
Fourier Series

Roughly speaking, a Fourier series expansion for a function is a representation of

the function as sum of sin’s and cosines. Expressing a musical tone as a sum of a fundamental

tone and various harmonics is such a representation. So is a spectral decomposition of light

waves. The main Fourier series expansions that we use in this course are stated in the next

section. We shall never prove that these expansions are correct. But in the section “Validity

of Fourier series” we give an elementary partial argument that, hopefully, will convince you

that the expansions are indeed correct. In the section “Usefulness of Fourier Series” we

introduce one of the many ways that Fourier series are used in applications.

The Main Fourier Series Expansions.

We shall shortly state three Fourier series expansions. They are applicable to func-

tions that are piecewise continuous with piecewise continuous first derivative. In applications,

most functions satisfy these regularity requirements. We start with the definition of “piece-

wise continuous”.

A function f(x) is said to be piecewise continuous if it is continuous except for

isolated jump discontinuities. In the example below, f(x) is continuous except for jump

x

f(x)

1 2 3

f(1+)

f(1−)

1
2
[f(1+) + f(1−)]

f(1)

discontinuities at x = 1 and x = 2.5. If a function f(x) has a jump discontinuity at x0, then

the value of f(x) as it enters and leaves the jump are

f(x0−) = lim
x→x0
x<x0

f(x) and f(x0+) = lim
x→x0
x>x0

f(x)

respectively. If f were continuous at x0, we would have f(x0) = f(x0+) = f(x0−). At
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a jump, however, there is no a priori relation between f(x0) and f(x0±). In the example

above, f(1) is well below both f(1−) and f(1+). On the other hand, it is fairly common

for the value of f at the jump x0 to be precisely at the midpoint of the jump. That is

f(x0) =
1
2 [f(x0+) + f(x0−)]. In the example, this is the case at x0 = 2.5.

Theorem (Fourier Series) Let f(x) be piecewise continuous with piecewise continuous first

derivative.

a) Let f(0) = f(ℓ) = 0. Then

∞
∑

k=1

bk sin
(

kπx
ℓ

)

=

{

f(x) if f is continuous at x
f(x+)+f(x−)

2
otherwise

for all 0 ≤ x ≤ ℓ if and only if bk = 2
ℓ

∫ ℓ

0
f(x) sin

(

kπx
ℓ

)

dx .

b) Let f ′(0) = f ′(ℓ) = 0. Then

a0

2
+

∞
∑

k=1

ak cos
(

kπx
ℓ

)

=

{

f(x) if f is continuous at x
f(x+)+f(x−)

2 otherwise

for all 0 ≤ x ≤ ℓ if and only if ak = 2
ℓ

∫ ℓ

0
f(x) cos

(

kπx
ℓ

)

dx .

c) Let f be periodic of period 2ℓ. Then

a0

2 +

∞
∑

k=1

[

ak cos
(

kπx
ℓ

)

+ bk sin
(

kπx
ℓ

)]

=

{

f(x) if f is continuous at x
f(x+)+f(x−)

2 otherwise

for all x if and only if

ak = 1
ℓ

∫ ℓ

−ℓ

f(x) cos
(

kπx
ℓ

)

dx and bk = 1
ℓ

∫ ℓ

−ℓ

f(x) sin
(

kπx
ℓ

)

dx

Remark. One consequence of the above theorem is that if you are told that, for example,

∞
∑

k=1

βk sin
(

kπx
ℓ

)

= 0 for all 0 ≤ x ≤ ℓ

then, by part a with f(x) = 0, it is necessary that

βk = 2
ℓ

∫ ℓ

0

f(x) sin
(

kπx
ℓ

)

dx = 0 for all k = 1, 2, · · ·

This is used repeatedly in using Fourier series to solve differential equations.
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Example. Consider the function

f(x) =

{

1 if 0 ≤ x ≤ 1
0 if 1 < x ≤ 2

=

x

f(x)

1

1 2

Apply part b of the Fourier series Theorem with this f and ℓ = 2. Then

ak = 2
ℓ

∫ ℓ

0

f(x) cos
(

kπx
ℓ

)

dx =

∫ 1

0

cos
(

kπx
2

)

dx =

{

1 if k = 0

2
kπ sin

(

kπx
2

)

∣

∣

∣

1

0
if k ≥ 1

=

{

1 if k = 0
2
kπ

sin
(

kπ
2

)

if k ≥ 1
=











1 if k = 0

0 if k > 1 and k is even

(−1)(k−1)/2 2
kπ

if k is odd

and by part b of the Theorem

1 +

∞
∑

p=0

(−1)p 2
(2p+1)π cos

( (2p+1)πx
2

)

=

{

1 if 0 ≤ x ≤ 1
1
2 if x = 1
0 if 1 < x ≤ 2

=

x

1

1 2

We have summed over all odd k by setting k = 2p + 1 and summing over p = 0, 1, 2, · · ·.

There is a Java demo that shows the graphs of 1 +
∑N

p=0(−1)p 2
(2p+1)π cos

( (2p+1)πx
2

)

for

many values of N .

Usefulness of Fourier Series.

In this course, we use Fourier series as a tool for solving partial differential equations.

This is just one of its many applications. To give you a preliminary taste of this application,

we now briefly consider one typical partial differential equation problem. It arises in studying

a vibrating string. Suppose that a vibrating string has its ends tied to nails at x = y = 0

and x = ℓ, y = 0. Denote by y(x, t) the amplitude of the string at position x and time t. If
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there are no external forces, no damping and the amplitude is small,

∂2y
∂t2 (x, t) = c2 ∂2y

∂x2 (x, t) for all 0 ≤ x ≤ ℓ, t ≥ 0 (1)

y(0, t) = 0 for all t ≥ 0 (2)

y(ℓ, t) = 0 for all t ≥ 0 (3)

y(x, 0) = f(x) for all 0 ≤ x ≤ ℓ (4)

∂y
∂t (x, 0) = g(x) for all 0 ≤ x ≤ ℓ (5)

A detailed derivation of this system of equations is provided in another set of notes. The first

equation is the Newton’s law of motion appropriate for the current situation; the next two

equations impose the requirements that the ends of the string are tied to nails; the final two

equations specify the initial position and and speed of the string. We are assuming that the

initial position and speed f(x) and g(x) are given functions. The unknown in the problem is

the amplitude y(x, t). For each fixed t ≥ 0, y(x, t) is a function of the one variable x. This

function vanishes at x = 0 and x = ℓ and thus, by part a) of the Fourier series theorem has

an expansion

y(x, t) =

∞
∑

k=1

bk(t) sin
(

kπx
ℓ

)

The solution y(x, t) is completely determined by the, as yet unknown, coefficients bk(t).

Furthermore these coefficients can be found by substituting y(x, t) =
∑

∞

k=1 bk(t) sin
(

kπx
ℓ

)

into the above five requirements on y(x, t). First the PDE (1):

0 = ∂2y
∂t2 (x, t)− c2 ∂2y

∂x2 (x, t) =

∞
∑

k=1

b′′k(t) sin
(

kπx
ℓ

)

+

∞
∑

k=1

k2π2c2

ℓ2 bk(t) sin
(

kπx
ℓ

)

=

∞
∑

k=1

[

b′′k(t) +
k2π2c2

ℓ2 bk(t)
]

sin
(

kπx
ℓ

)

This says that, for each fixed t ≥ 0, the function 0, viewed as a function of x, has Fourier

series expansion
∑

∞

k=1

[

b′′k(t) +
k2π2c2

ℓ2 bk(t)
]

sin
(

kπx
ℓ

)

. Our Fourier series theorem then forces

b′′k(t) +
k2π2c2

ℓ2 bk(t) = 0 for all k, t (1′)

Because sin 0 = sin kπ = 0 for all integers k, conditions (2) and (3) are satisfied by y(x, t) =
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∑

∞

k=1 bk(t) sin
(

kπx
ℓ

)

regardless of what bk(t) are. Finally substituting into (4) and (5) gives

y(0, t) =
∞
∑

k=1

bk(0) sin
(

kπx
ℓ

)

= f(x)

∂y
∂t
(0, t) =

∞
∑

k=1

b′k(0) sin
(

kπx
ℓ

)

= g(x)

By uniqueness of Fourier coefficients, once again,

bk(0) =
2
ℓ

∫ ℓ

0

f(x) sin
(

kπx
ℓ

)

dx (4′)

b′k(0) =
2
ℓ

∫ ℓ

0

g(x) sin
(

kπx
ℓ

)

dx (5′)

For each fixed k, equations (1’), (4’) and (5’) constitute one second order constant coefficient

ordinary differential equation and two initial conditions for the unknown function bk(t). You

already know how to solve constant coefficient ordinary differential equations. Denoting

αk = 2
ℓ

∫ ℓ

0

f(x) sin
(

kπx
ℓ

)

dx βk = 2
ℓ

∫ ℓ

0

g(x) sin
(

kπx
ℓ

)

dx

the solution of (1’), (4’) and (5’) is

bk(t) = αk cos
(

kπct
ℓ

)

+ ℓβk

kπc sin
(

kπct
ℓ

)

and the solution of (1), (2), (3), (4), (5) is

y(x, t) =

∞
∑

k=1

[

αk cos
(

kπct
ℓ

)

+ ℓβk

kπc sin
(

kπct
ℓ

)

]

sin
(

kπx
ℓ

)

The interpretation of this formula is provided in another set of notes.

Validity of Fourier Series.

It is beyond the scope of this course to give a full justification for the Fourier series

theorem. However, with just a little high school trigonometry, we can justify a formula that is

useful in its own right and that also provides arbitrarily good approximations to the Fourier

series expansions. For concreteness, we shall just consider Fourier sin series – that is part

a) of the theorem. The other parts are similar. Imagine some application in which we have
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to measure some function f(x) obeying f(0) = f(ℓ) = 0. For example, f(x) might be the

amplitude at some fixed time of a vibrating string. Because we can only make finitely many

measurements, we cannot determine f(x) for all values of x. Suppose that we measure f(x)

for x = ℓ
N , 2ℓ

N , · · · , (N−1)ℓ
N where N is some fixed integer. Define

F (N)
n = f

(

nℓ
N

)

Because we do not know f(x) for all x we cannot compute bk = 2
ℓ

∫ ℓ

0
f(x) sin

(

kπx
ℓ

)

dx . But

we can get a Riemann sum approximation to it using only x’s for which f(x) is known. All

we need to do is divide the domain of integration up into N intervals each of length ℓ/N . On

the interval nℓ
N ≤ x ≤

(n+1)ℓ
N we approximate f(x) sin

(

kπx
ℓ

)

by f
(

nℓ
N

)

sin
(

kπ
ℓ

nℓ
N

)

.

f(x) sin
(

kπx
ℓ

)

x
ℓ
N

2ℓ
N

(N−1)ℓ
N

This gives

B
(N)
k = 2

ℓ

N−1
∑

n=0

ℓ
N f

(

nℓ
N

)

sin
(

kπ
ℓ

nℓ
N

)

= 2
N

N−1
∑

n=0

F (N)
n sin

(

nkπ
N

)

More generally, let F0, F1, , · · · , FN be N + 1 numbers obeying F0 = FN = 0.

Define

Bk = 2
N

N−1
∑

m=0

Fn sin
(

mkπ
N

)

We shall show that the Fourier sin series representation for the Fn’s

Fn =
N−1
∑

k=0

Bk sin
(

nkπ
N

)

(1)

is really true. To do so we just evaluate the right hand side by substituting in the definition
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of the Bk’s.
N−1
∑

k=0

Bk sin
(

nkπ
N

)

= 2
N

N−1
∑

k=0

N−1
∑

m=0

Fm sin
(

mkπ
N

)

sin
(

nkπ
N

)

= 2
N

N−1
∑

m=0

N−1
∑

k=0

Fm sin
(

mkπ
N

)

sin
(

nkπ
N

)

=
N−1
∑

m=0

Fm

{

2
N

N−1
∑

k=0

sin
(

mkπ
N

)

sin
(

nkπ
N

)

}

The validity of (1) is then an immediate consequence of part b) of

Lemma.

a)
N−1
∑

k=0

cos(kθ) =

{

N if cos θ = 1
1
2(1− cosNθ) + 1

2
sinNθ sin θ
1−cos θ if cos θ 6= 1

b) Let n and m be integers with 1 ≤ n,m ≤ N − 1. Then

2
N

N−1
∑

k=0

sin
(

mkπ
N

)

sin
(

nkπ
N

)

=

{

1 if n = m
0 if n 6= m

Proof: a) If cos θ = 1 then θ is an integer multiple of 2π so that cos(kθ) = 1 for all integers

k and
∑N−1

k=0 cos(kθ) =
∑N−1

k=0 1 = N , as claimed.

If cos θ 6= 0, we must show

N−1
∑

k=0

cos(kθ) = 1
2
(1− cosNθ) + 1

2
sinNθ sin θ
1−cos θ

or equivalently (just moving the 1
2(1− cosNθ) to the left hand side)

1
2
+

N−1
∑

k=1

cos(kθ) + 1
2
cos(Nθ) = 1

2
sinNθ sin θ
1−cos θ

or equivalently (just cross multiplying by 2(1− cos θ))

(1− cos θ) +
N−1
∑

k=1

2(1− cos θ) cos(kθ) + (1− cos θ) cos(Nθ) = sinNθ sin θ
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The left hand side is

(1− cos θ) +
N−1
∑

k=1

2(1− cos θ) cos(kθ) + (1− cos θ) cos(Nθ)

= 1− cos θ +

N−1
∑

k=1

2 cos(kθ)−

N−1
∑

k=1

2 cos θ cos(kθ) + cos(Nθ)− cos θ cos(Nθ)

= 1− cos θ +

N−1
∑

k=1

2 cos(kθ)−

N−1
∑

k=1

cos
(

(k + 1)θ)−

N−1
∑

k=1

cos
(

(k − 1)θ)

+ cos(Nθ)− 1
2 cos

(

(N − 1)θ)− 1
2 cos

(

(N + 1)θ)

by the trig identity cos θ cosφ = 1
2
cos(θ + φ) + 1

2
cos(θ − φ). Writing out the three sums on

three separate rows

(1− cos θ) +
N−1
∑

k=1

2(1− cos θ) cos(kθ) + (1− cos θ) cos(Nθ)

= 1− cos θ

+ 2 cos θ + 2 cos(2θ) + · · ·+ 2 cos((N−2)θ) + 2 cos((N−1)θ)

− cos(2θ)− · · · − cos((N−2)θ)− cos((N−1)θ) − cos(Nθ)

−1− cos θ − cos(2θ)− · · · − cos((N−2)θ)

− 1
2 cos((N−1)θ) + cos(Nθ)− 1

2 cos((N+1)θ)

= 1
2 cos

(

(N − 1)θ
)

− 1
2 cos

(

(N + 1)θ
)

= sin(θ) sin(Nθ)

which is exactly the desired identity.

b) Using sin θ sinφ = 1
2 cos(θ − φ)− 1

2 cos(θ + φ)

2
N−1
∑

k=0

sin
(

mkπ
N

)

sin
(

nkπ
N

)

=
N−1
∑

k=0

cos
( (n−m)kπ

N

)

−

N−1
∑

k=0

cos
( (n+m)kπ

N

)

We wish to apply the identity of part a twice, the first time with θ = (n−m)π
N

and the second

time with θ = (n+m)π
N . Observe that with 1 ≤ n,m ≤ N − 1 we have

−π < −(N−2)π
N ≤

(n−m)π
N ≤

(N−2)π
N < π =⇒ cos

( (n−m)π
N

)

= 1 if and only if n = m

0 < 2π
N ≤

(n+m)π
N ≤

2(N−1)π
N < 2π =⇒ cos

( (n−m)π
N

)

6= 1
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and
sin

(

N (n−m)π
N

)

= sin
(

N (n+m)π
N

)

= 0

cos
(

N (n−m)π
N

)

= cos
(

N (n+m)π
N

)

= (−1)n−m

since (−1)m = (−1)−m. Applying part a twice

N−1
∑

k=0

cos
( (n−m)kπ

N

)

=

{

N if n = m
1
2
− 1

2
(−1)n−m if n 6= m

N−1
∑

k=0

cos
( (n+m)kπ

N

)

= 1
2 − 1

2 (−1)n−m

Subtracting gives

N−1
∑

k=0

cos
( (n−m)kπ

N

)

−

N−1
∑

k=0

cos
( (n+m)kπ

N

)

=

{

N if n = m
0 if n 6= m

which is the desired result.

We remark that trig identities are often cleaner looking and easier to derive using

exponentials of complex numbers. This is indeed the case for Fourier series formulae, which

are just big trig identities. See the notes on complex numbers and exponentials.
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