Easy Perturbation Theory

Let $M(\varepsilon)$ be a one parameter family of matrices that depends smoothly on the parameter ε. That is, each matrix element of $M(\varepsilon)$ is a C^{∞} function of ε. Suppose that it is known that the unit vector \mathbf{v}_{0} is an eigenvector of $M(0)$ of eigenvalue λ_{0} and that it is also known that the eigenvalue λ_{0} is simple. Then $\operatorname{det}(M(0)-\lambda \mathbb{1})$ has a simple zero at $\lambda=\lambda_{0}$. Since zeroes of polynomials depend continuously on the coefficients of the polynomials, there is a neighbourhood \mathcal{O} of λ_{0} such that $\operatorname{det}(M(\varepsilon)-\lambda \mathbb{1})$ has exactly one zero in \mathcal{O} for each sufficiently small ε. Hence, for each sufficiently small $\varepsilon, M(\varepsilon)$ has exactly one eigenvalue, $\lambda(\varepsilon)$, in \mathcal{O}. Of course the corresponding eigenvector, $\mathbf{v}(\varepsilon)$, is only determined up to a multiplicative constant, but we can select a unique eigenvector by requiring that, for example, the dot product $\left(\mathbf{v}(\varepsilon), \mathbf{v}_{0}\right)=1$. Thus

$$
[M(\varepsilon)-\lambda(\varepsilon) \mathbb{1}] \mathbf{v}(\varepsilon)=\mathbf{0} \quad\left(\mathbf{v}(\varepsilon), \mathbf{v}_{0}\right)=1
$$

Differentiating with respect to ε gives

$$
\left[M^{\prime}(\varepsilon)-\lambda^{\prime}(\varepsilon) \mathbb{1}\right] \mathbf{v}(\varepsilon)+[M(\varepsilon)-\lambda(\varepsilon) \mathbb{1}] \mathbf{v}^{\prime}(\varepsilon)=\mathbf{0} \quad\left(\mathbf{v}^{\prime}(\varepsilon), \mathbf{v}_{0}\right)=0
$$

or

$$
M^{\prime}(\varepsilon) \mathbf{v}(\varepsilon)+M(\varepsilon) \mathbf{v}^{\prime}(\varepsilon)=\lambda^{\prime}(\varepsilon) \mathbf{v}(\varepsilon)+\lambda(\varepsilon) \mathbf{v}^{\prime}(\varepsilon)
$$

Taking the inner product with \mathbf{v}_{0}, and exchanging the left and right hand sides of the equation,

$$
\lambda^{\prime}(\varepsilon)=\left(M^{\prime}(\varepsilon) \mathbf{v}(\varepsilon)+M(\varepsilon) \mathbf{v}^{\prime}(\varepsilon), \mathbf{v}_{0}\right)
$$

To simplify the coming computations, let's also assume that the matrix $M(0)$ is selfadjoint. That is $(M(0) \mathbf{v}, \mathbf{w})=(\mathbf{v}, M(0) \mathbf{w})$ for all vectors \mathbf{v} and \mathbf{w}. Then, since $M(0)-\lambda_{0} \mathbb{1}$ maps the line $L=\left\{\alpha \mathbf{v}_{0}\right\}$ to zero (which is in the line), $M(0)-\lambda_{0} \mathbb{1}$ maps the orthogonal complement of the line, $L^{\perp}=\left\{\mathbf{v} \mid \mathbf{v} \perp \mathbf{v}_{0}\right\}$, to itself. Since λ_{0} is a simple eigenvalue of $M(0)$, the dimension of the kernel of $M(0)-\lambda_{0} \mathbb{1}$ is exactly one and so the restriction of $M(0)-\lambda_{0} \mathbb{1}$ to L^{\perp} must be one-to-one and hence invertible. Let, with abuse of notation, $\left[M(0)-\lambda_{0} \mathbb{1}\right]^{-1}$ denote the matrix whose restriction to L is zero and whose restriction to L^{\perp} is the inverse of the restriction to L^{\perp} of $M(0)-\lambda_{0} \mathbb{1}$. That is, $\left[M(0)-\lambda_{0} \mathbb{1}\right]^{-1} \mathbf{v}_{0}=\mathbf{0}$ and if $\mathbf{v} \perp \mathbf{v}_{0}$, then $\left[M(0)-\lambda_{0} \mathbb{1}\right]^{-1} \mathbf{v}$ is the unique $\mathbf{w} \in L^{\perp}$ obeying $\left[M(0)-\lambda_{0} \mathbb{1}\right] \mathbf{w}=\mathbf{v}$. The matrix $\left[M(0)-\lambda_{0} \mathbb{1}\right]^{-1}$ may be constructed as follows. Let $M(0)-\lambda_{0} \mathbb{1}=U D U^{-1}$ be a diagonalization of $M(0)-\lambda_{0} \mathbb{1}$. Thus D is a diagonal matrix with diagonal entries being the eigenvalues of $M(0)-\lambda_{0} \mathbb{1}$. Exactly one of these diagonal entries is zero. Let D^{\prime} be the diagonal
matrix with each diagonal entry being the inverse of the corresponding diagonal entry of D, except that the zero diagonal entry of D is left as is. Then $\left[M(0)-\lambda_{0} \mathbb{1}\right]^{-1}=U D^{\prime} U^{-1}$.

Now, setting $\varepsilon=0$ in $\left(2_{\varepsilon}\right)$ and using

$$
\left(M(0) \mathbf{v}^{\prime}(0), \mathbf{v}_{0}\right)=\left(\mathbf{v}^{\prime}(0), M(0) \mathbf{v}_{0}\right)=\left(\mathbf{v}^{\prime}(0), \lambda_{0} \mathbf{v}_{0}\right)=\lambda_{0}\left(\mathbf{v}^{\prime}(0), \mathbf{v}_{0}\right)=0
$$

gives

$$
\begin{equation*}
\lambda^{\prime}(0)=\left(M^{\prime}(0) \mathbf{v}_{0}, \mathbf{v}_{0}\right) \tag{0}
\end{equation*}
$$

Setting $\varepsilon=0$ in $\left(1_{\varepsilon}\right)$ and subbing back in $\left(2_{0}\right)$ gives

$$
[M(0)-\lambda(0) \mathbb{1}] \mathbf{v}^{\prime}(0)=-M^{\prime}(0) \mathbf{v}_{0}+\lambda^{\prime}(0) \mathbf{v}_{0}=-M^{\prime}(0) \mathbf{v}_{0}+\left(M^{\prime}(0) \mathbf{v}_{0}, \mathbf{v}_{0}\right) \mathbf{v}_{0}
$$

The right hand side is exactly the projection of $-M^{\prime}(0) \mathbf{v}_{0}$ on L^{\perp} and, in particular, is in L^{\perp}. Since $\left(\mathbf{v}^{\prime}(0), \mathbf{v}_{0}\right)=0, \mathbf{v}^{\prime}(0)$ is itself in L^{\perp} and

$$
\mathbf{v}^{\prime}(0)=-[M(0)-\lambda(0) \mathbb{1}]^{-1}\left[M^{\prime}(0) \mathbf{v}_{0}+\left(M^{\prime}(0) \mathbf{v}_{0}, \mathbf{v}_{0}\right) \mathbf{v}_{0}\right]=-[M(0)-\lambda(0) \mathbb{1}]^{-1} M^{\prime}(0) \mathbf{v}_{0} \quad\left(1_{0}\right)
$$

Recall that, by definition, $[M(0)-\lambda(0) \mathbb{1}]^{-1} \mathbf{v}_{0}=0$. We now know $\lambda^{\prime}(0)$ and $\mathbf{v}^{\prime}(0)$.
Differentiating $\left(2_{\varepsilon}\right)$ with respect to ε gives

$$
\lambda^{\prime \prime}(\varepsilon)=\left(M^{\prime \prime}(\varepsilon) \mathbf{v}(\varepsilon)+2 M^{\prime}(\varepsilon) \mathbf{v}^{\prime}(\varepsilon)+M(\varepsilon) \mathbf{v}^{\prime \prime}(\varepsilon), \mathbf{v}_{0}\right)
$$

Setting $\varepsilon=0$ and using

$$
\left(M(0) \mathbf{v}^{\prime \prime}(0), \mathbf{v}_{0}\right)=\left(\mathbf{v}^{\prime \prime}(0), M(0) \mathbf{v}_{0}\right)=\left(\mathbf{v}^{\prime \prime}(0), \lambda_{0} \mathbf{v}_{0}\right)=\lambda_{0}\left(\mathbf{v}^{\prime \prime}(0), \mathbf{v}_{0}\right)=0
$$

(the derivative of $\left(1_{\varepsilon}\right)$ includes $\left.\left(\mathbf{v}^{\prime \prime}(\varepsilon), \mathbf{v}_{0}\right)=0\right)$ and $\left(1_{0}\right)$ gives

$$
\begin{aligned}
\lambda^{\prime \prime}(0) & =\left(M^{\prime \prime}(0) \mathbf{v}_{0}+2 M^{\prime}(0) \mathbf{v}^{\prime}(0), \mathbf{v}_{0}\right) \\
& =\left(M^{\prime \prime}(0) \mathbf{v}_{0}, \mathbf{v}_{0}\right)-2\left(M^{\prime}(0)[M(0)-\lambda(0) \mathbb{1}]^{-1} M^{\prime}(0) \mathbf{v}_{0}, \mathbf{v}_{0}\right)
\end{aligned}
$$

Continuing in this way, one can compute all derivatives, $\lambda^{(n)}(0)$ and $\mathbf{v}^{(n)}(0)$, of $\lambda(\varepsilon)$ amd $\mathbf{v}(\varepsilon)$ at $\varepsilon=0$. If $M(\varepsilon)$ is analytic in ε at $\varepsilon=0$, the same is true for $\lambda(\varepsilon)$ and $\mathbf{v}(\varepsilon)$ and the computed derivatives determine them.

