This midterm has 5 questions on 10 pages, for a total of 50 points.

Duration: 80 minutes

- Write your name on every page.
- you need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)
- Unless a problem states otherwise, you do not have to simplify algebraic expressions to the shortest possible form, and do not have to evaluate long numerical expressions.

Full Name (including all middle names): \qquad

Student-No: \qquad

Signature: \qquad

Section number: \qquad

Name of the instructor: \qquad

Question:	1	2	3	4	5	Total
Points:	14	11	7	9	9	50
Score:						

1. Consider the points $A=(1,2,3), B=(1,5,1)$, and $C=(-1,2,0)$, respectively.
(a) Find the dot product of the vectors $\overline{A B}$ and $\overline{A C}$.
(b) Find symmetric equations for the line L passing through A and B.
(c) Find the area of the triangle $A B C$.
(d) Find the angle between the sides $A B$ and $A C$ of the triangle $A B C$. You may express your answer in terms of arccos.
(e) A boat is travelling East at $10 \mathrm{~km} / \mathrm{hr}$. To a man on the boat, who measures the wind, it appears that the wind is blowing from the North at $10 \mathrm{~km} / \mathrm{hr}$. Find the actual direction and speed of the wind.

Solution:

(a) $\overline{A B}=\langle 1,5,1\rangle-\langle 1,2,3\rangle=\langle 0,3,-2\rangle$.
$\overline{A C}=\langle-1,2,0\rangle-\langle 1,2,3\rangle=\langle-2,0,-3\rangle$.
$\overline{A B} \cdot \overline{A C}=\langle 0,3,-2\rangle \cdot\langle-2,0,-3\rangle=0+0+6=6$.
(b) The line L passing through A and B is:

$$
\left\{\begin{array}{l}
x=1 \\
y=2+3 t \\
z=3-2 t
\end{array}\right.
$$

The symmetric equation is:

$$
\frac{y-2}{3}=\frac{z-3}{-2}, x=1 .
$$

(c) The area of the triangle $A B C$ is:

$$
\frac{1}{2}|\overline{A B}||\overline{A C}| \sin \theta=\frac{1}{2}|\overline{A B} \times \overline{A C}|=\frac{1}{2}\left|\begin{array}{ccc}
i & j & k \\
0 & 3 & -2 \\
-2 & 0 & -3
\end{array}\right|=\frac{1}{2}|\langle-9,4,6\rangle|=\frac{1}{2} \sqrt{133} .
$$

(d) $\theta=\arccos \frac{\overline{A B} \cdot \overline{A C}}{|\overline{A B}||\overline{A C}|}=\arccos \frac{6}{\sqrt{9+4} \sqrt{4+9}}=\arccos \frac{6}{13}$
(e)
$-\bar{v}$

If there is no wind, when the boat is traveling East in $10 \mathrm{~km} / \mathrm{h}$, the guy on the boat should feel wind blowing West in $10 \mathrm{~km} / \mathrm{h}$, shown as $-\bar{v}$ (where \bar{v} is the velocity of the boat). Hence $-\bar{v}=\langle-10,0\rangle$. Let the velocity of the wind be $\bar{w}=\left\langle w_{1}, w_{2}\right\rangle ;$

Then we have $w+(-\bar{v})=\langle 0,-10\rangle$.
Then $\left\langle w_{1}, w_{2}\right\rangle=\langle 0,-10\rangle-\langle-10,0\rangle=\langle 10,-10\rangle$.
$|\bar{w}|=\sqrt{100+100}=10 \sqrt{2}$.
The wind is blowing in the direction of $S E$ and at the speed of $10 \sqrt{2} \mathrm{~km} / \mathrm{h}$.
2. Consider the point $A=(4,1,3)$ and the plane P given by the equation $x+2 y-3 z=2$.
(a) Find the plane which passes through the point A and is parallel to the plane P.
(b) Find the distance between the two parallel planes from part (a).
(c) Find the parametric equation of the line L of intersection of the plane P with the $x z$-plane.
(d) Find the distance from the point B with the coordinates $(0,3,-4)$ to the line L from Part (c) above.

Solution:

(a) Since the plane is parallel to P, its normal vector is parallel to $\langle 1,2,-3\rangle$. Then the equation of the plane is

$$
(x-4)+2(y-1)-3(z-3)=0, \text { or } x+2 y-3 z=-3
$$

(b) The distance between the two planes is the same as the distance between A and P. It is easy to check that the point $M=(0,1,0)$ is on the plane P. $\overline{A M}=\langle-4,0,-3\rangle$.
Distance $d=\left|\operatorname{comp}_{\mathbf{n}} \overline{A M}\right|=\frac{|\overline{A M} \cdot\langle 1,2,3\rangle|}{|\langle 1,2,3\rangle|}=\frac{|\langle-4,0,-3\rangle \cdot\langle 1,2,-3\rangle|}{\sqrt{1+4+9}}=\frac{5 \sqrt{14}}{14}$.
(c) First, we need to find a point that lies on L. Since the line L is the intersection of the plane P with the $x z$ - plane, every point on L satisfies $y=0$, and the equation of P. Plugging in $y=0$ into the equation of P, we get $x-3 z=-3$.
Let $z=0$, then we get $x=2$. Thus the point $(2,0,0)$ is on L.
The direction vector of L is perpendicular to both $\langle 0,1,0\rangle$ and $\langle 1,2,-3\rangle$.
Then a direction vector of L can be found by taking the cross product $\langle 0,1,0\rangle \times$ $\langle 1,2,-3\rangle=\left|\begin{array}{ccc}i & j & k \\ 0 & 1 & 0 \\ 1 & 2 & -3\end{array}\right|=\langle-3,0,-1\rangle$.
Then we get a parametric equation of L :

$$
\left\{\begin{array}{l}
x=2-3 t \\
y=0 \\
z=-t
\end{array}\right.
$$

(d) Let $A=(-3,0,0)$ be a point on the line L as above. Then the distance from B to L is the magnitude of the orthogonal projection of the vector $\bar{A} B$ onto L. That is, $d=\left|\overline{A B}-\operatorname{Proj}_{v} \overline{A B}\right|$, where v is a direction vector of L. We have $\bar{A} B=\langle-2,3,-4\rangle$. Then we get:

$$
\operatorname{Proj}_{v} \bar{A} B=\frac{\overline{A B} \cdot v}{|v|} \frac{v}{|v|}=\frac{6+4}{10} v=\langle-3,0,-1\rangle .
$$

Then $d=|\langle-2,3,-4\rangle-\langle-3,0,-1\rangle|=|\langle 1,3,-3\rangle|=\sqrt{19}$.
3. Consider the function $g(x, y)=\sqrt{4-x^{2}-2 y^{2}}$.

4 marks
3 marks
(a) Determine the domain and range of the function g.
(b) Sketch the level curves $g(x, y)=k$ for the constants $k=0,1,2$.

Solution:

(a) Domain:
$4-x^{2}-2 y^{2} \geq 0$. Equivalently, $x^{2}+2 y^{2} \leq 4$. Therefore, the domain is

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+2 y^{2} \leq 4\right\} .
$$

It is an ellipse with its interior.
Range:
Since $x^{2} \geq 0$, and $2 y^{2} \geq 0$, we always have $x^{2}+2 y^{2} \geq 0$, and so $4-x^{2}-2 y^{2} \leq 4$. Thus, Range $(g)=[0,2]$ (rigorous proof not required here).
(b) Case 1: $k=0$

$$
\begin{aligned}
& g(x, y)=\sqrt{4-x^{2}-2 y^{2}}=0 \\
& 4-x^{2}-2 y^{2}=0 \\
& x^{2}+2 y^{2}=4 \\
& \frac{x^{2}}{4}+\frac{y^{2}}{2}=1
\end{aligned}
$$

Case 2: $k=1$
$g(x, y)=\sqrt{4-x^{2}-2 y^{2}}=1$
$4-x^{2}-2 y^{2}=1$
$x^{2}+2 y^{2}=3$
$\frac{x^{2}}{3}+\frac{y^{2}}{3 / 2}=1$

Case 2: $k=2$
$g(x, y)=\sqrt{4-x^{2}-2 y^{2}}=2$
$4-x^{2}-2 y^{2}=4$
$x^{2}+2 y^{2}=0$
$x=0$ and $y=0$

4. Let $u(x, y)=F\left(x^{2}+a y^{2}\right)$ for some arbitrary differentiable function F, where $a>0$ is a constant.

4 marks

2 marks
3 marks
(a) If $F(t)=\ln (t)$, sketch the level curves (the contour plot) of the function $u(x, y)$ in the three cases: $a>0, a=0, a<0$.
(b) If $F(t)=\ln (t)$, find u_{x} and u_{y}.
(c) Let the function F be arbitrary. Find the value of a such that

$$
5 y u_{x}=x u_{y} .
$$

Solution:

(a) $u(x, y)=F\left(x^{2}+a y^{2}\right)$
$u(x, y)=\ln \left(x^{2}+a y^{2}\right)=k$ for some $k \in \mathbb{R}$.
$x^{2}+a y^{2}=e^{k}$
$\frac{x^{2}}{e^{k}}+\frac{y^{2}}{e^{k} / a}=1$.
Case 1: $a>0$:

x-intercepts are $\left(\pm \sqrt{e^{k}}, 0\right)$
y-intercetps are $\left(0, \pm \sqrt{e^{k} / a}\right)$

$$
a=1
$$

$$
x \text {-intercepts are }\left(\pm \sqrt{e^{k}}, 0\right)
$$

$$
y \text {-intercetps are }\left(0, \pm \sqrt{e^{k}}\right)
$$

Case 2: $a=0$

Case 3: $a<0$:

Please note that all the drawings here represent the general shape of the level curves well, but the distances between level curves increase as k increases (as you move away from the origin).
(b) $u(x, y)=\ln \left(x^{2}+a y^{2}\right)$
$u_{x}=\frac{2 x}{x^{2}+a y^{2}}$,
$u_{y}=\frac{2 a y}{x^{2}+a y^{2}}$.
(c) $u_{x}=F^{\prime}\left(x^{2}+a y^{2}\right) \cdot 2 x$,
$u_{y}=F^{\prime}\left(x^{2}+a y^{2}\right) \cdot 2 a y$.
We want to have $5 y u_{x}=x u_{y}$
That is, $10 x y F^{\prime}\left(x^{2}+a y^{2}\right)=2 a x y F^{\prime}\left(x^{2}+a y^{2}\right)$.
If $F^{\prime} \neq 0,2 a=10$. Hence $a=5$.
If $F^{\prime}=0$, then a can be any real number.

2 marks 2 marks

3 marks

2 marks
5. (a) Let $(x, y, 0)$ be an arbitrary point in the $x y$-plane. What is the distance from this point to the plane $z=4$?
(b) In \mathbb{R}^{2}, find an equation for, and draw the set of points that are equidistant from the point $(0,0)$ and the line $y=2$.
(c) Find the equation of the surface S consisting of all points in \mathbb{R}^{3} that are equidistant from the point $(0,0,0)$ and the plane $z=4$.
(d) Classify the surface S from part (c) as an ellipsoid, a paraboloid, or a hyperboloid of either 1 or 2 sheets.

Solution:

(a) The distance d between $(x, y, 0)$ and the plane $z=4$ equals the distance between the two parallel planes: the $x y$-plane and the plane $z=4$, so it is 4 .
(b) Let $P=(x, y)$ be a point that is equidistant from the point $(0,0)$ and the line $y=2$.
Then we have $\sqrt{x^{2}+y^{2}}=|y-2|$; squaring (note that the both sides are nonnegative), we get $x^{2}+y^{2}=y^{2}-4 y+4$. Thus, the answer is $y=1-\frac{x^{2}}{4}$; it is a parabola.

(c) Let $Q=(x, y, z)$ be a point that is equidistant from the point $(0,0,0)$ and the line $z=4$.

$$
\sqrt{x^{2}+y^{2}+z^{2}}=|z-4|
$$

$x^{2}+y^{2}+z^{2}=z^{2}-8 z+16$
$S: x^{2}+y^{2}+8 z=16$.
(d) For fixed $z=z_{0}<2$, the level curve on the plane $z=z_{0}$ is a circle.

For fixed $x=x_{0}$, the level curve on the plane $x=x_{0}$ is a parabola.
For fixed $y=y_{0}$, the level curve on the plane $y=y_{0}$ is a parabola.
Therefore, the surface S is a paraboloid.

