Worksheet Review 1: Sets, indexed collections, functions, images and preimages

- 1. Let $f(x) : \mathbb{R} \to \mathbb{R}$ be function. Recall the formal definition of what it means that $\lim_{x\to+\infty} f(x) = +\infty$. Write it down (it has to have quantifiers).
- 2. For $N \in \mathbb{N}$, let $A_N = \{x \in \mathbb{R} : f(x) > N\}$.
 - (a) By definition, $A_N = f^{-1}((N, +\infty))$ in words, A_N is the preimage of the ray $(N, +\infty)$ uder f. Make sure you understand this statement. Make an example of a function f such that $f^{-1}((1, +\infty)) =$ $(10, +\infty)$ (and prove that your example works).
 - (b) Prove that $\cap_{N \in \mathbb{N}} A_N = \emptyset$.
 - (c) Prove that the following are equivalent:
 - i. $\lim_{x \to +\infty} f(x) = +\infty$
 - ii. For every N, there exists m > 0 such that $A_N \supseteq (m, +\infty)$.
 - iii. $\forall N \exists m : f((m, +\infty)) \subset (N, +\infty).$
 - iv. $\forall N \exists m : f^{-1}((N, +\infty)) \supset (m, +\infty).$
 - (d) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1}(\mathbb{N}) = \{0\}$ but $\forall N \in \mathbb{N} \ \exists x \in \mathbb{R} : f(x) > N$. Can such a function satisfy $\lim_{x \to +\infty} f(x) = +\infty$?