Worksheet 17: Rational and irrational numbers. Proof by contradiction.

Let $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{N}\right\}$ be the set of rational numbers, and let $\mathbb{I}=\mathbb{R} \backslash \mathbb{Q}$ be the set of irrational numbers.

1. Prove by any method that if $x, y \in \mathbb{Q}$, then $x+y \in \mathbb{Q}$ and $x y \in \mathbb{Q}$. Is it true that if $x, y \in \mathbb{I}$ then $x+y \in \mathbb{I}$? Is it true that then $x y \in \mathbb{I}$?
Solution. 1. Direct proof: if $x, y \in \mathbb{Q}$, then there exist $a_{1}, a_{2} \in \mathbb{Z}$, $b_{1}, b_{2} \in \mathbb{N}$ such that $x=a_{1} / b_{1}, y=a_{2} / b_{2}$. Then $x y=\left(a_{1} a_{2}\right) /\left(b_{1} b_{2}\right)$ and $x+y=\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}}=\frac{a_{1} b_{2}+a_{2} b_{1}}{b_{1} b_{2}}$.
For $x, y \in \mathbb{I}$, both of these statements are false. Counterexample for the product: take $x=y=\sqrt{2}$. Then $x y=2 \in \mathbb{Q}$. For the sum, take $x=\sqrt{2}, y=-\sqrt{2}$. Then $x+y=0 \in \mathbb{Q}$.
2. Prove that if $x \in \mathbb{Q}, y \in \mathbb{I}$, then $x+y \in \mathbb{I}$. Prove also that if $x \neq 0$, then $x y \in \mathbb{I}$.
Solution. Let us use the proof by contradiction. Suppose $x \in \mathbb{Q}$, $y \in \mathbb{I}$, and $z:=x+y \in \mathbb{Q}$. But then we have $x=z-y$, and we proved in (1) that sum of rational numbers is rational, so this makes y rational - a contradiction.

How can you improve this proof by making it contrapositive instead of contradiction?
3. Assume that π is irrational. Is the number $\pi-3.141592$ rational or irrational?
Solution. The number 3.141592 is rational (any finite or periodic decimal is rational). Then by the previous problem, $\pi-3.141592$ is irrational.
4. Prove that $\sqrt{3}$ is irrational.

Solution. We prove it the same way as we did for $\sqrt{2}$: by contradiction. Suppose $\sqrt{3}$ was rational; then let us write it as $\sqrt{3}=\frac{a}{b}$ with $a, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$. Then we have $3=\frac{a^{2}}{b^{2}}$. Then $3 b^{2}=a^{2}$, so $3 \mid a^{2}$. Now we need a Lemma:
Lemma. If $3 \mid a^{2}$ then $3 \mid a$.
Proof of Lemma. Contrapositive: suppose 3 does not divide a. Then either $a \equiv 1 \bmod 3$ or $a \equiv 2 \bmod 3$. In the first case, $a^{2} \equiv 1^{2} \equiv 1$
$\bmod 3$; in the second case, $a^{2} \equiv 2^{2} \equiv 1 \bmod 3$. In both cases, we obtain $a^{2} \equiv 1 \bmod 3$, in particular, 3 does not divide a^{2}.
Now we can use the Lemma to complete the proof: since $3 \mid a^{2}$, by the Lemma $3 \mid a$, so there exists $k \in \mathbb{N}$ such that $a=3 k$. Then we get: $3 b^{2}=a^{2}=(3 k)^{2}=9 k^{2}$. Now we can cancel 3: get $b^{2}=3 k^{2}$. Then by the same argument, $3 \mid b$. We obtain a contradiction with the assumption that $\operatorname{gcd}(a, b)=1$.
5. Prove that $\sqrt{6}$ is irrational.

Solution. We try the same strategy as before: suppose $\sqrt{6}=\frac{a}{b}$ with $a, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$. Then we get: $6=\frac{a^{2}}{b^{2}}$. Then $6 b^{2}=a^{2}$. In particular, $3 \mid a^{2}$; then $3 \mid a$ by the above Lemma. Then $a=3 k$ for some $k \in \mathbb{N}$, and we get $6 b^{2}=9 k^{2}$, so $2 b^{2}=3 k^{2}$. As above, we are trying to prove that $3 \mid b$, to obtain a contradiction with the assumption that $\operatorname{gcd}(a, b)=1$. So now we need another Lemma:
Lemma. If $3 \mid 2 n$, then $3 \mid n$. (We proved this lemma earlier in the class; proof is left as an exercise).
Now apply the Lemma to $n=b^{2}$, and we obtain that since $3 \mid 2 b^{2}$, then $3 \mid b^{2}$, and then as in the previous problem, $3 \mid b$, which completes the proof.
Exercise: Construct a proof exploiting divisibility by 2 instead of by 3.
6. Let $A=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ (as in the homework). Prove that $\sqrt{3} \notin A$.

Solution. By contradiction: suppose $\sqrt{3} \in A$. This would mean that there exist $a, b \in \mathbb{Q}$ such that $\sqrt{3}=a+b \sqrt{2}$. Then $3=a^{2}+2 a b \sqrt{2}+2 b^{2}$. Then $a b \sqrt{2} \in \mathbb{Q}$. Then $\sqrt{2} \in \mathbb{Q}$ or $a b=0$. Since we know $\sqrt{2}$ is irrational, we get that $a b=0$ so a or $b=0$. If $a=0$, we get: $\sqrt{3}=b \sqrt{2}$, then $3=2 b^{2}$, which is impossible since 3 is odd. If $b=0$, we get $\sqrt{3}$ is rational, which we know is false, too.
Variation: prove that $\sqrt{3}+\sqrt{2}$ is irrational.
7. Prove that if an integer c satisfies $c \equiv 3 \bmod 4$, then c cannot be represented as a sum of two perfect squares.
Solution. Suppose we had $c=a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$. We prove a Lemma:
Lemma. For any $a \in \mathbb{Z}$, either $a^{2} \equiv 0$ or $a^{2} \equiv 1 \bmod 4$.
Proof of Lemma. By cases: consider the cases $a \equiv 0,1,2,3 \bmod 4$, and see that in every case we get 0 or 1 .

Then $a^{2}+b^{2}$ can be only congruent to 0,1 or $2 \bmod 4$, and $c \equiv 3$ $\bmod 4$, then c cannot equal $a^{2}+b^{2}$.
How can you write the same proof better?
8. Prove that $\sqrt{3^{k}}$ is irrational if $k \in \mathbb{N}$ is odd.

Solution. We proved in the midterm that if k is odd, then $3^{k} \equiv 3$ mod 4 (make sure you know how to do that!)
Now suppose $\sqrt{3^{k}}=\frac{a}{b}$ with $a, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$. Then we have $3^{k} b^{2}=a^{2}$, and in particular, $3 b^{2} \equiv a^{2} \bmod 4$. The only way this can happen is when a and b are even, so that $a^{2} \equiv 0 \bmod 4$, but that contradicts the assumption that $\operatorname{gcd}(a, b)=1$.
9. Prove that $\log _{2}(3)$ is irrational.

Solution. Suppose we had $\log _{2}(3)=\frac{a}{b}$ with $a \in \mathbb{Z}, b \in \mathbb{N}$ and $\operatorname{gcd}(a, b)=1$. First observe that $3>1$, hence $\log _{2}(3)$ is positive, and therefore $a \in \mathbb{N}$ as well. Then we have $3=2^{a / b}$ (by definition of $\log _{2}$), and then $3^{b}=2^{a}$, with both $a, b \in \mathbb{N}$. Then 3^{b} is even, a contradiction.

