## Worksheet 20. Cardinality 3: Countable and uncountable sets

1. Let $A_{1}, \ldots A_{n}$ be countable sets. Prove that $A_{1} \times \cdots \times A_{n}$ is countable. Hint. use induction.
2. Prove that if there exists an injective function $f: A \rightarrow \mathbb{N}$, then $A$ is countable.

Solution: see notes for the last lecture.
3. Prove that if there exists a surjective function $f: \mathbb{N} \rightarrow A$, then $A$ is countable.

Solution: see notes for the last lecture.
4. Prove that if $A_{n}$ is countable for all $n \in \mathbb{N}$, then $A=\cup_{n=1}^{\infty} A_{n}$ is also countable.
Hint. Try to arrange the elements of $A$ in a table.
Solution: see notes for the last lecture.
5. Let $A$ be a countably infinite set, and let $f: B \rightarrow A$ be a surjective function such that $f^{-1}(x)$ is a countable set for every $x \in A$. Prove that $B$ is countably infinite.
Hint. Use the previous problem.
Solution: see notes for the last lecture.
6. Find a bijective function between $[0,2 \pi)$ and the unit circle.

Solution. Let $S$ be the unit circle and let $f:[0,2 \pi) \rightarrow S$ be defined by the formula $f(x)=(\cos (t), \sin (t))$. It is an easy exercise (in trig) to prove that $f$ is bijective.
7. Prove that $|(0,1)|=|[0,1)|$.

Hint. Choose a countable subset $A$ of $(0,1)$. Then make a bijection between $A$ and $A \cup\{0\}$. Then define your function on the rest of the interval.

## Solution.

Lemma. If $f: A \rightarrow B$ and $g: C \rightarrow D$ are bijections where $A \cap C=$ $B \cap D=\emptyset$, then $h: A \cup C \rightarrow B \cup D$ defined by

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { if } x \in C\end{cases}
$$

is a bijection.
Proof of Lemma. Assume $h(x)=h\left(x^{\prime}\right)=y$. Assume $y \in B$. Then $x, x^{\prime}$ must be in $A$ since $h$ maps $C$ into the disjoint set $D$. Therefore $f(x)=f\left(x^{\prime}\right)$ and so $x=x^{\prime}$ as $f$ is injective. A similar argument works if $y \in D$. Hence $h$ is injective. Now let $y \in B$. Then there is an $x \in A$ so that $h(x)=f(x)=y$. Therefore $B \subset$ Range $(h)$. Similarly $D \subset$ Range ( $h$ ). We are done.
Proof of Question 7, continued. Let $a_{n}=(n+1)^{-1} \in(0,1)$ for $n \in \mathbb{N}$ and $A=\left\{a_{n}: n \in \mathbb{N}\right\}$. Define $f: A \rightarrow A \cup\{0\}$ by

$$
f\left(a_{1}\right)=0 \text { and } f\left(a_{n}\right)=a_{n-1} \text { if } n \geq 2 .
$$

Assume $f\left(a_{i}\right)=f\left(a_{j}\right)=y$. If $y=0$, then $a_{i}=a_{j}=a_{1}$. If $y=a_{k} \in A$, then $a_{i}=a_{j}=a_{k+1}$. Hence $f$ is injective. For any $a_{n}, a_{n}=f\left(a_{n+1}\right) \in$ $\operatorname{ran}(f)$ and $0=f\left(a_{1}\right)$, so $f$ is onto. Hence $f$ is bijective. Now define let $g$ be the identity function on $(0,1)-A$ (clearly a bijection). Defining $h:(0,1) \rightarrow[0,1)$ as in the Lemma above we see that $h$ is a bijection (by the Lemma) and so $|(0,1)|=|[0,1)|$.
8. Prove that if $A$ is a countable set, then $|\mathbb{R}-A|=|\mathbb{R}|$. (In particular, $|\mathbb{I}|=|\mathbb{R}|$ ). Hint. Use the previous problem.

Solution As in the Hint, let us choose $b_{n} \in(n, n+1)-A$ for all $n \in \mathbb{N}$. Such $b_{n}$ exists for every $n$, since if it didn't exist for some value $n=k$, it would mean that $A$ contains the interval $(k, k+1)$; then $A$ would be uncountable since the interval is uncountable - a contradiction. Thus, we have $B=\left\{b_{n}: n \in \mathbb{N}\right\}$, which is a denumerable set of reals disjoint from $A$. Now choose a bijection $f: A \cup B \rightarrow B$. (Given any two denumerable sets, there exists a bijection between them: suppose $g_{1}: \mathbb{N} \rightarrow B$ is a bijection; suppose $g_{2}: \mathbb{N} \rightarrow A \cup B$ is a bijection; then $g_{1} \circ g_{2}^{-1}: A \cup B \rightarrow B$ is a bijection). Now define $g(x): \mathbb{R} \rightarrow \mathbb{R}-A$ by:

$$
g(x):= \begin{cases}x & \text { if } x \notin A \cup B \\ f(x) & \text { if } x \in A \cup B\end{cases}
$$

By the Lemma from the solution of Problem 7, applied to the identity function from $\mathbb{R}-A \cup B$ to $\mathbb{R}-A \cup B$ and the function $f$ from $A \cup B$ to $B$, the function $g$ we defined is a bijection from $\mathbb{R}=(\mathbb{R}-(A \cup B)) \cup(A \cup B)$ to $\mathbb{R}-A=(\mathbb{R}-(A \cup B)) \cup B$, and we are done.

Remark. In particular, note that this statement says that in terms of cardinality, "there are more irrational numbers than rational numbers": we have $|\mathbb{Q}|=|\mathbb{N}|=\aleph_{0}$, and we just proved that $|\mathbb{I}|=|\mathbb{R}|=c$, and we proved that $\aleph_{0}<c$.
9. Let $A$ be the set of all possible sequences of 0 s and 1 s . Prove that $A$ is uncountable.

Solution. It was proved in Homework 12 that the set of such sequences is in bijection with $\mathcal{P}(\mathbb{N})$, and we proved in class that for any set $A$, the cardinality of $\mathcal{P}(A)$ is strictly greater than the cardinality of $A$. Applying the statement to $\mathbb{N}$, we get the result.
Alternatively we can run Cantor's diagonal argument for these sequences: suppose, for the sake of contradiction, that we arranged these sequences in a list indexed by the natural numbers: $s_{1}, s_{2}, \ldots . s_{n}, \ldots$. . Now we construct a new sequence, call it $c=\left\{c_{n}\right\}$ (for Cantor): to define $c_{1}$, look at the first term. of the sequence $s_{1}$. If it is 0 , let $c_{1}=1$, if it is 1 , let $c_{1}=0$. Then to construct $c_{2}$, use the second term of $s_{2}$, and make $c_{2}$ its opposite: if it was 1 , let $c_{2}=0$, if it was 0 , let $c_{2}=1$, and so on. The resulting sequence $c$ cannot coincide with any of the sequences $s_{1}, \ldots s_{n}, .$. , because its $n$th term is different from the $n$th term of $s_{n}$, for every $n$. Thus we constructed a sequence that is not on the list - a contradiction with the assumption that we listed them all.
10. Prove that the cardinality of the set from the previous problem is, in fact, continuum. (This problem is optional and a bit outside the scope of the course).
Solution. We can use binary system instead of the decimal system to establish a bijective function between the real numbers and sequences of 0 s and 1 s (again, in fact we have to throw away countably many such sequences first, to remove ambiguity of representing the rational numbers of the form $a / 2^{k}$ by such sequences of digits (they can be represented either with a finite sequence of 0 s and 1 s in binary, or with a sequence with all 1 s from some point (e.g. $1=0.11111111 \ldots$. $=$ $1.0000000 \ldots$ in binary, in the same way as $1=0.99999 \ldots$ in the decimal system). Anyway, this is a countable set and throwing it away doesn't change cardinality by Problem 8.
11. Prove that $|\mathbb{R} \times \mathbb{R}|=|\mathbb{R}|$.

Solution. First, use the fact that we know $|\mathbb{R}|=|[0,1]|$, and let us prove that $|[0,1] \times[0,1]|=|[0,1]|$. Let us use the decimal expansions: represent the numbers by sequences of digits (again, to be precise, to have a bijective function we need to prohibit sequences with a tail of 9 s$)$. Now make a function $F:[0,1] \times[0,1] \rightarrow[0,1]$ by "mixing
their digits", namely, let $f$ be defined by: $f(a, b)=0 . a_{0} b_{0} a_{1} b_{1} a_{2} b_{2} \ldots$, where $a=0 . a_{0} a_{1} \ldots$. and $b=0 . b_{0} b_{1} \ldots$. Exercise (easy): prove that this function is bijective.

