## Worksheet 13: Congruence of integers; functions.

1. Let $d \in \mathbb{N}$. Prove that

$$
(a \equiv b \quad \bmod d) \wedge\left(a^{\prime} \equiv b^{\prime} \quad \bmod d\right) \Rightarrow a a^{\prime} \equiv b b^{\prime} \quad \bmod d
$$

2. Prove that if an integer $a$ is written with the digits $a_{n}, \ldots, a_{0}$, then $a$ and $a_{0}+\cdots+a_{n}$ are in the same congruence class $\bmod 9$.
3. Prove that for any integers $a$ and $b$, the sum $a^{2}+b^{2}$ lies in one of the classes [1], [0], or [2] mod 4. Deduce that the number 1000535 cannot be represented as a sum of two squares.
4. Prove that there do not exist integers $a, b$ and $c$ such that

$$
12345678910111213=a^{2}+25 b^{2}+5 c^{2}
$$

5. Let $A=\{1,2,3\}$, and let $B=\{a, b, c, d\}$. Let $R=\{(1, a),(2, b),(2, c),(3, a),(3, d)\}$ - a relation from $A$ to $B$. Draw a diagram representing this relation.
6. Represent the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ as a relation.
7. Represent the sequence $a_{n}=1 / n$ as a relation; think of it as a function from $\mathbb{N}$ to $\mathbb{R}$.
8. Give an example of a function that is injective but not surjective.
