4 marks

1. Construct the converse, contrapositive, and the negation of the statement

"If it is 5 o'clock, Her Majesty is having tea."

4 marks

2. Using any method you like, prove that the following statement is a tautology (that is, it is true for any truth values of the statements P, Q, and R):

$$(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \land Q \Rightarrow R).$$

4 marks

3. (a) For the following statement, write the negation both in symbols and in words:

$$\exists (x,y) \in \mathbb{R} \times \mathbb{R}, \text{ s.t. } x^2 + y^2 = 1 \text{ and } x = y.$$

(b) Sketch the set of points (x, y) that satisfy the condition from part (a) (if this set is not empty).

6 marks

- 4. Prove or disprove:
 - (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ s.t. } xy \ge 0.$
 - (b) $\exists y \in \mathbb{R} \text{ s.t. } \forall x \in \mathbb{R}, xy < 0.$
 - (c) $\forall x, y \in \mathbb{R}, (x \ge y) \Rightarrow (x^2 \ge y^2).$

4 marks

5. Prove or disprove the following statement

Let $n \in \mathbb{Z}$. Then n is even if and only if $5n^2 - 2n + 3$ is odd.

6. Prove or disprove

If n is an odd prime then $n^2 \equiv 1 \mod 8$.

- 7. Express each of the following statements as a conditional statement in "if-then" form. For (a),(b) and (c) also write the negation (without phrases like "it is false that"), converse and contrapositive. Your final answers should use clear English, not logical symbols.
 - (a) Every odd number is prime.
 - (b) Passing the test requires solving all the problems.
 - (c) Being first in line guarantees getting a good seat.
 - (d) I get mad whenever you do that.
 - (e) I won't say that unless I mean it.
- 8. Show that $(P \wedge R) \wedge (Q \vee R) \equiv (P \wedge R)$. (We have several ways of doing this including using known equivalences, proving the corresponding biconditional or writing out a truth table.)
- 9. The statement

For all integers m and n, either $m \leq n$ or $m^2 \geq n^2$.

can be expressed using quantifiers as:

$$\forall m \in \mathbb{Z}, \, \forall n \in \mathbb{Z}, \, m \le n \text{ or } m^2 \ge n^2$$

or if you prefer as

$$\forall m, n \in \mathbb{Z}, \ m \le n \text{ or } m^2 \ge n^2.$$

Consider the following two statements:

- (a) There exist integers a and b such that both ab < 0 and a + b > 0.
- (b) For all real numbers x and y, $x \neq y$ implies that $x^2 + y^2 > 0$.
 - Using quantifiers, express in symbols the negations of the statements in both (a) and (b).
 - Express in words the negations of the statements in (a) and (b).
 - Decide which is true in each case, the statement or its negation.
- 10. Given a real number x,
 - let A(x) be the statement " $\frac{1}{2} < x < \frac{5}{2}$ ",
 - let B(x) be the statement " $x \in \mathbb{Z}$ ",
 - let C(x) be the statement " $x^2 = 1$ ", and

Which statements below are true for all $x \in \mathbb{R}$?

- (a) $A(x) \Rightarrow C(x)$
- (b) $C(x) \Rightarrow B(x)$
- (c) $(A(x) \land B(x)) \Rightarrow C(x)$
- (d) $C(x) \Rightarrow (A(x) \land B(x))$
- (e) $(A(x) \lor C(x)) \Rightarrow B(x)$
- 11. Consider the following two statements:
 - (a) For all $w \in \mathbb{R}$, there exists $x \in \mathbb{R}$ such that w < x.
 - (b) There exists $y \in \mathbb{R}$ such that for all $z \in \mathbb{R}$, y < z

One of the statements is true, and the other one is false. Determine which is which and prove your answers (both of them). (Final exam 2005)

- 12. (a) Prove that $3|2n \Leftrightarrow 3|n$.

 The contrapositive will really help in one direction.
 - (b) Prove that if 2|n and 3|n then 6|n. (Consider n modulo 6.)
 - (c) Prove that the product of any three consecutive natural numbers is divisible by 6.
- 13. Is it true that if a natural number is divisible by 4 and by 6, then it must be divisible by $4 \times 6 = 24$?
- 14. Let $a, b, c, n \in \mathbb{Z}$, where $n \geq 2$. Prove that if $a \equiv b \mod n$ and $a \equiv c \mod n$, then $b \equiv c \mod n$.
- 15. Find the smallest natural number a such that $2012^{2013} \equiv a \mod 5$.