Dirichlet to Neumann Problems

Consider a wire 0 < z < ¢ with voltage u(z) at . By Ohm’s law
u(x +dzr) —u(z) = —Ip(z)dx

where I is the current flowing through the wire and p(x)dz is the resistance between x and
x +dx. The resistance density p(z) is called the resistivity. Dividing across by dx and taking
the limit dz — 0

u'(z) = —Ip(x)

Assuming that charge is not allowed to accumulate inside the wire, I is a consant and we may

eliminate it from the equation just by dividing p(z) across and differentiating. If v(x) = ﬁ

is the conductivity
V) ()=~ = (y(@)u'(x) =0 (*)

Now suppose that we may only measure the voltages and currents at the ends of the wire.
That is, we may only measure u(0),u(¢), v(0)u'(0) and vy(£)u'(¢). By (x), v(z)u'(x) is a

constant and so takes the value v(0)u/(0) everywhere. Thus

0
W' () =700 (0) 55 = ull) —u(0) =~(0)u'(0) /0 A

The only property of the wire that you can determine by measurements at the ends of the
wire is the total resistance foé %.
In R", n > 2, the current i(x) is a vector and Ohm’s Law is

i(x) = —v(x) Vu(x)

Assuming that charge is not allowed to accumulate, the net rate of charge flow across the

boundary 0V of any region V' must vanish, so that

/ i(x)-0dS =0
oV

By the divergence theorem
V.ix)=0 = V. (y(x)Vu(x))=0

Suppose now that we have a conductor filling a region {2 and that we apply a voltage f
on the boundary 0f) of 2 and measure the current that then flows out of the region. By

measuring the current exiting various parts of 02, we are measuring the current flux on 052,
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which determines v(x )8“( ) on 0N, where % is the normal derivative. For a given v and f,

the boundary value problem
V- (v(x)Vu(x)) =0 in Q u = f on 0N

determines u on €2 and hence k(x) = ’y(x)%(x) OS2 Let A,(f) be the k that results from
a given v and f. Clearly A,(f) depends linearly on f. The map

A, 1 C™(09) — C™(99)

is called the Dirichlet to Neumann Map. Because A, is a linear map on C'*°(0f2), it has a

distributional kernel

A (f) = /8 ) IS

where dS is the surface measure on 0f2. If we measure the current k that results from all
applied surface voltages f, we know \,(x,y) for all x,y € 9€2. This is a function of 2(n — 1)
variables. The conductivity v(x) is a function of n variables. So for n = 1, y(x) is a function
of more variables than \,(x,y). We have already seen that, for n = 1, A\y(x,y) cannot
possibly determine y(x). For n = 2 (n > 2), v(x) is a function of the same number of
variables as (fewer variables than) A, (x,y).

In general, y(x) is a positive definite, symmetric, n X n matrix. If v(x) is scalar
(that is, a multiple of the identity matrix), the medium is called isotropic. Otherwise it is
called anisotropic. In Uhlmann’s notes, it is proven that, for n > 2, A, does indeed determine
an isotropic conductivity. However, it cannot possibly determine anistropic conductivities for
the following obvious reason. Let ¥ : Q — Q be a diffeomorphism with ¥ [ 9Q being the
identity map. Given any wu, "y, set

7 = raspw (PY)Y(DE) 0¥ d=uo W

where DV is the Jacobian (matrix of first partial derivatives) of W. Then

V- (v(x)Vu(x)) =0in Q@ u=fondQ = V-(3(x)Vi(x))=0inQ a= fondQ
Thus A, = A5. In Uhlmann’s notes, it is proven that, for n = 2, A, determines anisotropic

conductivities up to diffeomorphisms like this. He conjectures that this is also true for n > 2.

Example. Here is a carefully rigged example in which an isotropic conductivity is computed
from a Dirichlet to Neumann map. The region Q = [0,1]? is square. We assume that we

(1) V- (v(z1)Vu(x)) = in Q)
(2) w(0,22) = u(l,z9) =sinmxs forall 0 <mzp <1
(3) wu(z1,0) =u(z1,1) = forall0 < z; <1

know
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Note that we are assuming that the conductivity is isotropic and also is a function of x
only. Motivated by (1) and (2), we look for a solution of the form u(x1,x3) = a(x1) sin(7xs).
Condition (3) is satisfied for all a(x1). Condition (2) is satisfied if and only if a(0) = a(1) = 1.
Condition (1) is satisfied if and only if

0=V- (y(z1)d (z1)sinTas, y(z1)a(z)m cos o)

= sin o [(7(1‘1)&/(331))/ - 7T2’Y(1'1)a(1'1)]

which is the case if and only if
(4) ('y(asl)a'(xl))/ —m2y(z1)a(z) =0 forall 0 <z <1
We imagine that we have measured

k(xy) = 7(:1:1)88—;‘2 . ~v(x1)ma(zy) cos Ty ‘mFO = 7my(x1)a(xq)

and that we wish to determine y(z1). We can do so by subbing v(z1) = ﬂka(gﬁmll)) into (4) and

solving for a.

(k(x)20) = 12k(zy) = [k(z1) % Ina(z))] = 72k(z1)

a(z1 dzq

!

k(azl)ng Ina(zy) = 7r2/0 k(t) dt — mC

!

lna(azl) = 71'2/ k:(ls) |:/ k‘(t) dt — C] ds + D
0 0

To satisfy the boundary condition a(0) = 1, we need D = 0 and to satisfy a(1) = 1, we need

o[ [ [ron

k

This determines") a and hence v = —.
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(1) If you are worried about dividing by k in the integrals, you shouldn’t be. We know that 0 < v < 1
on 0f). By the maximum principle, this implies that 0 < v < 1 in the interior of 2. This in turn

forces 537“2 > 0 when z2 = 0. In fact, by the strong maximum principle, % > 0 for z2 = 0, which

ensures that k(z1) > 0 for all 0 < a1 < 1.
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