Dirichlet to Neumann Problems

Consider a wire $0 \le x \le \ell$ with voltage u(x) at x. By Ohm's law

$$u(x+dx) - u(x) = -I\rho(x)dx$$

where I is the current flowing through the wire and $\rho(x)dx$ is the resistance between x and x + dx. The resistance density $\rho(x)$ is called the resistivity. Dividing across by dx and taking the limit $dx \to 0$

$$u'(x) = -I\rho(x)$$

Assuming that charge is not allowed to accumulate inside the wire, I is a consant and we may eliminate it from the equation just by dividing $\rho(x)$ across and differentiating. If $\gamma(x) = \frac{1}{\rho(x)}$ is the conductivity

$$\gamma(x)u'(x) = -I \implies \left(\gamma(x)u'(x)\right)' = 0 \tag{(*)}$$

Now suppose that we may only measure the voltages and currents at the ends of the wire. That is, we may only measure $u(0), u(\ell), \gamma(0)u'(0)$ and $\gamma(\ell)u'(\ell)$. By $(*), \gamma(x)u'(x)$ is a constant and so takes the value $\gamma(0)u'(0)$ everywhere. Thus

$$u'(x) = \gamma(0)u'(0)\frac{1}{\gamma(x)} \quad \Longrightarrow \quad u(\ell) - u(0) = \gamma(0)u'(0)\int_0^\ell \frac{dx}{\gamma(x)}$$

The only property of the wire that you can determine by measurements at the ends of the wire is the total resistance $\int_0^\ell \frac{dx}{\gamma(x)}$.

In \mathbb{R}^n , $n \ge 2$, the current $\mathbf{i}(\mathbf{x})$ is a vector and Ohm's Law is

$$\mathbf{i}(\mathbf{x}) = -\gamma(\mathbf{x}) \nabla u(\mathbf{x})$$

Assuming that charge is not allowed to accumulate, the net rate of charge flow across the boundary ∂V of any region V must vanish, so that

$$\int_{\partial V} \mathbf{i}(\mathbf{x}) \cdot \mathbf{\hat{n}} dS = 0$$

By the divergence theorem

$$\nabla \cdot \mathbf{i}(\mathbf{x}) = 0 \implies \nabla \cdot (\gamma(\mathbf{x})\nabla u(\mathbf{x})) = 0$$

Suppose now that we have a conductor filling a region Ω and that we apply a voltage f on the boundary $\partial\Omega$ of Ω and measure the current that then flows out of the region. By measuring the current exiting various parts of $\partial\Omega$, we are measuring the current flux on $\partial\Omega$,

which determines $\gamma(\mathbf{x})\frac{\partial u}{\partial \nu}(\mathbf{x})$ on $\partial\Omega$, where $\frac{\partial u}{\partial \nu}$ is the normal derivative. For a given γ and f, the boundary value problem

$$\nabla \cdot (\gamma(\mathbf{x}) \nabla u(\mathbf{x})) = 0 \text{ in } \Omega \qquad u = f \text{ on } \partial \Omega$$

determines u on Ω and hence $k(\mathbf{x}) = \gamma(\mathbf{x}) \frac{\partial u}{\partial \nu}(\mathbf{x}) \upharpoonright \partial \Omega$. Let $\Lambda_{\gamma}(f)$ be the k that results from a given γ and f. Clearly $\Lambda_{\gamma}(f)$ depends linearly on f. The map

$$\Lambda_{\gamma}: C^{\infty}(\partial\Omega) \to C^{\infty}(\partial\Omega)$$

is called the Dirichlet to Neumann Map. Because Λ_{γ} is a linear map on $C^{\infty}(\partial\Omega)$, it has a distributional kernel

$$\Lambda_{\gamma}(f) = \int_{\partial\Omega} \lambda_{\gamma}(x, y) f(y) \, dS(y)$$

where dS is the surface measure on $\partial\Omega$. If we measure the current k that results from all applied surface voltages f, we know $\lambda_{\gamma}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \partial\Omega$. This is a function of 2(n-1)variables. The conductivity $\gamma(\mathbf{x})$ is a function of n variables. So for $n = 1, \gamma(\mathbf{x})$ is a function of more variables than $\lambda_{\gamma}(\mathbf{x}, \mathbf{y})$. We have already seen that, for $n = 1, \lambda_{\gamma}(\mathbf{x}, \mathbf{y})$ cannot possibly determine $\gamma(\mathbf{x})$. For n = 2 $(n > 2), \gamma(\mathbf{x})$ is a function of the same number of variables as (fewer variables than) $\lambda_{\gamma}(\mathbf{x}, \mathbf{y})$.

In general, $\gamma(\mathbf{x})$ is a positive definite, symmetric, $n \times n$ matrix. If $\gamma(\mathbf{x})$ is scalar (that is, a multiple of the identity matrix), the medium is called isotropic. Otherwise it is called anisotropic. In Uhlmann's notes, it is proven that, for $n \geq 2$, Λ_{γ} does indeed determine an isotropic conductivity. However, it cannot possibly determine anistropic conductivities for the following obvious reason. Let $\Psi: \overline{\Omega} \to \overline{\Omega}$ be a diffeomorphism with $\Psi \upharpoonright \partial \Omega$ being the identity map. Given any u, γ , set

$$\tilde{\gamma} = \frac{1}{|\det(D\Psi)|} (D\Psi) \gamma (D\Psi)^t \circ \Psi^{-1} \qquad \tilde{u} = u \circ \Psi^{-1}$$

where $D\Psi$ is the Jacobian (matrix of first partial derivatives) of Ψ . Then

$$\boldsymbol{\nabla} \cdot \left(\gamma(\mathbf{x}) \boldsymbol{\nabla} u(\mathbf{x}) \right) = 0 \text{ in } \Omega \quad u = f \text{ on } \partial \Omega \quad \Longrightarrow \quad \boldsymbol{\nabla} \cdot \left(\tilde{\gamma}(\mathbf{x}) \boldsymbol{\nabla} \tilde{u}(\mathbf{x}) \right) = 0 \text{ in } \Omega \quad \tilde{u} = f \text{ on } \partial \Omega$$

Thus $\Lambda_{\gamma} = \Lambda_{\tilde{\gamma}}$. In Uhlmann's notes, it is proven that, for n = 2, Λ_{γ} determines anisotropic conductivities up to diffeomorphisms like this. He conjectures that this is also true for n > 2.

Example. Here is a carefully rigged example in which an isotropic conductivity is computed from a Dirichlet to Neumann map. The region $\Omega = [0, 1]^2$ is square. We assume that we know

(1)
$$\nabla \cdot (\gamma(x_1) \nabla u(\mathbf{x})) = 0$$
 in Ω
(2) $u(0, x_2) = u(1, x_2) = \sin \pi x_2$ for all $0 \le x_2 \le 1$
(3) $u(x_1, 0) = u(x_1, 1) = 0$ for all $0 \le x_1 \le 1$

(c) Joel Feldman. 2002. All rights reserved.

Note that we are assuming that the conductivity is isotropic and also is a function of x_1 only. Motivated by (1) and (2), we look for a solution of the form $u(x_1, x_2) = a(x_1) \sin(\pi x_2)$. Condition (3) is satisfied for all $a(x_1)$. Condition (2) is satisfied if and only if a(0) = a(1) = 1. Condition (1) is satisfied if and only if

$$0 = \nabla \cdot (\gamma(x_1)a'(x_1)\sin \pi x_2, \gamma(x_1)a(x_1)\pi \cos \pi x_2)$$

= sin \pi x_2 [(\gamma(x_1)a'(x_1))' - \pi^2 \gamma(x_1)a(x_1)]

which is the case if and only if

(4)
$$(\gamma(x_1)a'(x_1))' - \pi^2\gamma(x_1)a(x_1) = 0$$
 for all $0 \le x_1 \le 1$

We imagine that we have measured

$$k(x_1) = \gamma(x_1) \frac{\partial u}{\partial x_2} \Big|_{x_2=0} = \gamma(x_1) \pi a(x_1) \cos \pi x_2 \Big|_{x_2=0} = \pi \gamma(x_1) a(x_1)$$

and that we wish to determine $\gamma(x_1)$. We can do so by subbing $\gamma(x_1) = \frac{k(x_1)}{\pi a(x_1)}$ into (4) and solving for a.

$$\begin{pmatrix} k(x_1)\frac{a'(x_1)}{a(x_1)} \end{pmatrix}' = \pi^2 k(x_1) \implies \frac{d}{dx_1} \left[k(x_1)\frac{d}{dx_1} \ln a(x_1) \right] = \pi^2 k(x_1)$$

$$\implies k(x_1)\frac{d}{dx_1} \ln a(x_1) = \pi^2 \int_0^{x_1} k(t) \, dt - \pi^2 C$$

$$\implies \ln a(x_1) = \pi^2 \int_0^{x_1} \frac{1}{k(s)} \left[\int_0^s k(t) \, dt - C \right] \, ds + D$$

To satisfy the boundary condition a(0) = 1, we need D = 0 and to satisfy a(1) = 1, we need

$$C = \left[\int_0^1 \frac{ds}{k(s)}\right]^{-1} \left[\int_0^1 \frac{ds}{k(s)} \int_0^s k(t) dt\right]$$

This determines⁽¹⁾ a and hence $\gamma = \frac{k}{\pi a}$.

References

• Gunther Uhlmann, The Dirichlet to Neumann Map and Inverse Problems, preprint.

⁽¹⁾ If you are worried about dividing by k in the integrals, you shouldn't be. We know that $0 \le u \le 1$ on $\partial\Omega$. By the maximum principle, this implies that 0 < u < 1 in the interior of Ω . This in turn forces $\frac{\partial u}{\partial x_2} \ge 0$ when $x_2 = 0$. In fact, by the strong maximum principle, $\frac{\partial u}{\partial x_2} > 0$ for $x_2 = 0$, which ensures that $k(x_1) > 0$ for all $0 \le x_1 \le 1$.