
X–ray Tomography

Suppose that you shine a light beam (or beam of x-rays) down the length of a long

rod. Suppose further that as the light passes through an infinitesmal hunk of rod it loses a

fraction of its intensity that is proportional to the mass of the hunk. If we denote by I(x)

the intensity of the light at x and by ρ(x) the mass density of the rod at x, then

I(x+dx)−I(x)
I(x) = −γ ρ(x) dx

where γ is the (positive) constant of proportionality. Dividing across by dx and taking the

limit as dx→ 0 gives

I′(x)
I(x) = −γρ(x) =⇒ d

dx ln I(x) = −γρ(x)

By integrating, we see that the (natural logarithm of the) fraction of the light intensity that

survives the trip down the rod is

ln I(∞)
I(−∞)

= −γ

∫ ∞

−∞

ρ(x) dx

In x–ray tomography, you shine thin beams through different parts of a body and wish to

recover the density ρ(x) of the body from the various values of
∫

beam path
ρ(x) dx measured.

We now formulate a mathematical statement of this problem. It is no harder to

consider general dimensions, so we do so. Let IPn denote the set of all hyperplanes in IRn.

By definition, all hyperplanes in IRn are (n− 1)–dimensional. A hyperplane may be specified

by giving its direction (say a vector perpendicular to it) and one point on it. Thus each

hyperplane can be written

ξ =
{

x ∈ IRn
∣

∣ ω̂̂ω̂ω · x = p
}

where ω̂̂ω̂ω is a unit vector in IRn and p ∈ IR. Of course, if ω̂̂ω̂ω is normal to a hyperplane, so is

−ω̂̂ω̂ω and indeed

• (ω̂̂ω̂ω, p) and (ω̂̂ω̂ω′, p′) give the same hyperplane if and only if (ω̂̂ω̂ω, p) = ±(ω̂̂ω̂ω′, p′)

• Thus the map (ω̂̂ω̂ω, p) ∈ Sn−1 × IR 7→ ξ is a double cover of IPn and can be used to

define coordinate patchs on IPn, turning it into a manifold.

• Hence a function ϕ on IPn can be identified with a function on Sn−1 × IR obeying

ϕ(ω̂̂ω̂ω, p) = ϕ(−ω̂̂ω̂ω,−p). We shall typically use the same symbol (for example, ϕ) to

denote both the function on IPn and the corresponding function on Sn−1 × IR.
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Definition (Radon) The Radon transform associates to each function f : IRn → IR the

function f̂ : IPn → IR defined by

f̂(ξ) =

∫

ξ

f(x) dm(x)

where dm(x) is the standard Euclidean measure on ξ.

We are not going to worry about what regularity should be required of f(x) and what

regularity the resulting f̂(ξ) has. These details are dealt with in the book by Helgason listed

in the references. We now pose the

Question: Given f̂ , can we determine f? The short answer is

Answer:Yes.

We shall justify this short answer by deriving two separate algorithms for deter-

mining f . Before doing so, note that once we know how to determine f from its integrals

over linear spaces of codimension one, we also know how to determine f from its integrals

over linear spaces of higher codimension. For example, the algorithms with n = 2 allow us

how to recover a function defined on a planar region from its integrals over lines. As any

three dimensional body is a union of planar regions, we can also recover a function on a

three dimensional body from its integrals over lines, just by treating planar slices of the body

individually.

The first algorithm is based on the following Lemma, which shows us how to compute

the conventional Fourier transform f̃ of f from its Radon transform f̂ . Of course, once f̃ is

known, you find f by applying the inverse Fourier transform to f̃ .

Lemma. For all s ∈ IR and ω̂̂ω̂ω ∈ Sn−1.

f̃(sω̂̂ω̂ω) =

∫ ∞

−∞

f̂(ω̂̂ω̂ω, r)e−isr dr

Proof: By definition

f̃(sω̂̂ω̂ω) =

∫

IRn

f(x)e−isω̂̂ω̂ω·xdnx

=

∫ ∞

−∞

dr

∫

x·ω̂̂ω̂ω=r

dm(x) f(x)e−isω̂̂ω̂ω·x

We have just rewritten the integral over IRn as an iterated integral. For, example, if n = 3

and ω̂̂ω̂ω = k̂, then dr = dz and dm(x) = dx dy. Subbing in the definition of f̂ ,

f̃(sω̂̂ω̂ω) =

∫ ∞

−∞

dr e−isr

∫

x·ω̂̂ω̂ω=r

dm(x) f(x)

=

∫ ∞

−∞

e−isrf̂(ω̂̂ω̂ω, r) dr
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In preparation for the second algorithm we define a dual transform.

Definition (Dual) The dual Radon transform associates to each function ϕ : IPn → IR the

function ϕ̌ : IRn → IR defined by

ϕ̌(x) =

∫

x∈ξ

ϕ(ξ) dµ(ξ)

where dµ(ξ) is the unique measure on
{

ξ ∈ IPn
∣

∣ x ∈ ξ
}

which is invariant under rotations

around x and has mass one.

Let’s take a closer look at the measure dµ(ξ). By translating, it suffices to consider

x = 0. Then
{

ξ ∈ IPn
∣

∣ 0 ∈ ξ
}

is just the sphere Sn−1 with antipodal points identified and

a function ψ on
{

ξ ∈ IPn
∣

∣ 0 ∈ ξ
}

is identified with an even function ψ(ω̂̂ω̂ω) on Sn−1. Then,

using Ωn to denote the surface area of a unit sphere in IRn,

∫

0∈ξ

ψ(ξ) dµ(ξ) = 1
Ωn

∫

Sn−1

ψ(ω̂̂ω̂ω) dω̂̂ω̂ω

=

∫

SO(n)

ψ(Rω̂̂ω̂ω0) dR

(∗)

where dω̂̂ω̂ω is the standard Euclidean measure on Sn−1, SO(n) is the group of rotations in IRn,

ω̂̂ω̂ω0 is any fixed unit vector in IRn and dR is Haar measure on SO(n). When n = 2,

• Sn−1 is just the unit circle in IR2 centred on the origin,

• dω̂̂ω̂ω = dθ, where θ is the usual polar angle,

• Ω2 = 2π,

• the elements of SO(2) are matrices of the form

[

cos θ − sin θ
sin θ cos θ

]

with 0 ≤ θ < 2π

and may be labelled by the angle of rotation θ.

• dR = dθ
2π .

To prove that the two right hand sides of (∗) are equal, it suffices to observe that both of

the maps ψ 7→ 1
Ωn

∫

Sn−1 ψ(ω̂̂ω̂ω) dω̂̂ω̂ω and ψ 7→
∫

SO(n)
ψ(Rω̂̂ω̂ω0) dR are rotation invariant, mass

one linear functionals on the space, C(Sn−1), of continuous functions on Sn−1. (To rotate a

function, replace its argument x by R−1x for some R ∈ SO(n).) There exists only one such

linear functional.

Lemma.
(

f̂
)ˇ
= Ωn−1

Ωn

∫

IRn

|x− y|−1f(y) dy
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Proof: Subbing in the definitions of the Radon transform and the dual transform and then

translating and applying the second part of (∗),

(

f̂
)ˇ
(x) =

∫

x∈ξ

f̂(ξ) dµ(ξ)

=

∫

x∈ξ

(

∫

ξ

f(y) dm(y)
)

dµ(ξ)

=

∫

0∈ξ

(

∫

ξ

f(x+ y) dm(y)
)

dµ(ξ)

=

∫

SO(n)

(

∫

ξ0

f(x+Ry) dm(y)
)

dR

where ξ0 is any fixed hyperplane through the origin. Observe that as R runs over SO(n),

x + Ry runs over the surface of the sphere of radius |y| centered on x. The equality of the

two right hand sides of (∗) says that the integral
∫

SO(n)
ψ(Rω̂̂ω̂ω0) dR is just the average value

of ψ over the sphere Sn−1. Hence,

(

f̂
)ˇ
(x) =

∫

ξ0

(

∫

SO(n)

f(x+Ry) dR
)

dm(y)

=

∫

ξ0

(

1
Ωn

∫

Sn−1

f(x+ |y|ω̂̂ω̂ω) dω̂̂ω̂ω
)

dm(y)

Choose ξ0 to be the hyperplane in IRn containing all points whose last coordinate is zero. Call

this IRn−1. Going to spherical coordinates on IRn−1 and observing that
∫

Sn−1 f(x+ |y|ω̂̂ω̂ω) dω̂̂ω̂ω

is a function only of the length of y,

(

f̂
)ˇ
(x) =

∫

IRn−1

(

1
Ωn

∫

Sn−1

f(x+ |y|ω̂̂ω̂ω) dω̂̂ω̂ω
)

dy

=

∫ ∞

0

dr rn−2Ωn−1

(

1
Ωn

∫

Sn−1

f(x+ rω̂̂ω̂ω) dω̂̂ω̂ω
)

= Ωn−1

Ωn

∫ ∞

0

dr

∫

Sn−1

dω̂̂ω̂ω rn−2f(x+ rω̂̂ω̂ω)

This is almost spherical coordinates on IRn. Only the power of r is wrong. So

(

f̂
)ˇ
(x) = Ωn−1

Ωn

∫ ∞

0

dr

∫

Sn−1

dω̂̂ω̂ω rn−1 1
r f(x+ rω̂̂ω̂ω)

= Ωn−1

Ωn

∫

IRn

1
|y|f(x+ y) dy

The change of variables y → y − x does it.
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Lemma. If g(x) =
Ωn−1

Ωn

∫

IRn
|x− y|−1f(y) dy, then

cf =
(

−∆
)

n−1

2 g

where c = (−4π)
n−1

2
Γ(n/2)
Γ(1/2)

.

“Proof”: I have put in quotes because we are not going to find the value of the constant c

and we are also going to ignore the possible divergence of some integrals. On the other hand,

we’ll define what is meant by applying a fractional power of the Laplacian to a function. Note

that this is not a problem when the dimension n is odd. In fact, when n = 3,

(

−∆
)

n−1

2 g = −∆g

That is, applying the Laplacian is, up to a constant, the inverse operation for convolving

with 1
|x| . This should not be a surprise. It is just another way of saying that 1

|x−y| is, up to

a constant, the Green’s function for Laplacian in dimension 3.

Note that the claim “cf(x) =
(

−∆
)

n−1

2 g(x)” is equivalent, by Fourier transforming,

to the claim “cf̃(k) = |k|n−1g̃(k)”. (So, to apply (−∆)α, you Fourier transform, multiply by

|k|2α and Fourier transform back.) So we want to show that the Fourier transform of 1
|x| is

c
|k|n−1

Ωn

Ωn−1

. So we compute

∫

IRn

1
|x|e

−ix·kdnx =

∫

IRn

1
|x|e

−ix1|k|dnx

where x1 is the first coordinate of x. Here we have made a change of variables x → Rx,

where the rotation R is chosen so that Rk is in the direction of the first coordinate axis. Now

making the change of variables x = 1
|k|

y

∫

IRn

1
|x|e

−ix·kdnx = 1
|k|n−1

∫

IRn

1
|y|e

−iy1dny

Since
∫

IRn

1
|y|e

−iy1dny is a constant, we are done, up to evaluation of the constant.
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