1. (a) Prove that there are infinitely many primes $p$ such that $p \equiv 3 \bmod 4$. Hint: try to proceed the same way as in Euclid's proof of the statement that there are infinitely many prime numbers; but instead of making the number $N=p_{1}, \ldots p_{n}+1$, make a number $N$ that is definitely congruent to 3 modulo 4 (and that still differs by 1 from a number that is divisible by all of $p_{1}, \ldots p_{k}$ ).
(b) Could this proof have worked for the primes congruent to 1 modulo 4 ?
2. Prove that the number 123456782 cannot be represented as $a^{2}+3 b^{2}$ for any integers $a$ and $b$. (Hint: Consider the remainder mod 3).
3. Prove that there do not exist integers $a, b$ and $c$ such that

$$
12345678910111213=a^{2}+25 b^{2}+5 c^{2}
$$

