Math 263 Midterm I (October 3, 2007)
Section 102. Instructor: Julia Gordon

Problem 1:

Consider two intersecting lines

$$
\begin{array}{ll}
L_{1}: & x-4=-\frac{1}{2} y=\frac{1}{5}(z-7) \\
L_{2}: & \frac{1}{2} x+2=\frac{1}{3}(y+5)=-z
\end{array}
$$

(a) [4 points] Find the intersection of L_{1} and L_{2}.
(b) [4 points] Find the acute angle between L_{1} and L_{2}.
(c) [5 points] Find the equation of the plane containing L_{1} and L_{2}.

Problem 2: One particle is moving along the straight line $\mathbf{r}_{1}(t)=\langle 2 \pi+t, 2 t, 1+t\rangle$, and another one is moving along the helix $\mathbf{r}_{2}(t)=\langle t, \sin (t), \cos (t)\rangle$.
(a) [4 points] Would the particles collide?
(b) [4 points] Do their trajectories intersect?
(c) [5 points] Find the tangential and normal components of the acceleration of the second particle when it is at the point $(2 \pi, 0,1)$.

Problem 3:

Consider the function $z(x, y)=4-x^{2}-y^{2}$.
(a) [4 points] Sketch the surface represented by $z(x, y)$. Determine if $z(x, y)$ is continuous at $\left(x_{0}, y_{0}\right)=(1,0)$.
(b) [5 points] Compute $z, \frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $\left(x_{0}, y_{0}\right)=(1,0)$.
(c) [5 points] Use linear approximation to estimate $z(1,0.1)$, and compare your approximation with the exact value.

