Dirichlet to Neumann Problems

Consider a wire $0 \leq x \leq \ell$ with voltage $u(x)$ at x. By Ohm's law

$$
u(x+d x)-u(x)=-I \rho(x) d x
$$

where I is the current flowing through the wire and $\rho(x) d x$ is the resistance between x and $x+d x$. The resistance density $\rho(x)$ is called the resistivity. Dividing across by $d x$ and taking the limit $d x \rightarrow 0$

$$
u^{\prime}(x)=-I \rho(x)
$$

Assuming that charge is not allowed to accumulate inside the wire, I is a consant and we may eliminate it from the equation just by dividing $\rho(x)$ across and differentiating. If $\gamma(x)=\frac{1}{\rho(x)}$ is the conductivity

$$
\begin{equation*}
\gamma(x) u^{\prime}(x)=-I \quad \Longrightarrow \quad\left(\gamma(x) u^{\prime}(x)\right)^{\prime}=0 \tag{*}
\end{equation*}
$$

Now suppose that we may only measure the voltages and currents at the ends of the wire. That is, we may only measure $u(0), u(\ell), \gamma(0) u^{\prime}(0)$ and $\gamma(\ell) u^{\prime}(\ell)$. By $(*), \gamma(x) u^{\prime}(x)$ is a constant and so takes the value $\gamma(0) u^{\prime}(0)$ everywhere. Thus

$$
u^{\prime}(x)=\gamma(0) u^{\prime}(0) \frac{1}{\gamma(x)} \quad \Longrightarrow \quad u(\ell)-u(0)=\gamma(0) u^{\prime}(0) \int_{0}^{\ell} \frac{d x}{\gamma(x)}
$$

The only property of the wire that you can determine by measurements at the ends of the wire is the total resistance $\int_{0}^{\ell} \frac{d x}{\gamma(x)}$.

In $\mathbb{R}^{n}, n \geq 2$, the current $\mathbf{i}(\mathbf{x})$ is a vector and Ohm's Law is

$$
\mathbf{i}(\mathbf{x})=-\gamma(\mathbf{x}) \nabla u(\mathbf{x})
$$

Assuming that charge is not allowed to accumulate, the net rate of charge flow across the boundary ∂V of any region V must vanish, so that

$$
\int_{\partial V} \mathbf{i}(\mathbf{x}) \cdot \hat{\mathbf{n}} d S=0
$$

By the divergence theorem

$$
\nabla \cdot \mathbf{i}(\mathbf{x})=0 \quad \Longrightarrow \quad \nabla \cdot(\gamma(\mathbf{x}) \nabla u(\mathbf{x}))=0
$$

Suppose now that we have a conductor filling a region Ω and that we apply a voltage f on the boundary $\partial \Omega$ of Ω and measure the current that then flows out of the region. By measuring the current exiting various parts of $\partial \Omega$, we are measuring the current flux on $\partial \Omega$,
which determines $\gamma(\mathbf{x}) \frac{\partial u}{\partial \nu}(\mathbf{x})$ on $\partial \Omega$, where $\frac{\partial u}{\partial \nu}$ is the normal derivative. For a given γ and f, the boundary value problem

$$
\nabla \cdot(\gamma(\mathbf{x}) \nabla u(\mathbf{x}))=0 \text { in } \Omega \quad u=f \text { on } \partial \Omega
$$

determines u on Ω and hence $k(\mathbf{x})=\gamma(\mathbf{x}) \frac{\partial u}{\partial \nu}(\mathbf{x}) \upharpoonright \partial \Omega$. Let $\Lambda_{\gamma}(f)$ be the k that results from a given γ and f. Clearly $\Lambda_{\gamma}(f)$ depends linearly on f. The map

$$
\Lambda_{\gamma}: C^{\infty}(\partial \Omega) \rightarrow C^{\infty}(\partial \Omega)
$$

is called the Dirichlet to Neumann Map. Because Λ_{γ} is a linear map on $C^{\infty}(\partial \Omega)$, it has a distributional kernel

$$
\Lambda_{\gamma}(f)=\int_{\partial \Omega} \lambda_{\gamma}(x, y) f(y) d S(y)
$$

where $d S$ is the surface measure on $\partial \Omega$. If we measure the current k that results from all applied surface voltages f, we know $\lambda_{\gamma}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \partial \Omega$. This is a function of $2(n-1)$ variables. The conductivity $\gamma(\mathbf{x})$ is a function of n variables. So for $n=1, \gamma(\mathbf{x})$ is a function of more variables than $\lambda_{\gamma}(\mathbf{x}, \mathbf{y})$. We have already seen that, for $n=1, \lambda_{\gamma}(\mathbf{x}, \mathbf{y})$ cannot possibly determine $\gamma(\mathbf{x})$. For $n=2(n>2), \gamma(\mathbf{x})$ is a function of the same number of variables as (fewer variables than) $\lambda_{\gamma}(\mathbf{x}, \mathbf{y})$.

In general, $\gamma(\mathbf{x})$ is a positive definite, symmetric, $n \times n$ matrix. If $\gamma(\mathbf{x})$ is scalar (that is, a multiple of the identity matrix), the medium is called isotropic. Otherwise it is called anisotropic. In Uhlmann's notes, it is proven that, for $n \geq 2, \Lambda_{\gamma}$ does indeed determine an isotropic conductivity. However, it cannot possibly determine anistropic conductivities for the following obvious reason. Let $\Psi: \bar{\Omega} \rightarrow \bar{\Omega}$ be a diffeomorphism with $\Psi \upharpoonright \partial \Omega$ being the identity map. Given any u, γ, set

$$
\tilde{\gamma}=\frac{1}{|\operatorname{det}(D \Psi)|}(D \Psi) \gamma(D \Psi)^{t} \circ \Psi^{-1} \quad \tilde{u}=u \circ \Psi^{-1}
$$

where $D \Psi$ is the Jacobian (matrix of first partial derivatives) of Ψ. Then

$$
\nabla \cdot(\gamma(\mathbf{x}) \nabla u(\mathbf{x}))=0 \text { in } \Omega \quad u=f \text { on } \partial \Omega \quad \Longrightarrow \quad \nabla \cdot(\tilde{\gamma}(\mathbf{x}) \nabla \tilde{u}(\mathbf{x}))=0 \text { in } \Omega \quad \tilde{u}=f \text { on } \partial \Omega
$$

Thus $\Lambda_{\gamma}=\Lambda_{\tilde{\gamma}}$. In Uhlmann's notes, it is proven that, for $n=2, \Lambda_{\gamma}$ determines anisotropic conductivities up to diffeomorphisms like this. He conjectures that this is also true for $n>2$.

Example. Here is a carefully rigged example in which an isotropic conductivity is computed from a Dirichlet to Neumann map. The region $\Omega=[0,1]^{2}$ is square. We assume that we know
(1) $\nabla \cdot\left(\gamma\left(x_{1}\right) \nabla u(\mathbf{x})\right)=0 \quad$ in Ω
(2) $u\left(0, x_{2}\right)=u\left(1, x_{2}\right)=\sin \pi x_{2} \quad$ for all $0 \leq x_{2} \leq 1$
(3) $u\left(x_{1}, 0\right)=u\left(x_{1}, 1\right)=0 \quad$ for all $0 \leq x_{1} \leq 1$

Note that we are assuming that the conductivity is isotropic and also is a function of x_{1} only. Motivated by (1) and (2), we look for a solution of the form $u\left(x_{1}, x_{2}\right)=a\left(x_{1}\right) \sin \left(\pi x_{2}\right)$. Condition (3) is satisfied for all $a\left(x_{1}\right)$. Condition (2) is satisfied if and only if $a(0)=a(1)=1$. Condition (1) is satisfied if and only if

$$
\begin{aligned}
0 & =\nabla \cdot\left(\gamma\left(x_{1}\right) a^{\prime}\left(x_{1}\right) \sin \pi x_{2}, \gamma\left(x_{1}\right) a\left(x_{1}\right) \pi \cos \pi x_{2}\right) \\
& =\sin \pi x_{2}\left[\left(\gamma\left(x_{1}\right) a^{\prime}\left(x_{1}\right)\right)^{\prime}-\pi^{2} \gamma\left(x_{1}\right) a\left(x_{1}\right)\right]
\end{aligned}
$$

which is the case if and only if

$$
\begin{equation*}
\left(\gamma\left(x_{1}\right) a^{\prime}\left(x_{1}\right)\right)^{\prime}-\pi^{2} \gamma\left(x_{1}\right) a\left(x_{1}\right)=0 \quad \text { for all } 0 \leq x_{1} \leq 1 \tag{4}
\end{equation*}
$$

We imagine that we have measured

$$
k\left(x_{1}\right)=\left.\gamma\left(x_{1}\right) \frac{\partial u}{\partial x_{2}}\right|_{x_{2}=0}=\left.\gamma\left(x_{1}\right) \pi a\left(x_{1}\right) \cos \pi x_{2}\right|_{x_{2}=0}=\pi \gamma\left(x_{1}\right) a\left(x_{1}\right)
$$

and that we wish to determine $\gamma\left(x_{1}\right)$. We can do so by subbing $\gamma\left(x_{1}\right)=\frac{k\left(x_{1}\right)}{\pi a\left(x_{1}\right)}$ into (4) and solving for a.

$$
\begin{aligned}
\left(k\left(x_{1}\right) \frac{a^{\prime}\left(x_{1}\right)}{a\left(x_{1}\right.}\right)^{\prime}=\pi^{2} k\left(x_{1}\right) & \Longrightarrow \frac{d}{d x_{1}}\left[k\left(x_{1}\right) \frac{d}{d x_{1}} \ln a\left(x_{1}\right)\right]=\pi^{2} k\left(x_{1}\right) \\
& \Longrightarrow k\left(x_{1}\right) \frac{d}{d x_{1}} \ln a\left(x_{1}\right)=\pi^{2} \int_{0}^{x_{1}} k(t) d t-\pi^{2} C \\
& \Longrightarrow \ln a\left(x_{1}\right)=\pi^{2} \int_{0}^{x_{1}} \frac{1}{k(s)}\left[\int_{0}^{s} k(t) d t-C\right] d s+D
\end{aligned}
$$

To satisfy the boundary condition $a(0)=1$, we need $D=0$ and to satisfy $a(1)=1$, we need

$$
C=\left[\int_{0}^{1} \frac{d s}{k(s)}\right]^{-1}\left[\int_{0}^{1} \frac{d s}{k(s)} \int_{0}^{s} k(t) d t\right]
$$

This determines ${ }^{(1)} a$ and hence $\gamma=\frac{k}{\pi a}$.

References

- Gunther Uhlmann, The Dirichlet to Neumann Map and Inverse Problems, preprint.
(1) If you are worried about dividing by k in the integrals, you shouldn't be. We know that $0 \leq u \leq 1$ on $\partial \Omega$. By the maximum principle, this implies that $0<u<1$ in the interior of Ω. This in turn forces $\frac{\partial u}{\partial x_{2}} \geq 0$ when $x_{2}=0$. In fact, by the strong maximum principle, $\frac{\partial u}{\partial x_{2}}>0$ for $x_{2}=0$, which ensures that $k\left(x_{1}\right)>0$ for all $0 \leq x_{1} \leq 1$.

