Worksheet 11: Sets; indexed collections

1. Let A, B, C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

2. Let $T_a = \{x \in \mathbb{R} : x \ge 0 \land x < a - 2\}$. Prove that if $T_a = \emptyset$ then $a \le 2$. What is wrong with the following start of an argument:

"Since
$$x \ge 0$$
 and $x < a - 2$ we must have $0 \le x < a - 2$.
Then ... "

3. Let $f(x) : \mathbb{R} \to \mathbb{R}$ be any function. For $N \in \mathbb{N}$, let $A_N = \{x \in \mathbb{R} : f(x) > N\}$.

Prove that:

- (a) $\lim_{x\to+\infty} f(x) = +\infty$ if and only if for every N, there exists m > 0 such that $A_N \supseteq (m, +\infty)$.
- (b) Prove that $\bigcap_{N \in \mathbb{N}} A_N = \emptyset$.

1