Poisson's Equation

In these notes we shall find a formula for the solution of Poisson's equation

$$
\vec{\nabla}^{2} \varphi=4 \pi \rho
$$

Here ρ is a given (smooth) function and φ is the unknown function. In electrostatics, ρ is the charge density and φ is the electric potential. The main step in finding this formula will be to consider an
arbitrary (smooth) function φ and an
arbitrary (smooth) region V in \mathbb{R}^{3} and an
arbitrary point $\overrightarrow{\mathbf{r}}_{0}$ in the interior of V
and to find a formula which expresses $\varphi\left(\overrightarrow{\mathbf{r}}_{0}\right)$ in terms of
$\vec{\nabla}^{2} \varphi(\overrightarrow{\mathbf{r}})$, with $\overrightarrow{\mathbf{r}}$ running over V and
$\vec{\nabla} \varphi(\overrightarrow{\mathbf{r}})$ and $\varphi(\overrightarrow{\mathbf{r}})$, with $\overrightarrow{\mathbf{r}}$ running only over ∂V.
This formula is

$$
\begin{equation*}
\varphi\left(\overrightarrow{\mathbf{r}}_{0}\right)=-\frac{1}{4 \pi}\left\{\iiint_{V} \frac{\vec{\nabla}^{2} \varphi(\overrightarrow{\mathbf{r}})}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} d^{3} \overrightarrow{\mathbf{r}}-\iint_{\partial V} \varphi(\overrightarrow{\mathbf{r}}) \frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|^{3}} \cdot \hat{\mathbf{n}} d S-\iint_{\partial V} \frac{\vec{\nabla} \varphi(\overrightarrow{\mathbf{r}})}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \cdot \hat{\mathbf{n}} d S\right\} \tag{V}
\end{equation*}
$$

When we take the limit as V expands to fill all of \mathbb{R}^{3} (assuming that φ and $\vec{\nabla} \varphi$ go to zero sufficiently quickly at ∞), we will end up with the formula

$$
\varphi\left(\overrightarrow{\mathbf{r}}_{0}\right)=-\frac{1}{4 \pi} \iiint_{V} \frac{\vec{\nabla}^{2} \varphi(\overrightarrow{\mathbf{r}})}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} d^{3} \overrightarrow{\mathbf{r}}
$$

that expresses φ evaluated at an arbitrary point, $\overrightarrow{\mathbf{r}}_{0}$, of \mathbb{R}^{3} in terms of $\vec{\nabla}^{2} \varphi(\overrightarrow{\mathbf{r}})$, with $\overrightarrow{\mathbf{r}}$ running over \mathbb{R}^{3}, which is exactly what we want.

Let

$$
\begin{aligned}
\overrightarrow{\mathbf{r}} & =x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+z \hat{\mathbf{k}} \\
\overrightarrow{\mathbf{r}}_{0} & =x_{0} \hat{\boldsymbol{\imath}}+y_{0} \hat{\boldsymbol{\jmath}}+z_{0} \hat{\mathbf{k}}
\end{aligned}
$$

We shall exploit several properties of the function $\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}$. The first two properties are

$$
\begin{aligned}
\vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} & =-\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|^{3}} \\
\vec{\nabla}^{2} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}= & =-\vec{\nabla} \cdot \frac{\overrightarrow{\vec{r}}-\overrightarrow{\mathbf{r}}_{0}}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|^{3}}=0
\end{aligned}
$$

and are valid for all $\overrightarrow{\mathbf{r}} \neq \overrightarrow{\mathbf{r}}_{0}$. Verifying these properties are simple two line computations. The other property of $\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}$ that we shall use is the following. Let B_{ε} be the sphere of radius ε centered on $\overrightarrow{\mathbf{r}}_{0}$. Then, for any continuous function $\psi(\overrightarrow{\mathbf{r}})$,

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}} \frac{\psi(\overrightarrow{\mathbf{r}})}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|^{p}} d S & =\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}} \frac{\psi\left(\overrightarrow{\mathbf{r}}_{0}\right)}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|^{p}} d S=\lim _{\varepsilon \rightarrow 0+} \frac{\psi\left(\overrightarrow{\mathbf{r}}_{0}\right)}{\varepsilon^{p}} \iint_{B_{\varepsilon}} d S=\lim _{\varepsilon \rightarrow 0+} \frac{\psi\left(\overrightarrow{\mathbf{r}}_{0}\right)}{\varepsilon^{p}} 4 \pi \varepsilon^{2} \\
& = \begin{cases}4 \pi \psi\left(\overrightarrow{\mathbf{r}}_{0}\right) & \text { if } p=2 \\
0 & \text { if } p<2\end{cases} \tag{B}
\end{align*}
$$

Here is the derivation of (V). Let V_{ε} be the part of V outside of B_{ε}. Note that the boundary ∂V_{ε} of V_{ε} consists of two parts - the boundary ∂V of V and the sphere B_{ε} - and that the unit outward normal to ∂V_{ε} on B_{ε} is $-\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}$. By the divergence theorem

$$
\begin{align*}
\iiint_{V_{\varepsilon}} \vec{\nabla} \cdot\left(\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla} \varphi-\varphi \vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) d V= & \iint_{\partial V}\left(\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla} \varphi-\varphi \vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) \cdot \hat{\mathbf{n}} d S \\
& +\iint_{B_{\varepsilon}}\left(\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla} \varphi-\varphi \vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) \cdot\left(-\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) d S \tag{M}
\end{align*}
$$

Subbing in $\vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}=-\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}}{\| \overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}} \overrightarrow{\mathrm{F}}^{3} \|^{3}$ and applying (B)

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}}\left(\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla} \varphi-\varphi \vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) \cdot\left(-\frac{\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) d S & =-\lim _{\varepsilon \rightarrow 0+} \iint_{B_{\varepsilon}}\left(\vec{\nabla} \varphi \cdot\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right)+\varphi\right) \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|^{2}} d S \\
& =-4 \pi\left[\vec{\nabla} \varphi \cdot\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right)+\varphi\right]_{\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{0}} \\
& =-4 \pi \varphi\left(\overrightarrow{\mathbf{r}}_{0}\right) \tag{R}
\end{align*}
$$

Applying $\vec{\nabla} \cdot(f \overrightarrow{\mathbf{F}})=\vec{\nabla} f \cdot \overrightarrow{\mathbf{F}}+f \vec{\nabla} \cdot \overrightarrow{\mathbf{F}}$, twice, we see that the integrand of the left hand side is

$$
\begin{align*}
\vec{\nabla} \cdot\left(\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla} \varphi-\varphi \vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) & =\vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \cdot \vec{\nabla} \varphi+\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla}^{2} \varphi-\vec{\nabla} \varphi \cdot \vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}-\varphi \vec{\nabla}^{2} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \\
& =\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla}^{2} \varphi \tag{L}
\end{align*}
$$

since $\vec{\nabla}^{2} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}=0$ on V_{ε}. So applying $\lim _{\varepsilon \rightarrow 0+}$ to (M) and applying (L) and (R) gives

$$
\iiint_{V} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla}^{2} \varphi d V=\iint_{\partial V}\left(\frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|} \vec{\nabla} \varphi-\varphi \vec{\nabla} \frac{1}{\left\|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{0}\right\|}\right) \cdot \hat{\mathbf{n}} d S-4 \pi \varphi\left(\overrightarrow{\mathbf{r}}_{0}\right)
$$

which is exactly equation (V).

