x, y \in X$, then $x y \in X$.

Solution:

Proof. Let $x, y \in X$, then $x=a+b \sqrt{2}$ and $y=c+d \sqrt{2}$ for some $a, b, c, d \in \mathbb{Z}$. Then

$$
\begin{aligned}
x y & =(a+b \sqrt{2})(c+d \sqrt{2})=a c+b c \sqrt{2}+a d \sqrt{2}+2 b d \\
& =(a c+2 b d)+(b c+a d) \sqrt{2} .
\end{aligned}
$$

This is in X, since $a c+2 b d$ and $b c+a d$ are in \mathbb{Z}.
(b) (4 marks) Prove by induction that if $x \in X$, then $x^{n} \in X$ for every $n \in \mathbb{N}$.

Solution:

Proof. Let $x \in X$.

- The base case: let $n=1$, then $x^{1}=x$, so $x \in X$ by assumption.
- The inductive step: assume that $x \in X$ and $x^{k} \in X$, and let $n=k+1$. Then $x^{n}=x^{k+1}=x^{k} x$. Applying part (a) with $y=x^{k}$, we get that $x^{k+1} \in X$.
- By induction, $x^{n} \in X$ for all $n \in \mathbb{N}$.
(c) (4 marks) Disprove the following statement:

If $x, y \in X$ and $y \neq 0$, then $\frac{x}{y} \in X$.
(Hint: You may use that $\sqrt{2}$ is irrational.)
Solution: We disprove this by counterexample.

- Let $x=1=1+0 \sqrt{2}, y=2=2+0 \sqrt{2}$. Then $x, y \in X$ and $y \neq 0$.
- We have $\frac{y}{x}=\frac{1}{2}$.
- Suppose that $1 / 2 \in X$. Then $1 / 2=a+b \sqrt{2}$ for some $a, b \in \mathbb{Z}$, so that $1=2 a+2 b \sqrt{2}, 1-2 a=2 b \sqrt{2}$.
- If $b=0$, we get $1-2 a=0, a=1 / 2$. But this is a contradiction, since $1 / 2$ is not an integer.
- If $b \neq 0$, we get $\sqrt{2}=\frac{1-2 a}{2 b}$. Since $1-2 a$ and $2 b$ are integers, $\sqrt{2}$ is rational. But this is again a contradiction.
- This proves that $1 / 2$ is not in X. So, we have our counterexample.

6 marks 4. A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=0, a_{2}=1 / 3$, and $a_{n}=\frac{1}{3}\left(1+a_{n-1}+a_{n-2}^{2}\right)$ for $n>2$. Prove that $a_{n+1}>a_{n}$ for all $n \geq 1$.

Solution: We use the Strong Principle of Mathematical Induction.
Proof. - If $n=1, a_{2}=\frac{1}{3}>0=a_{1}$.

- If $n=2$, we have $a_{2}=1 / 3$ and $a_{3}=\frac{1}{3}\left(1+\frac{1}{3}+0\right)=\frac{4}{9}>\frac{1}{3}$.
- Let $k \geq 2$, and assume that $a_{j+1}>a_{j}$ for $j=1,2, \ldots, k$. Then also $a_{j+1}^{2}>a_{j}^{2}$ for $j=1,2, \ldots, k$. Now let's compare a_{k+2} and a_{k+1} :

$$
a_{k+2}=\frac{1}{3}\left(1+a_{k+1}+a_{k}^{2}\right)>\frac{1}{3}\left(1+a_{k}+a_{k}^{2}\right)>\frac{1}{3}\left(1+a_{k}+a_{k-1}^{2}\right)=a_{k+1}
$$

(We used that $a_{k+1}>a_{k}$ and $a_{k}^{2}>a_{k-1}^{2}$.)

- By induction, $a_{n+1}>a_{n}$ for all $n \in \mathbb{N}$.

6 marks 5. Let $f: \mathbb{R}-\{-3\} \rightarrow \mathbb{R}-\{2\}$ be the function defined by

$$
f(x)=\frac{2 x}{x+3}
$$

Prove that f is bijective.

Solution:

- We first prove that f is one to one. Suppose that $f(x)=f(y)$ for some $x, y \in$ $\mathbb{R}-\{3\}$, then $\frac{2 x}{x+3}=\frac{2 y}{y+3}$,

$$
2 x(y+3)=2 y(x+3), \quad 2 x y+6 x=2 y x+6 y
$$

so that $6 x=6 y, y=x$. So f is one to one as required.

- We now prove that f is onto: for every $y \neq 2$, there is an $x \in \mathbb{R}-\{3\}$ such that $f(x)=y$, that is, $\frac{2 x}{x+3}=y$. We solve this for x :

$$
2 x=y(x+3)=y x+3 y, \quad x(2-y)=3 y
$$

If $y \neq 2$, there is a solution $x=\frac{3 y}{2-y}$. We check that $x \neq-3$: if $\frac{3 y}{2-y}=-3$, then $3 y=-3(2-y)=6+3 y, 0=6$, a contradiction. And finally,

$$
f\left(\frac{3 y}{2-y}\right)=\frac{2 \frac{3 y}{2-y}}{\frac{3 y}{2-y}+3}=\frac{6 y}{3 y+6-3 y}=\frac{6 y}{6}=y
$$

