This midterm has 5 questions on 10 pages, for a total of 50 points.

Duration: 80 minutes

- Write your name on **every** page.
- you need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)
- Unless a problem states otherwise, you **do not** have to simplify algebraic expressions to the shortest possible form, and do not have to evaluate long numerical expressions.

Full Name (including all middle names):
Student-No:
Signature:
Section number:
Name of the instructor:

Question:	1	2	3	4	5	Total
Points:	14	11	7	9	9	50
Score:						

- 1. Consider the points A = (1, 2, 3), B = (1, 5, 1), and C = (-1, 2, 0), respectively.
 - (a) Find the dot product of the vectors \overline{AB} and \overline{AC} .
 - (b) Find symmetric equations for the line L passing through A and B.
 - (c) Find the area of the triangle ABC.
 - (d) Find the angle between the sides AB and AC of the triangle ABC. You may express your answer in terms of arccos.
 - (e) A boat is travelling East at 10km/hr. To a man on the boat, who measures the wind, it appears that the wind is blowing from the North at 10km/hr. Find the actual direction and speed of the wind.

Solution:

- (a) $\overline{AB} = \langle 1, 5, 1 \rangle \langle 1, 2, 3 \rangle = \langle 0, 3, -2 \rangle.$ $\overline{AC} = \langle -1, 2, 0 \rangle - \langle 1, 2, 3 \rangle = \langle -2, 0, -3 \rangle.$ $\overline{AB} \cdot \overline{AC} = \langle 0, 3, -2 \rangle \cdot \langle -2, 0, -3 \rangle = 0 + 0 + 6 = 6.$
- (b) The line L passing through A and B is:

$$\begin{cases} x = 1\\ y = 2 + 3t\\ z = 3 - 2t \end{cases}$$

The symmetric equation is:

$$\frac{y-2}{3} = \frac{z-3}{-2}, \ x = 1.$$

(c) The area of the triangle ABC is:

$$\frac{1}{2}|\overline{AB}||\overline{AC}|\sin\theta = \frac{1}{2}|\overline{AB} \times \overline{AC}| = \frac{1}{2} \begin{vmatrix} i & j & k \\ 0 & 3 & -2 \\ -2 & 0 & -3 \end{vmatrix} = \frac{1}{2}|\langle -9, 4, 6 \rangle| = \frac{1}{2}\sqrt{133}.$$
(d) $\theta = \arccos \frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}||\overline{AC}|} = \arccos \frac{6}{\sqrt{9+4}\sqrt{4+9}} = \arccos \frac{6}{13}$

If there is no wind, when the boat is traveling East in 10km/h, the guy on the boat should feel wind blowing West in 10km/h, shown as $-\overline{v}$ (where \overline{v} is the velocity of the boat). Hence $-\overline{v} = \langle -10, 0 \rangle$. Let the velocity of the wind be $\overline{w} = \langle w_1, w_2 \rangle$;

2 marks
3 marks
3 marks
r
3 marks

3 marks

Then we have $w + (-\overline{v}) = \langle 0, -10 \rangle$. Then $\langle w_1, w_2 \rangle = \langle 0, -10 \rangle - \langle -10, 0 \rangle = \langle 10, -10 \rangle$. $|\overline{w}| = \sqrt{100 + 100} = 10\sqrt{2}$. The wind is blowing in the direction of *SE* and at the speed of $10\sqrt{2}km/h$.

- 2. Consider the point A = (4, 1, 3) and the plane P given by the equation x + 2y 3z = 2.
 - (a) Find the plane which passes through the point A and is parallel to the plane P.
 - (b) Find the distance between the two parallel planes from part (a).
 - (c) Find the parametric equation of the line L of intersection of the plane P with the xz-plane.
 - (d) Find the distance from the point B with the coordinates (0, 3, -4) to the line L from Part (c) above.

Solution:

(a) Since the plane is parallel to P, its normal vector is parallel to $\langle 1, 2, -3 \rangle$. Then the equation of the plane is

$$(x-4) + 2(y-1) - 3(z-3) = 0$$
, or $x + 2y - 3z = -3$

(b) The distance between the two planes is the same as the distance between A and P. It is easy to check that the point M = (0, 1, 0) is on the plane P. <u>AM</u> = ⟨-4, 0, -3⟩.

$$\text{Distance } d = |\text{comp}_{\mathbf{n}}\overline{AM}| = \frac{|\overline{AM} \cdot \langle 1, 2, 3 \rangle|}{|\langle 1, 2, 3 \rangle|} = \frac{|\langle -4, 0, -3 \rangle \cdot \langle 1, 2, -3 \rangle|}{\sqrt{1+4+9}} = \frac{5\sqrt{14}}{14}.$$

(c) First, we need to find a point that lies on L. Since the line L is the intersection of the plane P with the xz - plane, every point on L satisfies y = 0, and the equation of P. Plugging in y = 0 into the equation of P, we get x - 3z = -3.

Let z = 0, then we get x = 2. Thus the point (2, 0, 0) is on L.

The direction vector of L is perpendicular to both (0, 1, 0) and (1, 2, -3).

Then a direction vector of L can be found by taking the cross product $(0, 1, 0) \times |i - i - k|$

$$\langle 1, 2, -3 \rangle = \begin{vmatrix} i & j & n \\ 0 & 1 & 0 \\ 1 & 2 & -3 \end{vmatrix} = \langle -3, 0, -1 \rangle.$$

Then we get a parametric equation of L:

$$\begin{cases} x = 2 - 3t \\ y = 0 \\ z = -t \end{cases}$$

(d) Let A = (-3, 0, 0) be a point on the line L as above. Then the distance from B to L is the magnitude of the orthogonal projection of the vector \overline{AB} onto L. That is, $d = |\overline{AB} - \operatorname{Proj}_v \overline{AB}|$, where v is a direction vector of L. We have $\overline{AB} = \langle -2, 3, -4 \rangle$. Then we get:

$$\operatorname{Proj}_{v}\overline{A}B = \frac{\overline{AB} \cdot v}{|v|} \frac{v}{|v|} = \frac{6+4}{10}v = \langle -3, 0, -1 \rangle$$

Then $d = |\langle -2, 3, -4 \rangle - \langle -3, 0, -1 \rangle| = |\langle 1, 3, -3 \rangle| = \sqrt{19}.$

3 marks

4 marks

3 marks

3. Consider the function $g(x, y) = \sqrt{4 - x^2 - 2y^2}$.

- (a) Determine the domain and range of the function g.
- (b) Sketch the level curves g(x, y) = k for the constants k = 0, 1, 2.

Solution:

(a) Domain: $4-x^2-2y^2 \ge 0$. Equivalently, $x^2+2y^2 \le 4$. Therefore, the domain is $\{(x,y) \in \mathbb{R}^2 | x^2+2y^2 \le 4\}.$

It is an ellipse with its interior.

Range:

Since $x^2 \ge 0$, and $2y^2 \ge 0$, we always have $x^2 + 2y^2 \ge 0$, and so $4 - x^2 - 2y^2 \le 4$. Thus, Range(g) = [0, 2] (rigorous proof not required here).

(b) Case 1:
$$k = 0$$

$$g(x,y) = \sqrt{4 - x^2 - 2y^2} = 0$$

$$4 - x^2 - 2y^2 = 0$$

$$x^2 + 2y^2 = 4$$

$$\frac{x^2}{4} + \frac{y^2}{2} = 1$$

$$(-2,0)$$

$$(-2,0)$$

$$(-2,0)$$

$$(0,-\sqrt{2})$$

$$(0,-\sqrt{2})$$

Case 2: k = 1 $g(x, y) = \sqrt{4 - x^2 - 2y^2} = 1$ $4 - x^2 - 2y^2 = 1$ $x^2 + 2y^2 = 3$ $\frac{x^2}{3} + \frac{y^2}{3/2} = 1$

- 4. Let $u(x,y) = F(x^2 + ay^2)$ for some arbitrary differentiable function F, where a > 0 is a constant.
- (a) If $F(t) = \ln(t)$, sketch the level curves (the contour plot) of the function u(x, y) in the three cases: a > 0, a = 0, a < 0.
 - (b) If $F(t) = \ln(t)$, find u_x and u_y .
 - (c) Let the function F be arbitrary. Find the value of a such that

$$5yu_x = xu_y$$

4 marks

2 marks

3 marks

Mathematics 200

Please note that all the drawings here represent the general shape of the level curves well, but the distances between level curves increase as k increases (as you move away from the origin).

(b)
$$u(x, y) = \ln(x^2 + ay^2)$$

 $u_x = \frac{2x}{x^2 + ay^2},$
 $u_y = \frac{2ay}{x^2 + ay^2}.$
(c) $u_x = F'(x^2 + ay^2) \cdot 2x,$
 $u_y = F'(x^2 + ay^2) \cdot 2ay.$
We want to have $5yu_x = xu_y$
That is, $10xyF'(x^2 + ay^2) = 2axyF'(x^2 + ay^2).$
If $F' \neq 0, 2a = 10$. Hence $a = 5$.
If $F' = 0$, then a can be any real number.

point to the plane z = 4?

point (0,0) and the line y=2.

5. (a) Let (x, y, 0) be an arbitrary point in the xy-plane. What is the distance from this

- 2 marks
- 2 marks
- 3 marks

2 marks

(c) Find the equation of the surface S consisting of all points in \mathbb{R}^3 that are equidistant from the point (0, 0, 0) and the plane z = 4.

(b) In \mathbb{R}^2 , find an equation for, and draw the set of points that are equidistant from the

(d) Classify the surface S from part (c) as an ellipsoid, a paraboloid, or a hyperboloid of either 1 or 2 sheets.

Solution:

- (a) The distance d between (x, y, 0) and the plane z = 4 equals the distance between the two parallel planes: the xy-plane and the plane z = 4, so it is 4.
- (b) Let P = (x, y) be a point that is equidistant from the point (0, 0) and the line y = 2.

Then we have $\sqrt{x^2 + y^2} = |y - 2|$; squaring (note that the both sides are non-negative), we get $x^2 + y^2 = y^2 - 4y + 4$. Thus, the answer is $y = 1 - \frac{x^2}{4}$; it is a parabola.

(c) Let Q = (x, y, z) be a point that is equidistant from the point (0, 0, 0) and the line z = 4.

$$\sqrt{x^2 + y^2 + z^2} = |z - 4|$$

$$x^2 + y^2 + z^2 = z^2 - 8z + 16$$

$$S : x^2 + y^2 + 8z = 16.$$

(d) For fixed $z = z_0 < 2$, the level curve on the plane $z = z_0$ is a circle. For fixed $x = x_0$, the level curve on the plane $x = x_0$ is a parabola. For fixed $y = y_0$, the level curve on the plane $y = y_0$ is a parabola. Therefore, the surface S is a paraboloid.