Worksheet 15: Review functions: injective, surjective, bijective functions. Range.

1. Determine the range of the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as follows:
(a) $f(x)=\frac{x^{2}}{1+x^{2}}$
(b) $f(x)=\frac{x}{1+|x|}$

Solution.

a) $f(x)=\frac{x^{2}}{1+x^{2}}$

Claim: $f(\mathbb{R})=[0,1)$
Proof:
 So, dividing the inequality by $1+r^{2}$ (which is non-zero), we get $0 \leq \frac{r^{2}}{1+r^{2}}=f(r)<1$. Hence, $f(r) \in[0,1)$, and $f(\mathbb{R}) \subseteq[0,1)$.
(\supseteq) For every $s \in[0,1)$, which means that $0 \leq s<1$. We have that $1-s>0$, so $\frac{s}{1-s} \geq 0$ and we may take the square root. Let $r=\sqrt{\frac{s}{1-s}} \in \mathbb{R}$. Then,

$$
f(r)=\frac{r^{2}}{r^{2}+1}=\frac{\frac{s}{1-s}}{\frac{s}{1-s}+1}=\frac{\frac{s}{1-s}}{\frac{1}{1-s}}=s
$$

So $s \in f(\mathbb{R})$, and hence $[0,1) \subseteq f(\mathbb{R})$, which completes the claim.
b) $f(x)=\frac{x}{1+|x|}$

Claim: $\operatorname{ran}(f)=(-1,1)$

Proof:

(\subseteq) Let $x \in \mathbb{R}$. We consider two cases:

- If $0 \leq x$, then $|x|=x$ and so, $0 \leq f(x)=\frac{x}{1+x}<1$. Hence, $f(x) \in[0,1)$.
- If $0>x$, then $|x|=-x>0$. So, $0<-x<1-x$. Dividing the whole inequality by $1-x$, we get $0<-\frac{x}{1-x}<1$, which is equivalent to $-1<\frac{x}{1-x}=f(x)<0$. Thus, $f(x) \in(-1,0)$.
Thus, $\operatorname{ran}(f) \subseteq(-1,0) \cup[0,1)=(-1,1)$.
(\supseteq) Let $y \in(-1,1)$. We consider two cases:
- If $y \in[0,1)$, then $1-y>0$ and $y \geq 0$. So, consider $x=\frac{y}{1-y} \in$ $[0, \infty)$. In particular, $|x|=x$. Then,

$$
f(x)=\frac{x}{1+|x|}=\frac{x}{1+x}=\frac{\frac{y}{1-y}}{\frac{y}{1-y}+1}=\frac{\frac{y}{1-y}}{\frac{1}{1-y}}=y
$$

Hence, $y \in \operatorname{ran}(f)$.

- If $y \in(-1,0)$, then $y+1>0$ and $y<0$. Hence, $x=\frac{y}{y+1} \in$ $(-\infty, 0)$, which means $|x|=-x$. Then,

$$
f(x)=\frac{x}{1+|x|}=\frac{x}{1-x}=\frac{\frac{y}{y+1}}{1-\frac{y}{y+1}}=\frac{\frac{y}{y+1}}{\frac{1}{y+1}}=y
$$

and $y \in \operatorname{ran}(f)$.
So, $[0,1) \cup(-1,0) \subseteq \operatorname{ran}(f)$, which is equivalent to $(-1,1) \subseteq \operatorname{ran}(f)$, and we are done.
2. Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ be defined by

$$
f(a, b)=\frac{(a+1)(a+2 b)}{2}
$$

Show that the image of f is contained in \mathbb{N}, so that $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is a well-defined function.

Solution. We need to prove that for every pair $(a, b) \in \mathbb{N} \times \mathbb{N}$, the number $f(a, b)=\frac{(a+1)(a+2 b)}{2}$ is in \mathbb{N}. Clearly if $a, b>0$ then $f(a, b)>0$, so we just need to show that $f(a, b)$ is always an integer, which is equivalent to shwoing that for any $a, b \in N$, the number $(a+1)(a+2 b)$ is even. To show this, note that $a+2 b \equiv a \bmod 2$, so $(a+1)(a+2 b) \equiv$ $a(a+1) \bmod 2$, and the latter number is always even since one of a and $a+1$ has to be even, which completes the proof.
3. Explain why multiplication by 2 defines a bijection from \mathbb{R} to \mathbb{R}, but not from \mathbb{Z} to \mathbb{Z}.

Solution.

Claim: The function $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=2 x$ is a bijection.
Proof:
To show that f is surjective, let $b \in \mathbb{R}$. Consider $a=\frac{b}{2}$. Since $b \in \mathbb{R}$, we have that $a \in \mathbb{R}$, and $f(a)=2 a=2\left(\frac{b}{2}\right)=b$. So, f is surjective.
To show that f is injective, let $a_{1}, a_{2} \in \mathbb{R}$ be such that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then, by definition of f, we get that $2 a_{1}=2 a_{2}$, which means $a_{1}=a_{2}$. Thus, f is injective.
Therefore, f is a bijection from \mathbb{R} to \mathbb{R}.

Claim: The function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ where $g(x)=2 x$ is not a bijection.
Proof:
To show that g is not a bijection, it suffices to prove that g is not surjective, that is, to prove that there exists $b \in \mathbb{Z}$ such that for every $a \in \mathbb{Z}, g(a) \neq b$. Let $b=3 \in \mathbb{Z}$. For every $a \in \mathbb{Z}$, we have that $g(a)=2 a$ from definition, so $g(a)$ is even. It follows from $b=3$ being odd that $g(a) \neq b$ for any $a \in \mathbb{Z}$ because of different parity. Hence, g is not surjective, and therefore, not a bijection.
Remark: Even though f and g are defined by the same formula (multiplication by 2), they are different functions because their domains and codomains are different.
4. Write four different bijections $f: \mathbb{N} \rightarrow \mathbb{N}$.

Solution

- $f_{1}: \mathbb{N} \rightarrow \mathbb{N}$ where $f_{1}(n)=n$. We are fixing each number as its own value under f_{1}.
- $f_{2}: \mathbb{N} \rightarrow \mathbb{N}$ where $f_{2}(n)=\left\{\begin{array}{ll}n+1 & \text { if } n \text { is odd } \\ n-1 & \text { if } n \text { is even }\end{array}\right.$. Loosely speaking, we are swapping consecutive pairs of numbers (i.e. $f(1)=$ 2 while $f(2)=1 ; f(3)=4$ while $f(4)=3$, and so on...)
- $f_{3}: \mathbb{N} \rightarrow \mathbb{N}$ where $f_{3}(n)=\left\{\begin{array}{ll}1 & \text { if } n=2 \\ 2 & \text { if } n=1 \\ n & \text { if } n \geq 3\end{array}\right.$. Loosely speaking, we are swapping the first pair of numbers, and fixing the rest.
- $f_{4}: \mathbb{N} \rightarrow \mathbb{N}$ where given a natural number n, f_{4} reverses the order of the digits of n except for the left most zeroes (i.e. $f(450216)=$ $612054, f(470)=740, f(900)=900$, and so on..) In this case, f_{4} is its own inverse!

5. Final Exam - Dec 2010 Prove that the following function is bijective

$$
f: \mathbb{R}-\{-2\} \rightarrow \mathbb{R}-\{1\} \text { defined by } f(x)=\frac{x+1}{x+2}
$$

Solution.

To show that f is injective, suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1}, x_{2} \in$ $\mathbb{R}-\{-2\}$, that is,

$$
\begin{aligned}
\frac{x_{1}+1}{x_{1}+2} & =\frac{x_{2}+1}{x_{2}+2} \\
\left(x_{1}+1\right)\left(x_{2}+2\right) & =\left(x_{2}+1\right)\left(x_{1}+2\right) \\
x_{1} x_{2}+x_{2}+2 x_{1}+2 & =x_{1} x_{2}+x_{1}+2 x_{2}+2 \\
x_{1} & =x_{2}
\end{aligned}
$$

To show that f is surjective, let $b \in \mathbb{R}-\{1\}$. Consider $a=\frac{2 b-1}{1-b} \in \mathbb{R}$. We first show that $a \neq-2$ by contradiction. Suppose that $a=-2$, that is,

$$
-2=\frac{2 b-1}{1-b} \Leftrightarrow-2+2 b=2 b-1 \Leftrightarrow-2=-1,
$$

which is impossible. Thus, $a \in \mathbb{R}-\{-2\}$, and

$$
f(a)=\frac{a+1}{a+2}=\frac{\frac{2 b-1}{1-b}+1}{\frac{2 b-1}{1-b}+2}=\left(\frac{b}{1-b}\right)\left(\frac{1-b}{1}\right)=b .
$$

Hence, f is also surjective, which means f is a bijection.

