Tauberian Theorems and Prime Densities.

by Klaus Hoechsmann

1. Our aim is to derive a version of the so-called Tauberian Theorem by Wiener-Ikehara and to
demonstrate some of its uses in analytic number theory. This presentation does not strive to be particularly
brief or ”elementary”, but it will make a serious attempt at being clear and at placing its subject into the
context of standard undergraduate mathematics. Since it is neither a text on complex variables nor a treatise
on harmonic analysis, it can allow itself to use the familiar rudiments of both theories; since it is not intended
for the expert number theorist, it can use more ordinary prose than is customary in this science.

For the statement of the main theorem, the following jargon will be useful. Two functions F'(s) and G(s)
of a complex parameter s will be called analytically similar on the right half-plane R, = {s|R(s) > a}, if their
difference is holomorphic in R, and can be extended to a continuous function on the closure thereof.Two
functions f(u), g(u) of the real variable u will be said to be asymptotically similar if the limits lim, . f(u)
and lim, . g(u) either both fail to exist or are equal.

THEOREM I: Let {a,} and {b,} be non-negative sequences with partial sums A(z) = >
B(xz) =), <, bn, respectively. Suppose that the functions >, a,n™® and ), b,n~° exist and are ana-
lytically similar on some Ry, with a > 0. Then the functions A(xz)z~®* and B(x)z~® are asymptotically
similar. In particular, lim, . B(z)x~* = ¢ # 0 implies lim, ., A(z)/B(z) = 1, i.e. A(z) ~ B(z) in
the usual notation.

n<a On and

For example, if b, = 1, for all n, the function ) b,n~*° is Riemann’s ((s). Because of its obvious
proximity to the integral
1 oo
= / x %d,
s—1 1

it is not surprising that this function is holomorphic in R; and extends meromorphically to Ry with a simple
pole (residue 1) at s = 1 and no other poles.

In view of Theorem I, the ”real reason” behind the famous prime number theorem is Euler’s version of
unique factorization in Z, namely
St =Tl -
n

p

R(s) > 1, the product running over all natural primes. Indeed this relation shows that the logarithmic
derivative of ((s) is essentially ,i.e. up to a summand which is holomorphic in Ry , equal to — 3 logp/p®.
Of course, being the logarithmic derivative of a meromorphic function, it has only simple poles, whose
residues betray the orders of zeroes and poles of its parent. Since ((s) visibly has no zeroes in R; and — as
we shall see below — not even on its closure, it follows that ((s) and Zp log p/p® are analytically similar on

R, whence
Z logp ~ z,

p<z



by Theorem I. This is the prime number theorem. If this version of does not ring any bells, the reader
need only reflect on the excruciating slowness of the log which entails , by an elementary estimate, that
> p<zlogp ~ m(x) log z, whence the jazzier form

m(x) ~x/logx

of the theorem. It is surely one of the most amazing results in all of mathematics. On the left you have
m(x), the number of primes up to z, a function whose computation a la Eratosthenes can be safely entrusted
to any Neanderthaler, on the right you have Napier’s log — not just any log, the log.

We still need to explain, why ((s) has no zeroes on the line {#(s) = 1}, the boundary of R;. In the
evolution of the prime number theorem this remained the missing link for several decades, although it does
not seem very difficult in retrospect. A few years after it was first supplied by Hadmard and de la Vallée
Poussin, Mertens found a surprisingly simple proof, which will be presented here in stylish modern garb by
Deligne.

The fact is that —¢’(s)/¢(s) would have a hard time living up to its a priori constraints as well as
producing an extra pole somewhere. Imagine a function \(s) = Y k,n~°, with s € R, , which has a
meromorphic extension to the closure of R,. Let v; be its residue at s = a + it, and suppose that v; is a
non-positive integer for all t £ 0, while vg = 1. If you now further suppose that k, > 0, for all n, you make
it impossible for any v; to be negative — and here is why.

First think of ¢ as a function 7(n) = n~% from the natural numbers to the unit circle. You can then
consider integral linear combinations p of such 7 and define for them

Ap,s) = p(n)knn~*,

letting v(p) be the residue of A(p, s) at s = a. Note that A(1, s) is our old A(s) and that v(7) is our old vy if
7(n) = n~%. Since the k,, are real, we always have v(p) = v(p) ; since they are non-negative , p > 0 implies
v(p) > 0. This last statement is the clincher and the reason for considering linear combinations of 7’s. It
holds because v(p)(s — a)~! is the principal part of A(p,s), which must be non- negative for s = a + € since
every term p(n)k,n=° is. Now take p = (1 + 7 + 7)? = 3 + 27 + 27 + 72 4+ 72. Then obviously p > 0, and
hence

0 <v(p) =3+ 4v(r) + 2v(7?),

which shows that v(7) < 0 is impossble since v(72) < 0 anyway.

2. As a first step toward proving Theorem I, let us bring the partial sums A(z) and B(z) explicitly
into the game. Summation by parts easily yields

N
Z apn~° =AN)N~° + s/ A(x)z ' " odx
1

without any hypothesis on a,, or s. Now let @ > 0 and suppose that > a,n~® converges absolutely for every
a+ € > a. Then the above equation shows that A(N)/N%t€ is bounded for N — oo ( replace a,, by |a,| and
drop the then non-negative integral ). Since this implies that A(N)/N®*t2¢ — 0 as N — oo, we obtain the

formula
o0
Zann_s = s/ A(x)z™ " da.
- 1
The substitution z = e* immediately shows the integral occurring here to be the Laplace transform

C{fYs) = / " fue s du
2



of the function f(u) = A(e*), making Theorem I a special case of the following result, which we state using
the notation f,(u) = f(u)e™*".

THEOREM II : Let f and g be non-negative, measurable functions on R. If the Laplace transforms
L{f} and L{g} exist and are analytically similar on R,, then f, and g, are asymptotically similar.

At this point, we may cautiously proceed to perform two simplifying manoeuvres: to get rid of the
subscript a and to replace the pair f,g by ¢ = f —g. The condition a > 0 has shielded the analytic behavior
of L{f} on the boudary of R, from being affected by the factor s in the formula linking £{f} to the original
Dirichlet series; this is no longer necessary. Moreover, the distinction between f and f, has facilitated the
statement of Theorem II. If we abolish it — writing f but thinking f, and, incidentally, replacing R, by Ry
— we will have to reformulate the the monotonicity hypothesis on f and g; this can and will be done shortly.
Let us therefore take ¢ = f — g and hope that, for a certain kind of function ¢, the analytic triviality of
L{¢} on Ry implies the asymptotic triviality of ¢. Reasonable though it seems, this is too optimistic in the
present context: the integral £{¢} would obviously mask any sufficiently slender irregularities on ¢ and hence
cannot reveal its actual pointwise behavior. However, it does permit conclusions about a kind of average
asymptotic tendency, namely the limits, as u — oo, of the convolutions k * ¢ with a family F of ”averaging
functions” k. If all these limits are zero, and if F is large enough, we shall say that ¢ is asymptotically
quasi-trivial. By "large enough”, we mean that F contain a Dirac sequence, i.e. a sequence of probability
densities increasingly concentrated around 0.

To understand the significance of this, it is helpful to envisage k as a sort of "blip” around 0, i.e. a
non-negative function with large values near 0, small values elsewhere, and L'-norm (integral over all of R)
equal to 1. The value at u of the convolution,

(k * ) (u) = /R k(v — u)p(v)dv,

is clearly a k-weighted average of the values ¢(v) around v = u. As we move along a Dirac sequence, k gets
taller and slimmer, thus concentrating the averaging process more and more tightly around v = w.

Here, then, is our main lemma.

LEMMA A : Let ¢ be a measurable, real-valued function on R. Suppose that ¢ is bounded below and
that ®(s) = fooo ¢(u)e "*du converges absolutely for s € Ry. If ®(s) can be extended continuously to
the closure of Ry, then ¢ is asymptotically quasi-trivial.

The condition of boundedness is technical and could be relaxed in several ways. About the functions
mentioned in Theorem II, Lemma A says this: if g,(u) tends to some finite limit as u — oo, then (k* f,)(u)
tends to the same limit, for all k in some Dirac sequence. Theorem II now follows by means of another, easier
lemma. It requires a ”steady” function, i.e. one which does not slip back too much. A precise definition will
be given in paragraph 4; for now suffice it to say that products of non-decreasing functions and exponential
functions are steady.

LEMMA B : Suppose that f: Ry — Ry is such that lim,_(k * f)(u) = ¢ for all members k of a
Dirac sequence. Then lim,_, f(u) = ¢, provided that f is steady.

Once steadiness has been defined, the proof of Lemma B is a straightforward exercise in elementary real
analysis — cf. appendix B. The proof of Lemma A — cf. appendix A — consists in performing most of the
derivation of the ”Fourier inversion formula” but finishing with a different cadenza.



3. The time has come to look at some applications of Theorem I beyond the proof of the prime
number theorem. Its principal use is in the transition from the relatively tractable analytic density to the
more difficult natural density of a set of prime numbers (or ideals). By natural density of a set M C N of
natural primes p, we mean the limit

. #p<x, pe M}
oD = e <y

which may or may not exist for a particular set M. The notion of analytic density, though strange at first
sight is more germane to Dirichlet series. It is given by

lim A (5)

d(M) s—1+ AN(8)

)

where Aj/(s) is a function defined in R; by a suitable series, e.g. ZpeMp’S log p. Admittedly this is a slight
(?) deviation from Dirichlet’s definition, which did not include the coefficients logp — cf. Remarks below
— but, even so, d(M) has a better chance of existing than D(M). Theorem I yields a way of going from the
former to the latter, as follows.

d(M) can also be obtained as lim,_,;+ (s —1) A (s) because — Ay is essentially the logarithmic derivative
of ¢(s) , hence equals —(s—1)~! plus a function holomorphic at s = 1. This shows that d(M) is the residue of
Ay at s = 1, provided there is such a thing. Therefore, IF' Aj; is known to be meromorphic on the closure of
R; with at most a simple pole at s = 1, it follows that Aps and d(M)An are analytically similar on R;. Setting
M(z) = {p € M, p <=z}, we then conclude via Theorem I that z~* > penr(x) logp and d(M)z=' 37 <, logp
behave similarly as # — oo . By the prime number theorem, the second of these expressions tends to d(M).
Therefore

> logp ~d(M)z ~d(M) > logp,
pEM (x) p<w

whence, by elementary means (cf. Remarks)

#M(x) ~ d(M) - #{p < x},
i.e. D(M) exists and equals d(M).

In the classical equidistribution theorems, the crucial ”IF” of this argument is satisfied because of the
kind intervention of L-functions.

The logaritmic derivatives of these functions have two main virtues: firstly they are meromorphic on
R, with no poles except possibly at s = 1, and secondly their linear span — whose inhabitants are of
course equally well behaved — contains the functions Ay ( modulo holomorphic summands ) for certain
interesting sets M. Although this essay cannot give a more detailed exposition of L-functions, it can at least
indicate where these virtues come from. The second flows directly from the orthogonality relations between
the group characters involved in the definition of the L-function. The first is obtained by a modification
of the argument given in paragraph 2 for the good behavior of —(’(s)/((s): however, one now has to work
with integral linear combinations of 7(n) = x(n)n~%, where y is a character of the group belonging to the
L-function in question.

REMARKS :

1)  The customary definition of analytic density involves sums over p~* rather than p~°logp, that is,
logarithms rather than logaritmic dervatives. That simplfies the notation but complicates the analysis by
introducing non-meromorphic functions.

S

2) The elementary lemma used in removing a factor logn from a series says that > _\ ¢, ~ ¢N implies
> <n Cn/logn ~ cN/log N. B



A. Before we can prove Lemma A, we first need to recall a few basic facts about Fourier transforms
and secondly to define the family F which determines its meaning .

A function g : R — C is said to be in L'(R) if it is integrable on finite intervals and ||g|, = [ |g(t)|dt
is finite. For every such g we can define the Fourier transform by

3(u) = /R g(t)etdt.

FACTS : Let g,h € L*(R). Then
1) g is uniformly continuous on R and bounded by ||g]|1.
2)  gh has the same integral over R as giz.
3)  Setting j(u) = §(—u), we have (h-§)" = h*g.
4) ¢ vanishes at infinity.
5) Setting hn(t) = h(t/n), we have hy,(u) = n - h(nu).

REASONS : (1) is obtained by an elementary estimate; its role is to prepare the way for (2), which then
results from a straightforward change of order of integration; (3) is a variant of (2) obtained by change of
variable; it will be referred to as the "weak inversion formula” — cf. Remarks below. (4), the so-called
Riemann-Lebesgue Lemma will be needed only for g with compact support, where it comes from a simple
integration by parts , if g € C', and more generally from setting g = f + h with f € C' and h uniformly
small. (5) is immediate from the definition.

The convoluting family F to be used in the formulation of Lemma A will consist of all non- negative
functions in L'(R) which happen to be Fourier transforms of continuous functions with compact support.
The purpose of recording the rather obvious fact (5) is to show that any element h € F with Hfz||1 =1
spawns a Dirac sequence in F such as is needed for Lemma B. But are there any non-zero elements of F 7

Before exhibiting one , let us note that if & is even and real-valued then so is h, because the imaginary
part h(t)sinut of the integrand is odd. For such h we therefore have

h(u) = 2/ h(t) cos utdt.
0
Taking h(t) = 1 — |t| on the interval (—1, 1) and zero elsewhere, we see that
. 1
h(u) = 2/ (1 —t)cosutdt = u2(1 — cosu),
0

an easy integration by parts. Hence hefF.

Now the way is clear for the proof of Lemma A . As in paragraph 2, we write ¢.(u) for ¢(u)e™*.Then,
replacing ¢ by ¢,, we may assume, without loss of generality, that a = 0.

The question is : does h ¢ vanish at infinity for all h € F ? The answer seems to be : sure, just put
g = ¢ in the weak inversion formula (3 ) and use Riemann-Lebesgue (4), right ?

Wrong! For nothing assures us that ¢ € L. Instead we have some hypothesis on its Laplace transform
®, which we had better use. In fact, ®(e +it) = [;° ¢(u)e™ " du is nothing other than be(t) , which by
hypothesis is therefore continuous for (e,t) € [0,1] x R. So, to salvage our idea let us back off a little and
replace ¢ by ¢, , which by assumption is in L'. We are now staring at the correct formula

(h-¢) = h* ¢,

eager to see what happens as ¢ — 0. What we would like to find is (h- )" = h * #, where ¢ = lim_,o ¢,
and then jump to the conclusion as planned.



There is no problem with the left hand side : since h has compact support , (h - QVSE)A is an integral over
[-N, N] for N suitably large , and the integrands are uniformly continuous for (e, t) € [0,1] x [N, N].
As to the right hand side, we have

(h* ¢po)(u) = /0 - h(u —v)p(v)e™Vdv

whose convergence as desired would be guaranteed by the monotone convergence theorem if ¢ where non-
negative. Asit is, we can at least find some ¢ > 0 such that ¢(v)+c > 0. Putting K, (u) = [, h(u—v)e~"dv,
we can now add cK. to both sides to our weak inversion identity before letting € go to 0. The result is

(h-1) + cKo = h* ¢ + K,
which proves what we want.

REMARKS :

1) In this last dodge , making the integrands non-negative , a function c¢(v) could have been used
instead of the constant ¢, thus relaxing the boundedness condition of the theorem. Any ¢(v) , vanishing for
v < 0 and such that ¢(v) + ¢(v) > 0 would do the trick, provided that (b ¢)(u) is finite for all large u. If we
restricted F to the sequence H = {h,} with hy(t) = 1 — |t| as above , we could allow any ¢(v) = O(v") with
r < 1.

2) Fact (3) recalled and used above is not usually singled out for special attention , although it is a
kind of embryonic version of the very important inversion formula : (§)" = 2mg, which holds if (for instance)
g is continuous with both g and g in L. It is obtained by using a suitable sequence h,, for h in (3) and
letting n — oo.

The arguments given here for Lemmas A and B are a variation on this general pattern. This is in line
with the intuitive idea that inversion must be used in order to retrieve information about a function from
conditions on its Laplace transform. Since Laplace inversion involves integrating along vertical lines in C,
this idea may well have prompted Riemann’s move of turning s into a complex parameter. Viewed this way,
the ”intrusion” of harmonic analysis into analytic number theory appears very natural .

3) Consider the set Ky of all k € L' such that k * ¢ vanishes at infinity. How big is it? What has
been proved so far can be summarized by saying that Ky contains F, provided that ¢ satisfies the hypotheses
of Lemma A. In particular, the Fourier transforms of members of /gy have no common zeroes — this being
already the case for the subset H, by the inversion formula. Now, if ¢ is bounded above as well as below
— which it 4s in the context of Theorem I — K, is easily shown to be a closed ideal in L'. Then a famous
theorem of Wiener’s says that it must be all of L', because every proper closed ideal is annihilated by some
continuous homomorphism L'(R) — C, i.e. evaluation of Fourier transforms at one particular point .

Thus , at the price of boundedness (which we would willingly pay) , Wiener’s theorem would afford
a considerable strengthening of Theorem A | justifying also the use of the unspecific word ”quasi” in its
statement. However, since it is difficult and not absolutely necessary, we shall pass it up and go on to the
proof of Lemma B.



B. In preparation for the proof of Lemma B , two notions need to be clarified.

For § > 0, let I(6) and J(§) denote the closure and the complement , respectively , of the interval
(—4,68) . Consider a sequence p,, of non- negative L' functions of norm 1 and let P,(§) and @, (5) stand
for the integral of p,, over I(§) and J(§) , respectively . p, is called a Dirac sequence if , for all § > 0 |
lim,, 00 Pn(d) = 1 or — equivalently — lim, o @»(6) = 0. One way to make such a sequence is to set
prn(u) =n - pi(nu) , starting from any admissible p;.

Secondly , consider a non-negative , measurable function f(u). We shall say that f is steady if , for
every o > 1, there exists a § > 0 such that

0<r<25= flut+r)>a'f(u).

In other words , the factor by which f is allowed to decrease over any interval of length 26 can be made to be
arbitrarily close to 1 by controlling the size of § . This a very relaxed kind of monotonicity. Observe that all
non-decreasing functions and all exponential functions , as well as all sums and products of steady functions
are steady. The number 2 occurring in the definition is a harmless technicality designed to smoothen the
calculations below.

Now let f be a steady function vanishing on the negative reals , and let p,, be a Dirac sequence . The
problem is to show :
lim (p, * f)(u) =c foralln = lim f(u) =g,

U—00
the main issue being the existence of this limit. To simplify notation , put f, = p, * f.Then , with o and §
as in the definition of steadiness , we have

Falu+6) > /1(5) Flu+ 6 — 0)pa(0)dv > o~ f(u) Py (),

whence
c>a 'P,(8) limsup f(u) and thus ac > limsup f(u),

U— 00 uU— o0

by letting n — oo at the end.

According to the last-stated inequality , f(u) must be bounded on some interval of the form [b, 00); in
fact, since f(b— Nr) < oV f(b), it must be bounded on any such interval. Remembering that f(u) = 0 for
u < 0, we see that f is bounded, say < B, on all of R.

Replacing f(u) by B on J(9), steadiness yields the estimate

falu—=19) < /1(5) flu—0 —v)pp(v)dv+ BQn(9) < af(u)P,(0) + BQ,(0),

whence

¢ < aliminf f(u)P,(8) + BQn(9) and thus a~le < liminf f(u),

u—00 uU—00

again letting n — oo at the end.

With o > 1 arbitrarily close to 1, the inequalities a~'c < liminf f(u) < limsup f(u) < ac finish the
proof.

REMARKS :

1) With trivial modifications this proof would work also if steadiness were defined additively, as follows:
for every € > 0 there exists a ¢ > 0 such that 0 < r < 26 implies f(u+r) > f(u) — €.

2) Lemma B and the condition of steadiness are both entitled to be called ” Tauberian”, although this label
tends to be used fairly indiscriminantly to describe context rather than content. It is commonly affixed, for
instance, to Theorem I and to the famous theorem by Wiener mentioned in the last paragraph.

The original Tauber’s Theorem of 1897 placed conditions on the coefficients of a power-series to force its
summability on the boundary of its disc of convergence. The name is most appropriate in situations where
the existence of a stricter limit is deduced from that of a more general one.
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