Worksheet Review 1: Sets, indexed collections, functions, images and preimages

1. Let $f(x): \mathbb{R} \rightarrow \mathbb{R}$ be function. Recall the formal definition of what it means that $\lim _{x \rightarrow+\infty} f(x)=+\infty$. Write it down (it has to have quantifiers).
2. For $N \in \mathbb{N}$, let $A_{N}=\{x \in \mathbb{R}: f(x)>N\}$.
(a) By definition, $A_{N}=f^{-1}((N,+\infty))$ - in words, A_{N} is the preimage of the ray $(N,+\infty)$ uder f. Make sure you understand this statement. Make an example of a function f such that $f^{-1}((1,+\infty))=$ $(10,+\infty)$ (and prove that your example works).
(b) Prove that $\cap_{N \in \mathbb{N}} A_{N}=\emptyset$.
(c) Prove that the following are equivalent:
i. $\lim _{x \rightarrow+\infty} f(x)=+\infty$
ii. For every N, there exists $m>0$ such that $A_{N} \supseteq(m,+\infty)$.
iii. $\forall N \exists m: f((m,+\infty)) \subset(N,+\infty)$.
iv. $\forall N \exists m: f^{-1}((N,+\infty)) \supset(m,+\infty)$.
(d) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{-1}(\mathbb{N})=\{0\}$ but $\forall N \in \mathbb{N} \exists x \in \mathbb{R}: f(x)>N$. Can such a function satisfy $\lim _{x \rightarrow+\infty} f(x)=+\infty$?
