Worksheet 12: Cartesian product, indexed collections, relations

1. Let $A_{n}=\left[0, \frac{1}{n}\right] \times[0, n]$. Draw the picture representing $\bigcup_{n \in \mathbb{N}} A_{n}$ and $\bigcap_{n \in \mathbb{N}} A_{n}$. (Both should be subsets of \mathbb{R}^{2}).
2. Let R be the relation $a \equiv b \bmod 3$ on the set $A=\{0,1,2,3,4,5\}$. Write this relation as a subset of $A \times A$.
3. Let $A=\{1,2,3\}$, and let $B=\{a, b, c, d\}$. Let $R=\{(1, a),(2, b),(2, c),(3, a),(3, d)\}$ - a relation from A to B. Draw a diagram representing this relation.
4. Let $A=\{x, y, z, w\}$ and let $R=\{(x, x),(x, y),(y, z),(w, w),(y, x),(z, y)\}$. Is this relation symmetric? Is it reflexive? is it transitive?
5. Let $A=\{a, b, c, d, e, f\}$ and let $R_{1}=\{(a, a),(a, b),(b, e),(c, c),(d, e)\} \subset$ $A \times A$. Find R_{2} - the smallest relation containing R_{1} that is an equivalence relation. Then find the partition of A into equivalence classes according to R_{2}.
