
Dirichlet to Neumann Problems

Consider a wire 0 ≤ x ≤ ℓ with voltage u(x) at x. By Ohm’s law

u(x+ dx)− u(x) = −Iρ(x)dx

where I is the current flowing through the wire and ρ(x)dx is the resistance between x and

x+dx. The resistance density ρ(x) is called the resistivity. Dividing across by dx and taking

the limit dx → 0

u′(x) = −Iρ(x)

Assuming that charge is not allowed to accumulate inside the wire, I is a consant and we may

eliminate it from the equation just by dividing ρ(x) across and differentiating. If γ(x) = 1
ρ(x)

is the conductivity

γ(x)u′(x) = −I =⇒
(

γ(x)u′(x)
)′

= 0 (∗)

Now suppose that we may only measure the voltages and currents at the ends of the wire.

That is, we may only measure u(0), u(ℓ), γ(0)u′(0) and γ(ℓ)u′(ℓ). By (∗), γ(x)u′(x) is a

constant and so takes the value γ(0)u′(0) everywhere. Thus

u′(x) = γ(0)u′(0) 1
γ(x) =⇒ u(ℓ)− u(0) = γ(0)u′(0)

∫ ℓ

0

dx
γ(x)

The only property of the wire that you can determine by measurements at the ends of the

wire is the total resistance
∫ ℓ

0
dx
γ(x) .

In IRn, n ≥ 2, the current i(x) is a vector and Ohm’s Law is

i(x) = −γ(x)∇∇∇u(x)

Assuming that charge is not allowed to accumulate, the net rate of charge flow across the

boundary ∂V of any region V must vanish, so that

∫

∂V

i(x) · n̂dS = 0

By the divergence theorem

∇∇∇ · i(x) = 0 =⇒ ∇∇∇ ·
(

γ(x)∇∇∇u(x)
)

= 0

Suppose now that we have a conductor filling a region Ω and that we apply a voltage f

on the boundary ∂Ω of Ω and measure the current that then flows out of the region. By

measuring the current exiting various parts of ∂Ω, we are measuring the current flux on ∂Ω,
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which determines γ(x)∂u
∂ν

(x) on ∂Ω, where ∂u
∂ν

is the normal derivative. For a given γ and f ,

the boundary value problem

∇∇∇ ·
(

γ(x)∇∇∇u(x)
)

= 0 in Ω u = f on ∂Ω

determines u on Ω and hence k(x) = γ(x)∂u
∂ν

(x) ↾ ∂Ω. Let Λγ(f) be the k that results from

a given γ and f . Clearly Λγ(f) depends linearly on f . The map

Λγ : C∞(∂Ω) → C∞(∂Ω)

is called the Dirichlet to Neumann Map. Because Λγ is a linear map on C∞(∂Ω), it has a

distributional kernel

Λγ(f) =

∫

∂Ω

λγ(x, y)f(y) dS(y)

where dS is the surface measure on ∂Ω. If we measure the current k that results from all

applied surface voltages f , we know λγ(x,y) for all x,y ∈ ∂Ω. This is a function of 2(n− 1)

variables. The conductivity γ(x) is a function of n variables. So for n = 1, γ(x) is a function

of more variables than λγ(x,y). We have already seen that, for n = 1, λγ(x,y) cannot

possibly determine γ(x). For n = 2 (n > 2), γ(x) is a function of the same number of

variables as (fewer variables than) λγ(x,y).

In general, γ(x) is a positive definite, symmetric, n × n matrix. If γ(x) is scalar

(that is, a multiple of the identity matrix), the medium is called isotropic. Otherwise it is

called anisotropic. In Uhlmann’s notes, it is proven that, for n ≥ 2, Λγ does indeed determine

an isotropic conductivity. However, it cannot possibly determine anistropic conductivities for

the following obvious reason. Let Ψ : Ω̄ → Ω̄ be a diffeomorphism with Ψ ↾ ∂Ω being the

identity map. Given any u, γ, set

γ̃ = 1
| det(DΨ)| (DΨ)γ(DΨ)t ◦Ψ−1 ũ = u ◦Ψ−1

where DΨ is the Jacobian (matrix of first partial derivatives) of Ψ. Then

∇∇∇ ·
(

γ(x)∇∇∇u(x)
)

= 0 in Ω u = f on ∂Ω =⇒ ∇∇∇ ·
(

γ̃(x)∇∇∇ũ(x)
)

= 0 in Ω ũ = f on ∂Ω

Thus Λγ = Λγ̃ . In Uhlmann’s notes, it is proven that, for n = 2, Λγ determines anisotropic

conductivities up to diffeomorphisms like this. He conjectures that this is also true for n > 2.

Example. Here is a carefully rigged example in which an isotropic conductivity is computed

from a Dirichlet to Neumann map. The region Ω = [0, 1]2 is square. We assume that we

know
(1) ∇∇∇ ·

(

γ(x1)∇∇∇u(x)
)

= 0 in Ω

(2) u(0, x2) = u(1, x2) = sinπx2 for all 0 ≤ x2 ≤ 1

(3) u(x1, 0) = u(x1, 1) = 0 for all 0 ≤ x1 ≤ 1
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Note that we are assuming that the conductivity is isotropic and also is a function of x1

only. Motivated by (1) and (2), we look for a solution of the form u(x1, x2) = a(x1) sin(πx2).

Condition (3) is satisfied for all a(x1). Condition (2) is satisfied if and only if a(0) = a(1) = 1.

Condition (1) is satisfied if and only if

0 =∇∇∇ ·
(

γ(x1)a
′(x1) sinπx2, γ(x1)a(x1)π cosπx2

)

= sinπx2

[(

γ(x1)a
′(x1)

)′
− π2γ(x1)a(x1)

]

which is the case if and only if

(4)
(

γ(x1)a
′(x1)

)′
− π2γ(x1)a(x1) = 0 for all 0 ≤ x1 ≤ 1

We imagine that we have measured

k(x1) = γ(x1)
∂u
∂x2

∣

∣

x2=0
= γ(x1)πa(x1) cosπx2

∣

∣

x2=0
= πγ(x1)a(x1)

and that we wish to determine γ(x1). We can do so by subbing γ(x1) =
k(x1)
πa(x1)

into (4) and

solving for a.

(

k(x1)
a′(x1)
a(x1

)′
= π2k(x1) =⇒ d

dx1

[

k(x1)
d
dx1

ln a(x1)
]

= π2k(x1)

=⇒ k(x1)
d
dx1

ln a(x1) = π2

∫ x1

0

k(t) dt− π2C

=⇒ ln a(x1) = π2

∫ x1

0

1
k(s)

[

∫ s

0

k(t) dt− C
]

ds+D

To satisfy the boundary condition a(0) = 1, we need D = 0 and to satisfy a(1) = 1, we need

C =

[
∫ 1

0

ds
k(s)

]−1[ ∫ 1

0

ds
k(s)

∫ s

0

k(t) dt

]

This determines(1) a and hence γ = k
πa

.
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(1) If you are worried about dividing by k in the integrals, you shouldn’t be. We know that 0 ≤ u ≤ 1
on ∂Ω. By the maximum principle, this implies that 0 < u < 1 in the interior of Ω. This in turn
forces ∂u

∂x2

≥ 0 when x2 = 0. In fact, by the strong maximum principle, ∂u

∂x2

> 0 for x2 = 0, which

ensures that k(x1) > 0 for all 0 ≤ x1 ≤ 1.
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