
Projective Curves

The n dimensional complex projective space is the set of all equivalence classes

CIPn =
{

[z1, · · · , zn+1]
∣

∣ (z1, · · · , zn+1) ∈ Cn+1 \ {(0, · · · , 0)}
}

under the equivalence relation

(z1, · · · , zn+1) ∼ (z′1, · · · , z
′

n+1) ⇐⇒ ∃z ∈ C \ {0} such that (z′1, · · · , z
′

n+1) = z(z1, · · · , zn+1)

We can think of CIPn as Cn, which we identify with
{

[z1, · · · , zn, 1]
∣

∣ (z1, · · · , zn) ∈ Cn
}

, with some points at

infinity tacked on. Since [z1, · · · , zn, z] = [ z1
z
, · · · , zn

z
, 1] for all z 6= 0, the set of points in CIPn which we have

not identified with points in Cn is
{

[z1, · · · , zn, 0]
∣

∣ (z1, · · · , zn) ∈ Cn \ {(0, · · · , 0)}
}

, which is just CIPn−1.

This is the set of points at infinity. Each complex line in Cn that passes through the origin is of the form
{

z(z1, · · · , zn)
∣

∣ z ∈ C
}

for some (z1, · · · , zn) ∈ Cn \ {(0, · · · , 0)}. (It has real dimensional two, but complex

geometers still call it a line because it has complex dimension one.) There is one point at infinity CIPn for each

complex line in Cn. Since

[z1, · · · , zn, 0] = lim
z→0

[z1, · · · , zn, z] = lim
z→0

[ z1
z
, · · · , zn

z
, 1]

and [ z1
z
, · · · , zn

z
, 1] is identified with the point 1

z
(z1, · · · , zn) ∈ Cn, you can get to the point [z1, · · · , zn, 0] at

infinity in CIPn by “going to infinity” along the complex line in Cn that is associated with [z1, · · · , zn, 0].

In general, a function F (z1, · · · , zn+1) on Cn+1 does not make sense as a function on CIPn because

F can take different values at equivalent points (z1, · · · , zn+1) ∼ (z′1, · · · , z
′

n+1). But if F is a homogeneous

polynomial of degree d, then F (zz1, · · · , zzn+1) = zdF (z1, · · · , zn+1) so that at least

F (z1, · · · , zn+1) = 0 ⇐⇒ F (z′1, · · · , z
′

n+1) = 0 for all (z′1, · · · , z
′

n+1) ∼ (z1, · · · , zn+1)

Thus the zero set

MF =
{

[z1, · · · , zn+1] ∈ CIPn
∣

∣ F (z1, · · · , zn+1) = 0
}

is a well defined subset of CIPn. If F is nonsingular, meaning that there are no solutions to the system of

equations

F = ∂F

∂z1
= · · · ∂F

∂zn+1
= 0

then MF defines a smooth n − 1 (complex) dimensional manifold in CIPn. If n = 2 then MF is a Riemann

surface. (It turns out that connectedness is automatic in this case. Disconnectedness in C2 gives a singularity

at infinity in IPC2. For example: f(z1, z2) = z1(z1 − 1), F (z1, z2, z3) = z1(z1 − z3).) If n > 2, we can also

get Riemann surfaces by taking the intersection MF1
∩ · · · ∩MFn−1

of n− 1 such surfaces. The intersection is

smooth if the (n− 1)× (n+ 1) matrix
(

∂Fi

∂zj

)

of partial derivatives has maximal rank n− 1. Again, it turns out

that smoothness implies connectedness.

If f is any polynomial on Cn, we can always find a homogeneous polynomial F on Cn+1 with the same

degree as f , such that the zero set of f in Cn and the part of MF with zn+1 = 1 (i.e. excluding the part at

infinity) coincide under the identification we discussed above. For example, if f(x, y) = y2− x3 +x (whose zero

set is the elliptic curve we saw in class), then F (x, y, z) = y2z − x3 + xz2. The advantage of MF is that it is

always compact, since CIPn is compact.
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