
Sobolev Background

These notes provide some background concerning Sobolev spaces that is used in

Uhlmann’s notes. Here Ω is a bounded open subset of IRn with C∞ boundary. We shall use

Dαf(x) with α = (α1, · · · , αn) to denote the partial derivative ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n

f(x). The order

of this partial dertivative is |α| = α1 + · · ·+ αn.

Definition 1 (Hℓ(Ω), ℓ ≥ 0, integer) Define, for each integer ℓ ≥ 0, the norm ‖f‖ℓ,Ω (we

sometimes drop the Ω from the notation) by

‖f‖2ℓ,Ω =
∑

|α|≤ℓ

∫

Ω

∣∣Dαf(x)
∣∣2 dnx

Then Hℓ(Ω) is the completion of C∞(Ω̄) under the norm ‖ · ‖ℓ,Ω.

Definition 2 (Hℓ(∂Ω), ℓ ≥ 0, integer) We want to define the space Hℓ(∂Ω) in the same

way as we defined the space Hℓ(Ω), but for functions that are only defined on ∂Ω. To do so,

we need a measure on ∂Ω. The easy way to create such a measure is to use local coordinates.

Of course we may need more than one coordinate patch to cover all of ∂Ω. So we first use

a partition of unity to write f =
∑

m fζm with each fζm supported in a single coordinate

patch. Then we write fζm in local coordinates and proceed as in the last definition. Of

course this can give many different norms, through different choices of partition of unity and

local coordinates. But that doesn’t matter because they are all equivalent. That is, if ‖ · ‖
and ‖ · ‖′ are two such norms, then there are constants c and c′ such that

‖f‖ ≤ c‖f‖′ ‖f‖′ ≤ c′‖f‖

So a sequence of functions converges with respect to one of the norms if and only if it converges

with respect to the other.

Definition 3 (Ht(Ω), t ≥ 0, real) If t happens to be an integer, we use the above definition.

Otherwise, write t = ℓ+ σ with ℓ a nonnegative integer and 0 < σ < 1. We define the norm

‖f‖t,Ω by

‖f‖2t,Ω = ‖f‖2ℓ,Ω +
∑

|α|=ℓ

∫

Ω

∫

Ω

∣∣∣D
αf(x)−Dαf(y)

|x−y|σ

∣∣∣
2
dnxdny
|x−y|n

Note that, for smooth f , the integrand

|Dαf(x)−Dαf(y)|2

|x−y|2σ+n ≤ const |x−y|2

|x−y|2σ+n = const 1
|x−y|2σ+n−2
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is locally integrable (since 2σ + n − 2 < n) so the integral converges. Then Ht(Ω) is the

completion of C∞(Ω̄) under the norm ‖ · ‖t,Ω.

You should think of Ht(Ω) as consisting of functions all of whose derivatives up

to order t (including “fractional order” derivatives) are L2. I will now try to provide some

motivation for this. The first observation to make is that, in the double integral over x, y,

only those points with x − y very small make any difference to the norm. In fact if, in the

definition of the norm, we were to restrict the integration to |x− y| ≥ ε for some fixed ε > 0,

then

‖f‖2ℓ,Ω ≤ ‖f‖2t,Ω,ε ≡ ‖f‖2ℓ,Ω +
∑

|α|=ℓ

∫ ∫

x,y∈Ω

|x−y|≥ε

∣∣∣D
αf(x)−Dαf(y)

|x−y|σ

∣∣∣
2
dnxdny
|x−y|n

≤ ‖f‖2ℓ,Ω +
∑

|α|=ℓ

∫ ∫

x,y∈Ω

|x−y|≥ε

2|Dαf(x)|2+2|Dαf(y)|2

|x−y|2σ+n dnxdny

= ‖f‖2ℓ,Ω +
∑

|α|=ℓ

4

∫ ∫

x,y∈Ω

|x−y|≥ε

|Dαf(x)|2

|x−y|2σ+n d
nxdny

≤ ‖f‖2ℓ,Ω +
∑

|α|=ℓ

4

∫

Ω

|Dαf(x)|2 dnx

∫

|z|≥ε

1
|z|2σ+nd

nz

≤ C‖f‖2ℓ,Ω

for some constant C, because the integral
∫
|z|≥ε

1
|z|2σ+nd

nz converges. The second observation

is that it is possible to rewrite the integral in a more transparent form in the special case

that Ω = IRn. Making the change of variables y = x+ z,

∫

IRn

∫

IRn

∣∣∣D
αf(x)−Dαf(y)

|x−y|σ

∣∣∣
2
dnxdny
|x−y|n

=

∫
dnz 1

|z|2σ+n

∫
dnx |Dαf(x)−Dαf(x+ z)|2

=

∫
dnz 1

|z|2σ+n

∫
dnk |kαf̃(k)− kαeik·z f̃(k)|2

Here we have used:

(a) The L2 norm of a function is the same as the L2 norm of its Fourier transform.

(Actually there may be some factors of 2π that come in here, depending on your

Fourier transform conventions. I shall consistently omit all unimportant factors of

2π that arise from Fourier transform operations.)

(b) The Fourier transform of ∂
∂xm

g(x) is ikmg̃(k) so that the Fourier transform of

Dαf(x) is i|α|kαf̃(k) where kα = kα1

1 · · ·kαn
n .

(c) the Fourier transform (with respect to x) of the translate g(x+ z) is eik·z g̃(k).
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Now exchange the order of integration
∫

IRn

∫

IRn

∣∣∣D
αf(x)−Dαf(y)

|x−y|σ

∣∣∣
2
dnxdny
|x−y|n =

∫
dnk |kαf̃(k)|2

∫
dnz 1

|z|2σ+n |1− eik·z|2

and, for each k, make the change of variables z = |k|−1Rw where R is a rotation matrix

chosen so that k = |k|Rê1 with ê1 a unit vector along the first coordinate axis. This gives
∫

IRn

∫

IRn

∣∣∣D
αf(x)−Dαf(y)

|x−y|σ

∣∣∣
2
dnxdny
|x−y|n

=

∫
dnk |kαf̃(k)|2|k|−n+2σ+n

∫
dnw 1

|w|2σ+n |1− eiê1·w|2

= cσ,n‖kα|k|σf̃‖2L2

Note that the constant cσ,n =
∫
dnw 1

|w|2σ+n |1 − eiê1·w|2 is finite because the integrand is

bounded by 4
|w|2σ+n for large |w| and by const

|w|2σ+n−2 for small |w|. Fourier transforming converts

differentiation with respect to x into multiplication by k and it converts our difference quotient

into a factor of |k|σ. So it acts like a fractional derivative.

Definition 4 (Ht(∂Ω), t ≥ 0, real) Again introduce a partition of unity and local coordi-

nates into a definition like the last one.

Definition 5 (Ht
0(Ω), t ≥ 0, real) This space is the closure of C∞

0 (Ω) in the norm ‖ · ‖t,Ω.

Example 6 Consider n = 1, Ω = (0, 1). Start with f ∈ C∞
0 (Ω). Since f is supported in Ω,

we can think of it as being defined on all IR, taking value zero everywhere except in (0, 1).

In particular f (j)(0) = 0. So

∣∣f (j)(x)
∣∣ =

∣∣f (j)(x)− f (j)(0)
∣∣ =

∣∣∣
∫ x

0

f (j+1)(t) dt
∣∣∣

=
∣∣∣
∫ 1

0

χ[0,x](t)f
(j+1)(t) dt

∣∣∣

≤
[ ∫ 1

0

χ[0,x](t)
2 dt

]1/2[ ∫ 1

0

∣∣f (j+1)(t)
∣∣2 dt

]1/2

=
√
x
[ ∫ 1

0

∣∣f (j+1)(t)
∣∣2 dt

]1/2

≤
√
x‖f‖t

provided t ≥ j + 1. Now suppose that f ∈ Ht
0(Ω). It is a limit, in Ht(Ω), of functions

fℓ ∈ C∞
0 (Ω). We can always choose the sequence so that ‖fℓ‖t ≤ 2‖f‖t for every ℓ. Thus, if

j ≤ t− 1,
∣∣f (j)

ℓ (x)
∣∣ ≤ √

x‖fℓ‖t ≤ 2
√
x‖f‖t for all ℓ and all 0 < x < 1. So all of the first t− 1

derivatives of every f ∈ Ht
0(Ω) vanish on the boundary of Ω.
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Theorem 7 Let t > 1
2 . Define the restriction map

r : C∞(Ω̄) → C∞(∂Ω)

u 7→ u ↾ ∂Ω

There exists a unique map

R : Ht(Ω) → Ht−1/2(∂Ω)

and constants C,C′ such that

(i) R extends r. That is, Ru = ru for all u in the domain, C∞(Ω̄), of r.

(ii) R is bounded. That is, ‖Ru‖t−1/2,∂Ω ≤ C‖u‖t,Ω.
(iii) R is surjective (onto).

(iv) R has kernel

{
Ht

0(Ω) if t ≤ 1
H1

0 (Ω) ∩Ht(Ω) if t ≥ 1

(v) For each f ∈ Ht−1/2(∂Ω), there is a u ∈ Ht(Ω) such that

Ru = f and ‖u‖t,Ω ≤ C′‖f‖t−1/2,∂Ω

That is, R has a bounded right inverse.

We shall not give a complete proof. It can be found in Adam’s Book. See Theorem

7.53. But we shall try to motivate most of it and give detailed proofs for parts of it. The

first part of the proof is to show that r is bounded. Once this is done, we can extend r by

continuity to all of Ht(Ω) (since the domain of r is dense in Ht(Ω)) and call the result R.

Parts (i) and (ii) of the Theorem and also the uniqueness of R are then automatic. Since r

vanishes on C∞
0 (Ω), which is dense in Ht

0(Ω), the boundedness of r will also imply that the

kernel of R contains Ht
0(Ω). This is part, but not all, of (iv). While we are on the subject of

(iv), note that, when t is large, many derivatives of any f ∈ Ht
0(Ω) must vanish on ∂Ω. On

the other hand, to be in the kernel of R only f itself — not its derivatives — must vanish on

∂Ω. That’s why the kernel is H1
0 (Ω) ∩Ht(Ω) rather than Ht

0(Ω) when t > 1. We shall not

discuss (iv) further. For a readable proof in the special case of H1(Ω), see Theorem 2 in §5.5
of Evans’ book.

To get a first look at why r is bounded, we prove that r is bounded from (smooth

functions in) H1(Ω) to H0(∂Ω) = L2(∂Ω). That is ‖ru‖0,∂Ω ≤ C‖u‖1,Ω. When t = 1 we

really want the stronger result that ‖ru‖1/2,∂Ω ≤ C‖u‖1,Ω. — i.e. that, in restricting to the

boundary, we only loose half a derivative. We’ll discuss that after proving

Lemma 8 There is a constant C (depending only on Ω) such that, for all u ∈ C∞(Ω̄),

‖ru‖0,∂Ω ≤ C‖u‖1,Ω
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Proof: We may assume that u is real valued.

Step 1. Let x∗ ∈ ∂Ω. Assume that ∂Ω is flat and lying in xn = 0 near x∗. Let B̂ ⊂ B be

concentric balls centred on x∗ with B ∩ ∂Ω ⊂ {xn = 0} and B ∩ Ω = B ∩ {xn > 0} ≡ B+.

∂Ω

Ω
x∗

B̂
B

Let ζ ∈ C∞
0 (B) obey ζ ≥ 0 and ζ ↾ B̂ = 1. Denote x′ = (x1, · · · , xn−1) ∈ IRn−1 = {xn = 0}.

Then ∫

∂Ω∩B̂

(ru)2 dn−1x′ ≤
∫

B∩{xn=0}

ζu2 dn−1x′

Now use that
∫ r

0
Dnf(x

′, xn) dxn = f(x′, r)− f(x′, 0) = −f(x′, 0) if f(x′, r) = 0, to give
∫

∂Ω∩B̂

(ru)2 dn−1x′ ≤ −
∫

B+

Dn

(
ζu2

)
dnx

= −
∫

B+

[
u2Dnζ + 2ζuDnu

]
dnx

≤ 1
2C

∫

Ω

[
u2 + |uDnu|

]
dnx where C = 2(1 + sup |Dnζ|)

≤ 1
2C

[
‖u‖2L2(Ω) + ‖u‖L2(Ω) ‖Dnu‖L2(Ω)

]

≤ C
[
‖u‖2L2(Ω) + ‖Dnu‖2L2(Ω)

]
since ab ≤ 1

2a
2 + 1

2b
2

≤ C‖u‖21,Ω

Step 2. If x∗ ∈ ∂Ω but ∂Ω is not flat and oriented correctly near x∗, make a change of

variables to straighten it out and reorient it. Since ∂Ω is smooth, the Jacobean is bounded

and so just changes the value of the constant C of step 1.

Step 3. Since ∂Ω is compact, we can cover it by finitely many B̂’s as in step 1. This completes

the proof.

The next Lemma illustrates the loss of only one half of a derivative as well as the

requirement that t > 1
2 in part (ii) of Theorem 7. In the illustration, we replace Ω by

IRn and ∂Ω by {xn = 0}, which we identify with IRn−1. As in the last proof, we write

x′ = (x1, · · · , xn−1).

Lemma 9 Define r : C∞
0 (IRn) → C∞

0 (IRn−1) by

(ru)(x′) = u(x′, 0)
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If t > 1
2 , then there is a constant C (depending only on n and t) such that

‖ru‖t− 1
2
,IRn−1 ≤ C‖u‖t,IRn

for all u ∈ C∞
0 (IRn).

Proof: If k ∈ IRn, write k = (k′, kn) with k′ = (k1, · · · , kn−1). In terms of the Fourier

transform of u, the (square of the) norm of u is

‖u‖2t,IRn =

∫
Dn,t(k)|ũ(k)|2 dnk

where, using [t] to denote the integer part of t,

Dn,t(k) =
∑

|α|≤[t]

k2α +

{
0 if t = [t]
cσ,n|k|2σ

∑
|α|=[t] k

2α if σ = t− [t] > 0

Since Dn,t(k) is bounded above and below by constants (depending on n and t) times (1+k2)t,

we may redefine ‖u‖t,IRn to be the equivalent norm

‖u‖t,IRn =
[ ∫

(1 + k2)t|ũ(k)|2 dnk
]1/2

Similarly, we may redefine ‖ru‖t− 1
2
,IRn−1 to be the equivalent norm

‖ru‖t− 1
2
,IRn−1 =

[ ∫
(1 + k′2)t−

1
2 |r̃u(k′)|2 dn−1k′

]1/2

The definition of the Fourier transform gives
∫
eik

′·x′

(r̃u)(k′) dn−1k′ = (ru)(x′) = u(x′, 0) =

∫
eik

′·x′

ũ(k′, kn) d
n−1k′dkn

so that

(r̃u)(k′) =

∫
ũ(k′, kn) dkn

Thus, by Cauchy–Schwarz,

∣∣(r̃u)(k′)
∣∣2 ≤

∣∣∣
∫

ũ(k′, kn)
(
1 + k′2 + k2n

)t/2(
1 + k′2 + k2n

)−t/2
dkn

∣∣∣
2

≤
[ ∫

1
(1+k′2+k2

n)t dkn

][ ∫ ∣∣ũ(k′, kn)
∣∣2 (1 + k′2 + k2n

)t
dkn

]

=
[

1
(1+k′2)t−1/2

∫
1

(1+p2)t
dp

][∫ ∣∣ũ(k′, kn)
∣∣2(1 + k′2 + k2n

)t
dkn

]

where kn = p
√
1 + k′2

= c
(1+k′2)t−1/2

∫ ∣∣ũ(k′, kn)
∣∣2 (

1 + k′2 + k2n
)t

dkn
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where the constant c =
∫

1
(1+p2)t dp depends only on t and is finite because t > 1

2 . Hence

‖ru‖2t− 1
2
,IRn−1 =

∫
(1 + k′2)t−

1
2 |r̃u(k′)|2 dn−1k′

≤ c

∫ ∣∣ũ(k′, kn)
∣∣2 (

1 + k′2 + k2n
)t

dnk

= c‖u‖t,IRn

With a little more work, Lemma 9 can be plugged into step 1 of the proof of Lemma

8 to give the boundednedness of r required for the proof of part (ii) of Theorem 7. This

completes our discussion of parts (i) and (ii) of Theorem 7. We now discuss part (v), which

implies part (iii). Part (v) says that, each f ∈ Ht−1/2(∂Ω) can be extended to a u ∈ Ht(Ω)

in a bounded way. To illustrate why, we again replace Ω by IRn and ∂Ω by {xn = 0}. We

use the same notation as in the last Lemma.

Lemma 10 Let t ≥ 1
2 . Then there is a constant C (depending only on n and t) such that for

each f ∈ Ht−1/2(IRn−1) there is an F ∈ Ht(IRn) obeying F (x′, 0) = f(x′) and

‖F‖2t,IRn ≤ C‖f‖2t− 1
2
,IRn−1

Proof: As in Lemma 9, we use the norms

‖F‖t,IRn =
[ ∫

(1 + k2)t|F̃ (k)|2 dnk
]1/2

‖f‖t− 1
2
,IRn−1 =

[ ∫
(1 + k′2)t−

1
2 |f̃(k′)|2 dn−1k′

]1/2

in place of the originally defined (equivalent) norms ‖F‖t,IRn , ‖f‖t− 1
2
,IRn−1 . Try

F̃ (k′, kn) = f̃(k′)A (1+k′2)µ

(1+k′2+k2
n)

ν

To satisfy F (x′, 0) = f(x′), we need

∫
F̃ (k′, kn) dkn = f̃(k′) ⇐⇒ 1 =

∫
A

(1+k′2)µ

(1+k′2+k2
n)ν dkn

= A(1 + k′2)µ−ν+1/2

∫
1

(1+p2)ν dp
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where we made the change of variables kn = p
√
1 + k′2. The requirement F (x′, 0) = f(x′) is

satisfied if we choose ν > 1
2
(so that the integral converges), µ = ν− 1

2
and A =

[ ∫
1

(1+p2)ν

]−1

.

With those choices

‖F‖2t,IRn =

∫
(1 + k2)t|F̃ (k)|2 dnk

= A2

∫
(1 + k2)t (1+k′2)2µ

(1+k′2+k2
n)2ν

|f̃(k′)|2 dn−1k′dkn

= A2
[ ∫

1
(1+p2)2ν−t dp

] ∫
(1 + k′2)2µ+t−2ν+1/2|f̃(k′)|2 dn−1k′

= A2
[ ∫

1
(1+p2)2ν−t dp

]
‖f‖22µ+t−2ν+1/2

= A2
[ ∫

1
(1+p2)2ν−t dp

]
‖f‖2t−1/2

so it suffices to choose ν large enough that 2ν − t > 1
2 and ν > 1

2 .

Theorem 10 There is a constant C such that for all u ∈ H1(Ω)

‖u‖L2(Ω) ≤ C
( n∑

i=1

‖Diu‖2L2(Ω) + ‖Ru‖2L2(∂Ω)

)1/2

Proof: By Theorem 7 and the denseness of C∞(Ω̄) in H1(Ω), it is sufficient to consider

u ∈ C∞(Ω̄).

Step 1. Let x∗ ∈ ∂Ω. Assume that ∂Ω is flat and lying in xn = 0 near x∗. Let D be any open

neighbourhood of x∗ in ∂Ω ∩ {xn = 0} and let I ⊂ IR be any interval such that D × I ⊂ Ω.

Denote x′ = (x1, · · · , xn−1) ∈ IRn−1 = {xn = 0}. Then, by the fundamental theorem of

calculus and Cauchy–Schwarz,

∫

D×I

∣∣u(x′, xn)− u(x′, 0)
∣∣2 dn−1x′ dxn

=

∫

D

dn−1x′

∫

I

dxn

∣∣∣
∫ xn

0

Dnu(x
′, t) dt

∣∣∣
2

≤
∫

D

dn−1x′

∫

I

dxn |xn|
∫

I

|Dnu(x
′, t)|2 dt

≤ c

∫

D

dn−1x′

∫

I

|Dnu(x
′, t)|2 dt
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Hence

∫

D×I

∣∣u(x)
∣∣2 dnx =

∫

D×I

∣∣u(x′, xn)− u(x′, 0) + u(x′, 0)
∣∣2 dn−1x′ dxn

≤ 2

∫

D×I

∣∣u(x′, xn)− u(x′, 0)
∣∣2 dn−1x′ dxn + 2

∫

D×I

∣∣u(x′, 0)
∣∣2 dn−1x′ dxn

≤ 2c

∫

D×I

dnx |Dnu(x)|2 + 2|I|
∫

D

∣∣(Ru)(x′)
∣∣2 dn−1x′

Step 2. Patch together pieces and straighten out edges to give the desired bound.
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