Inverse Scattering

Suppose that we are interested in a system in which sound waves, for example, scatter off of some obstacle. Let $p(\mathbf{x}, t)$ be the pressure at position \mathbf{x} and time t. In (a somewhat idealized) free space, p obeys the wave equation $\frac{\partial^{2} p}{\partial t^{2}}=c^{2} \Delta p$, where c is the speed of sound. We shall assume that in most of the world, c takes a constant value c_{0}. But we introduce an obstacle by allowing c to depend on position in some compact region. We further allow for some absorbtion in that region. Then p obeys

$$
\frac{\partial^{2} p}{\partial t^{2}}+\gamma(\mathbf{x}) \frac{\partial p}{\partial t}=c(\mathbf{x})^{2} \Delta p
$$

where $\gamma(\mathbf{x})$ is the damping coefficient of the medium at \mathbf{x}. For solutions of fixed (temporal) frequency, $p(\mathbf{x}, t)=\operatorname{Re}\left[u(\mathbf{x}) e^{-i \omega t}\right]$ with

$$
\Delta u+\frac{\omega^{2}}{c(\mathbf{x})^{2}}\left[1+i \frac{\gamma(\mathbf{x})}{\omega}\right] u=0
$$

Outside of some compact region

$$
\frac{\omega^{2}}{c(\mathbf{x})^{2}}\left[1+i \frac{\gamma(\mathbf{x})}{\omega}\right]=\frac{\omega^{2}}{c_{0}^{2}}=k^{2} \quad \text { where } \quad k=\frac{\omega}{c_{0}}>0
$$

If we define the index of refraction by

$$
n(\mathbf{x})=\frac{c_{0}^{2}}{c(\mathbf{x})^{2}}\left[1+i \frac{\gamma(\mathbf{x})}{\omega}\right]
$$

then

$$
\begin{equation*}
\Delta u+k^{2} n(\mathbf{x}) u=0 \tag{1}
\end{equation*}
$$

with $n(\mathbf{x})=1$ outside of some compact region. We first consider two special cases.

Example 1 (Free Space) In the absence of any obstacle $\Delta u+k^{2} u=0$ on all of \mathbb{R}^{3}. Then we can solve just by Fourier transforming. The general solution is a mixture of solutions of the form $u=e^{i k \hat{\boldsymbol{\theta}} \cdot \mathbf{x}}$ where $\hat{\boldsymbol{\theta}}$ is a unit vector. This represents a plane wave coming in from infinity in direction $\hat{\boldsymbol{\theta}}$.

Example 2 (Point Source) If we have free space everywhere except at the origin and we have a unit point source at the origin, then

$$
\Delta u+k^{2} u=\delta(\mathbf{x})
$$

Except at the origin, where there is a singularity, we still have $\Delta u+k^{2} u=0$. The point source generates expanding spherical waves. So u should be a function of $r=|\mathbf{x}|$ only and obey

$$
u^{\prime \prime}(r)+\frac{2}{r} u^{\prime}(r)+k^{2} u(r)=0
$$

This is easily solved by changing variables to $v(r)=r u(r)$, which obeys

$$
v^{\prime \prime}(r)+k^{2} v(r)=0
$$

So $v(r)=\alpha \sin (k r)+\beta \cos (k r)$ and $u(r)=\alpha \frac{\sin (k r)}{r}+\beta \frac{\cos (k r)}{r}$. To be an outgoing (rather than incoming) wave $u(r)=\alpha^{\prime} \frac{e^{i k r}}{r}$. (Note that $e^{i k r} e^{-i \omega t}$ is constant on $r=\frac{\omega}{k} t$, which is a sphere that is expanding with speed c_{0}.) To give the Dirac delta function on the right hand side of $\Delta u+k^{2} u=\delta(\mathbf{x})$ coefficient one, we need $u(\mathbf{x})=-\frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|}$. (See, for example, the notes on Poisson's equation.)

Now let's return to the general case. We want to think of a physical situation in which we send a plane wave $u^{i}(\mathbf{x})=e^{i k \hat{\boldsymbol{\theta}} \cdot \mathbf{x}}$ in from infinity. This plane wave shakes up the obstacle which then emits a bunch of expanding spherical waves $\frac{e^{i k|\mathbf{x}-\mathbf{y}|}}{|\mathbf{x}-y|}$ emanating from various points \mathbf{y} in the obstacle. So the full solution is of the form

$$
u(\mathbf{x})=u^{i}(\mathbf{x})+u^{s}(\mathbf{x})
$$

where the scattered wave, u^{s}, obeys the "radiation condition"

$$
\begin{equation*}
\frac{\partial}{\partial r} u^{s}(\mathbf{x})-i k u^{s}(\mathbf{x})=O\left(\frac{1}{|\mathbf{x}|^{2}}\right) \quad \text { as } \quad|\mathbf{x}| \rightarrow \infty \tag{2}
\end{equation*}
$$

This condition is chosen to allow outgoing waves $\frac{e^{i k|x-\mathbf{y}|}}{|\mathbf{x}-\mathbf{y}|}$ but not incoming waves $\frac{e^{-i k|\mathbf{x}-\mathbf{y}|}}{|\mathbf{x}-\mathbf{y}|}$. Define

$$
\Phi(\mathbf{x}, \mathbf{y})=\frac{e^{i k|\mathbf{x}-\mathbf{y}|}}{4 \pi|\mathbf{x}-\mathbf{y}|}
$$

Since $\delta(\mathbf{x}-\mathbf{y})$ is the kernel of the identity operator,

$$
\left(\Delta_{x}+\mathbf{k}^{2}\right) \Phi(\mathbf{x}, \mathbf{y})=-\delta(\mathbf{x}-\mathbf{y})
$$

says, roughly, that $u(\mathbf{x}) \mapsto-\int \Phi(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d \mathbf{y}$ is the inverse of the map $u(\mathbf{x}) \mapsto\left(\Delta+k^{2}\right) u(\mathbf{x})$ for functions that obey the radiation condition. We can exploit this to convert (1), (2) into an equivalent integral equation

$$
\begin{aligned}
\Delta u+k^{2} n(\mathbf{x}) u=0 & \Longrightarrow \Delta u+k^{2} u=k^{2}(1-n(\mathbf{x})) u \\
& \Longrightarrow \Delta u^{s}+k^{2} u^{s}=k^{2}(1-n(\mathbf{x})) u
\end{aligned}
$$

since $\Delta u^{i}+k^{2} u^{i}=0$. As u^{s} obeys the radiation condition

$$
u^{s}(\mathbf{x})=-k^{2} \int \Phi(\mathbf{x}, \mathbf{y})(1-n(\mathbf{y})) u(\mathbf{y}) d \mathbf{y}
$$

so that

$$
\begin{equation*}
u(\mathbf{x})=u^{i}(\mathbf{x})-k^{2} \int(1-n(\mathbf{y})) \Phi(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d \mathbf{y} \tag{3}
\end{equation*}
$$

This is called the Lippmann-Schwinger equation. Observe that it is of the form $u=u^{i}-F u$ or $(\mathbb{1}-F) u=u^{i}$ where F is the linear operator $u(\mathbf{x}) \mapsto k^{2} \int \Phi(\mathbf{x}, \mathbf{y})(1-n(\mathbf{y})) u(\mathbf{y}) d \mathbf{y}$. This operator is compact (if you impose the appropriate norms) and so behaves much like a finite dimensional matrix. If F has operator norm smaller than one, which is the case if $k^{2}(1-n)$ is small enough, then $\mathbb{1}-F$ is trivially invertible and the equation $(\mathbb{1}-F) u=u^{i}$ has a unique solution. Even if F has operator norm larger than or equal to one, $(\mathbb{1}-F) u=u^{i}$ fails to have a unique solution only if F has eigenvalue one. One can show that this is impossible in the present setting. Thus, one can prove

Theorem. If $n \in C^{2}\left(\mathbb{R}^{3}\right), n(\mathbf{x})-1$ has compact support and $\operatorname{Re} n(\mathbf{x}), \operatorname{Im} n(\mathbf{x}) \geq 0$, then (1), (2) has a unique solution.

For large $|\mathbf{x}|, \Phi$ has the asymptotic behaviour

$$
\Phi(\mathbf{x}, \mathbf{y})=\frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|} e^{-i k \hat{\mathbf{x}} \cdot \mathbf{y}}+O\left(\frac{1}{|\mathbf{x}|^{2}}\right)
$$

so that, when the incoming plane wave is moving in direction $\hat{\boldsymbol{\theta}}$,

$$
u(\mathbf{x} ; \hat{\boldsymbol{\theta}})=u^{i}(\mathbf{x} ; \hat{\boldsymbol{\theta}})+\frac{e^{i k|\mathbf{x}|}}{4 \pi|\mathbf{x}|} u_{\infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}})+O\left(\frac{1}{|\mathbf{x}|^{2}}\right)
$$

where

$$
u_{\infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}})=-k^{2} \int e^{-i k \hat{\mathbf{x}} \cdot \mathbf{y}}(1-n(\mathbf{y})) u(\mathbf{y} ; \hat{\boldsymbol{\theta}}) d \mathbf{y}
$$

If we are observing the scattered wave from vantage points far from the obstacle, we will only be able to measure $u_{\infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}})$. The inverse problem then is
Question: Given $u_{\infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}})$, for all $\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}} \in S^{2}$, can we determine n ? The short answer is Answer: Yes, because we have the

Theorem. If $n_{1}, n_{2} \in C^{2}\left(\mathbb{R}^{3}\right)$ with $n_{1}-1, n_{2}-1$ of compact support and $u_{1, \infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}})=$ $u_{2, \infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}})$, for all $\hat{\mathbf{x}}, \hat{\boldsymbol{\theta}} \in S^{2}$, then $n_{1}=n_{2}$.

We can get a rough idea why this Theorem is true by looking at the Born approximation. In this approximation u^{s} is ignored in the computation of u_{∞} so that

$$
\begin{aligned}
u_{\infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}}) & \approx-k^{2} \int e^{-i k \hat{\mathbf{x}} \cdot \mathbf{y}}(1-n(\mathbf{y})) u^{i}(\mathbf{y} ; \hat{\boldsymbol{\theta}}) d \mathbf{y} \\
& =-k^{2} \int e^{-i k(\hat{\mathbf{x}}-\hat{\boldsymbol{\theta}} \cdot \mathbf{y}}(1-n(\mathbf{y})) d \mathbf{y}
\end{aligned}
$$

If we measure $u_{\infty}(\hat{\mathbf{x}} ; \hat{\boldsymbol{\theta}})$, then, in this approximation, we know the Fourier transform of $1-n(\mathbf{y})$ on the set $\left\{k(\hat{\mathbf{x}}-\hat{\boldsymbol{\theta}}) \mid \hat{\mathbf{x}}, \hat{\boldsymbol{\theta}} \in S^{2}\right\}$ which is exactly the closed ball of radius $2 k$ centered on the origin in \mathbb{R}^{3}. Since $1-n(\mathbf{y})$ is of compact support, its Fourier transform is analytic. So knowledge of the Fourier transform on any open ball uniquely determines it.

References

- Andreas Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer, 1996.

