Worksheet 9: Induction

1. Prove that Bernoulli's inequality: let $x>0$ be a fixed positive real number. Prove that $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
2. Prove that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. All Powers of 2 Are Equal to 1

We are going to prove by induction that,

$$
\text { For all integers } n \geq 0, \quad 2^{n}=1
$$

The claim is verified for $n=0$; for indeed, $2^{0}=1$.
Assume the equation is correct for all $n \leq k$, that is

$$
2^{0}=1,2^{1}=1,2^{2}=1, \ldots, 2^{k}=1
$$

From these we now derive that also $2^{k+1}=1$:

$$
2^{k+1}=\frac{2^{2 k}}{2^{k-1}}=\frac{2^{k} \times 2^{k}}{2^{k-1}}=\frac{1 \times 1}{1}=1
$$

Induction is complete. Where is the error?
4. Using induction, prove that the number written as 111...1 (with an even number of 1 s) is always divisible by 11 .

