
Easy Perturbation Theory

Let M(ε) be a one parameter family of matrices that depends smoothly on the

parameter ε. That is, each matrix element of M(ε) is a C∞ function of ε. Suppose that it is

known that the unit vector v0 is an eigenvector of M(0) of eigenvalue λ0 and that it is also

known that the eigenvalue λ0 is simple. Then det
(

M(0)− λ1l
)

has a simple zero at λ = λ0.

Since zeroes of polynomials depend continuously on the coefficients of the polynomials, there

is a neighbourhood O of λ0 such that det
(

M(ε) − λ1l
)

has exactly one zero in O for each

sufficiently small ε. Hence, for each sufficiently small ε, M(ε) has exactly one eigenvalue, λ(ε),

in O. Of course the corresponding eigenvector, v(ε), is only determined up to a multiplicative

constant, but we can select a unique eigenvector by requiring that, for example, the dot

product
(

v(ε),v0

)

= 1. Thus

[

M(ε)− λ(ε)1l
]

v(ε) = 0
(

v(ε),v0

)

= 1

Differentiating with respect to ε gives

[

M ′(ε)− λ′(ε)1l
]

v(ε) +
[

M(ε)− λ(ε)1l
]

v′(ε) = 0
(

v′(ε),v0

)

= 0 (1ε)

or

M ′(ε)v(ε) +M(ε)v′(ε) = λ′(ε)v(ε) + λ(ε)v′(ε)

Taking the inner product with v0, and exchanging the left and right hand sides of the equation,

λ′(ε) =
(

M ′(ε)v(ε) +M(ε)v′(ε),v0

)

(2ε)

To simplify the coming computations, let’s also assume that the matrix M(0) is self–

adjoint. That is (M(0)v,w) = (v,M(0)w) for all vectors v and w. Then, since M(0)− λ01l

maps the line L =
{

αv0

}

to zero (which is in the line), M(0) − λ01l maps the orthogonal

complement of the line, L⊥ =
{

v
∣

∣ v ⊥ v0

}

, to itself. Since λ0 is a simple eigenvalue

of M(0), the dimension of the kernel of M(0) − λ01l is exactly one and so the restriction of

M(0) − λ01l to L⊥ must be one–to–one and hence invertible. Let, with abuse of notation,
[

M(0) − λ01l
]−1

denote the matrix whose restriction to L is zero and whose restriction to

L⊥ is the inverse of the restriction to L⊥ of M(0) − λ01l. That is,
[

M(0) − λ01l
]−1

v0 = 0

and if v ⊥ v0, then
[

M(0) − λ01l
]−1

v is the unique w ∈ L⊥ obeying
[

M(0) − λ01l
]

w = v.

The matrix
[

M(0)− λ01l
]−1

may be constructed as follows. Let M(0)− λ01l = UDU−1 be a

diagonalization of M(0)− λ01l. Thus D is a diagonal matrix with diagonal entries being the

eigenvalues ofM(0)−λ01l. Exactly one of these diagonal entries is zero. LetD′ be the diagonal

c© Joel Feldman. 2002. All rights reserved. 1



matrix with each diagonal entry being the inverse of the corresponding diagonal entry of D,

except that the zero diagonal entry of D is left as is. Then
[

M(0)− λ01l
]−1

= UD′U−1.

Now, setting ε = 0 in (2ε) and using

(

M(0)v′(0),v0

)

=
(

v′(0),M(0)v0

)

=
(

v′(0), λ0v0

)

= λ0

(

v′(0),v0

)

= 0

gives

λ′(0) =
(

M ′(0)v0,v0

)

(20)

Setting ε = 0 in (1ε) and subbing back in (20) gives

[

M(0)− λ(0)1l
]

v′(0) = −M ′(0)v0 + λ′(0)v0 = −M ′(0)v0 +
(

M ′(0)v0,v0

)

v0

The right hand side is exactly the projection of −M ′(0)v0 on L⊥ and, in particular, is in L⊥.

Since
(

v′(0),v0

)

= 0, v′(0) is itself in L⊥ and

v′(0) = −
[

M(0)−λ(0)1l
]−1[

M ′(0)v0+
(

M ′(0)v0,v0

)

v0

]

= −
[

M(0)−λ(0)1l
]−1

M ′(0)v0 (10)

Recall that, by definition,
[

M(0)− λ(0)1l
]−1

v0 = 0. We now know λ′(0) and v′(0).

Differentiating (2ε) with respect to ε gives

λ′′(ε) =
(

M ′′(ε)v(ε) + 2M ′(ε)v′(ε) +M(ε)v′′(ε),v0

)

Setting ε = 0 and using

(

M(0)v′′(0),v0

)

=
(

v′′(0),M(0)v0

)

=
(

v′′(0), λ0v0

)

= λ0

(

v′′(0),v0

)

= 0

(the derivative of (1ε) includes
(

v′′(ε),v0

)

= 0) and (10) gives

λ′′(0) =
(

M ′′(0)v0 + 2M ′(0)v′(0),v0

)

=
(

M ′′(0)v0,v0

)

− 2
(

M ′(0)
[

M(0)− λ(0)1l
]−1

M ′(0)v0,v0

)

Continuing in this way, one can compute all derivatives, λ(n)(0) and v(n)(0), of λ(ε) amd

v(ε) at ε = 0. If M(ε) is analytic in ε at ε = 0, the same is true for λ(ε) and v(ε) and the

computed derivatives determine them.
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