Worksheet 14: Injective and surjective functions; composition.

1. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is injective but not surjective. Can you make such a function from a finite set to itself?
2. Prove that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(a, b)=3 a+7 b$ is surjective. Is this function injective?
3. Prove that among any six distinct integers, there are two whose difference is divisible by 5 .
4. Let $f:\{1,2,3\} \rightarrow\{a, b, c, d\}$ be defined by $f(1)=a, f(2)=c, f(3)=$ d. Let $g:\{a, b, c, d\} \rightarrow\{1,2,3,4,5\}$ be defined by $g(a)=2, g(b)=1$, $g(c)=4, g(d)=5$. Find the composition $g \circ f$.
5. Prove that if $f: A \rightarrow B$ is injective and $g: B \rightarrow C$ is injective, then $g \circ f: A \rightarrow C$ is injective. Is the converse statement true?
6. Prove that among any ten points located on a circle with diameter 5, there exist at least two at a distance less than 2 from each other.
7. Show that in any group of n people, there are two who have the same number of friends within the group.
