Worksheet 11: Sets; indexed collections

1. Let A, B, C be sets. Prove that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
2. Let $T_{a}=\{x \in \mathbb{R}: x \geq 0 \wedge x<a-2\}$. Prove that if $T_{a}=\emptyset$ then $a \leq 2$. What is wrong with the following start of an argument:
"Since $x \geq 0$ and $x<a-2$ we must have $0 \leq x<a-2$. Then ... "
3. Let $f(x): \mathbb{R} \rightarrow \mathbb{R}$ be any function. Fon $N \in \mathbb{N}$, let $A_{N}=\{x \in \mathbb{R}$: $f(x)>N\}$.
Prove that:
(a) $\lim _{x \rightarrow+\infty} f(x)=+\infty$ if and only if for every N, there exists $m>0$ such that $A_{N} \supseteq(m,+\infty)$.
(b) Prove that $\cap_{N \in \mathbb{N}} A_{N}=\emptyset$.
