Images of sets

Of course, we don't have to just think of the image of a single point. It also makes sense to think of the image of a set

Definition (12.9 Image and pre-image). Let $f : A \to B$, and let $C \subseteq A$ and let $D \subseteq B$

- The set $f(C) = \{f(x) : x \in C\}$ is the "image of A in B". This is a subset of B.
- The set $f^{-1}(D) = \{x \in A : f(x) \in D\}$ is the "preimage of D in A". This is a subset of A.

Do not think of f^{-1} as the inverse function. The inverse function exists only when f is *bijective*. Think of f as the "pre-image". If f is bijective and the function f^{-1} exists, then the notations agree: $f^{-1}(\{y\}) = \{f^{-1}(y)\}$ for all $y \in B$ (Note that we like to talk about pre-images of *sets*, and this is why we are starting with a 1-element set $\{y\}$ here). More generally, when f is bijective and so the inverse function f^{-1} exists, then the pre-image of a set $D \subseteq B$ under f is the same as the image of D under f^{-1} .

Here is a picture (made by Prof. Rechnitzer) illustrating the images/preimages.

Exercise. For illustrating all the proofs below, it is the easiest to think of a very simple function: let $A = \{a, b, c\}$, let $B = \{1, 2, 3\}$, and define f(a) = f(b) = 1, f(c) = 3. This function is neither injective nor surjective, and it is a nice source of counter-examples. Draw an arrows diagram for this function as practice.

Let us explore some of the relationships between subsets and their images and preimages. For example — it is clearly the case that if $C_1 \subseteq C_2 \subseteq A$ then $f(C_1) \subseteq f(C_2)$. Similarly if $D_1 \subseteq D_2 \subseteq B$ then $f^{-1}(D_1) \subseteq f^{-1}(D_2)$.

Theorem (12.4). Let $f : A \to B$, and let $C \subseteq A$ and $D \subseteq B$. Further, let C_1, C_2 be subsets of A and let D_1, D_2 be subsets of B. The following are true

- (a) $C \subseteq f^{-1}(f(C))$ not necessarily equal. The equality holds for all subsets C of A if and only if f is injective.
- (b) $f(f^{-1}(D)) \subseteq D$ not necessarily equal. The equality holds for all subsets D of B if and only if f is surjective.
- (c) $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$ not necessarily equal. The equality holds for all C_1, C_2 of A if and only if f is injective.

(d) $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$ — is equal

- (e) $f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$
- (f) $f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$

So what does this theorem tell us? It says that preimages are well-behaved:

- The preimage of the intersection is the intersection of the preimages
- The preimage of the union is the union of the preimages

It also tells us that images are nearly well-behaved:

- The image of the union is the union of the images
- The image of the intersection is a subset of the intersection of the images.
- *Proof.* (a) Let $x \in C$. We need to show that $x \in f^{-1}(f(C))$. So what is this set by the definition it is $\{a \in A : f(a) \in f(C)\}$. Since $x \in C$ we have $f(x) \in f(C)$. Since $f(x) \in f(C)$ it follows that $x \in f^{-1}(f(C))$.

Note that the converse is generally false — see the example in the Exercise above the theorem. In this example, take $C = \{a\}$. Then $f(C) = \{1\}$, and

$$f^{-1}(f(C)) = f^{-1}(\{1\}) = \{a, b\} \neq \{a\}.$$

This is exactly the idea behind proving the "only if" part: if f is not injective, we can always construct the set C for which this happens (make sure you can do it!).

Also, check that if f is injective, then $f^{-1}(f(C))$ does equal C for all subsets C of the domain.

- (b) Very similar to (a).
- (c) We need to show that if an element is in the set on the left then it is in the set on the right. Let $b \in f(C_1 \cap C_2)$. Hence $\exists a \in C_1 \cap C_2$ such that f(a) = b. This means that $a \in C_1$ and $a \in C_2$. It follows that $f(a) = b \in f(C_1)$ and $f(a) = b \in f(C_2)$, and hence $b \in f(C_1) \cap f(C_2)$. The converse is false again, use the example from the exercise to see why, and argue about injectivity similarly to part (a).
- (f) What do we have to show? Let $a \in f^{-1}(D_1 \cup D_2)$ and so $f(a) \in D_1 \cup D_2$. This means that $f(a) \in D_1$ or $f(a) \in D_2$. If $f(a) \in D_1$ it follows that $a \in f^{-1}(D_1)$. Similarly if $f(a) \in D_2$ then $a \in f^{-1}(D_2)$. Since a lies in one of these two sets, it follows that $a \in f^{-1}(D_1) \cup f^{-1}(D_2)$.

Let $a \in f^{-1}(D_1) \cup f^{-1}(D_2)$. Then a is an element of one of these two sets. If $a \in f^{-1}(D_1)$, then $f(a) \in D_1$. Similarly if $a \in f^{-1}(D_2)$ then $f(a) \in D_2$. In either case $f(a) \in D_1 \cup D_2$ and so $a \in f^{-1}(D_1 \cup D_2)$.