
Integration on Manifolds

This is intended as a lightning fast introduction to integration on manifolds. For a more

thorough, but still elementary discussion see

B. O’Neill, Elementary Differential Geometry, Chapter 4.

W. Rudin, Principles of Mathematical Analysis, Chapter 10.

M. Spivak, Calculus on Manifolds

We shall define integrals over 0–, 1– and 2– (real) dimensional regions of a 2 (real) dimensional

manifold. The same ideas also work for higher dimensions. Let M be a 2 (real) dimensional C∞

manifold with maximal atlas A. For an n–dimensional integral, the domain of integration will be

called an n–chain and the object integrated will be called an n–form. The definitions are chosen so

that (a) we can use coordinate patchs to express our integrals in terms of ordinary first and second

year Calculus integrals for evaluation, but at the same time (b) the answer to the integral so obtained

does not to depend on which coordinate patchs are used.

0–dimensional Integrals

Definition.

a) A 0–form is a (complex valued) continuous function F on M .

b) A 0–chain is an expression of the form n1P1 + · · · + nkPk with P1, · · · , Pk distinct points of

M and n1, · · · nk ∈ ZZ.

c) If F is a 0–form and n1P1 + · · · + nkPk is a 0–chain, then

∫

n1P1+···+nkPk

F = n1F (P1) + · · · + nkF (Pk)

The definition of a chain given in part (b) is somewhat intuitive. Under a more formal definition,

a 0–chain is a function σ : M → ZZ for which σ(P ) is zero for all but finitely many P ∈ M . The

σ : M → ZZ which corresponds to n1P1 + · · · + nkPk has σ(P ) = ni when P = Pi for some 1 ≤ i ≤ k

and σ(P ) = 0 if P /∈ {P1, · · · , Pk}. Addition of 0–chains and multiplication of a 0–chain by an integer

are defined by

(σ + σ′)(P ) = σ(P ) + σ′(P ) (nσ)(P ) = nσ(P )
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1–dimensional Integrals

Definition.

a) A 1–form ω is a rule which assigns to each coordinate patch {U , ζ = (x, y) : M → IR2} a

pair (f, g) of (complex valued) continuous functions on ζ(U) such that

ω
∣
∣
{U,ζ}

= f dx+ g dy

is invariant under coordinate transformations. This means that

◦ if {U, ζ} and {Ũ , ζ̃} are two patchs with U ∩ Ũ 6= ∅ and

◦ if ω assigns {U, ζ} the pair of functions (f, g) and assigns {Ũ , ζ̃} the pair of functions

(f̃ , g̃) and

◦ if the transition function ζ̃ ◦ ζ−1 (from ζ(U ∩ Ũ) ⊂ IR2 to ζ̃(U ∩ Ũ) ⊂ IR2 ) is
(
x̃(x, y), ỹ(x, y)

)
,

then
f(x, y) = f̃

(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂x

(x, y) + g̃
(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂x

(x, y)

g(x, y) = f̃
(
x̃(x, y), ỹ(x, y)

)
∂x̃
∂y

(x, y) + g̃
(
x̃(x, y), ỹ(x, y)

)
∂ỹ
∂y

(x, y)

b) The standard 1–simplex is Q1 = [0, 1]. A path is a C1 map C : [0, 1] → M .

c) Let {U, ζ = (x, y
)
} be a patch for M and let ω

∣
∣
U,ζ

= f dx+ g dy. If c(t) : [0, 1] → U ⊂ M is

a path with range in U , then

∫

c

ω =

∫ 1

0

[

f
(

∈IR2

︷ ︸︸ ︷

ζ( c(t)
︸︷︷︸

∈M

)
)

︸ ︷︷ ︸

∈C

dx(c(t))
dt

+ g
(
ζ(c(t))

)dy(c(t))
dt

]

dt

If c does not have range in a single patch, split it up into a finite number of pieces, each with

range in a single patch. This can always be done, since the range of c is always compact. The

answer is independent of choice of patch(s).

d) A 1–chain is an expression of the form n1C1 + · · · nkCk with C1, · · · , Ck distinct paths and

n1, · · · nk ∈ ZZ.

e) If ω is a 1–form and n1C1 + · · · nkCk is a 1–chain, then

∫

n1C1+···nkCk

ω = n1

∫

C1

ω + · · · + nk

∫

Ck

ω

Remark.

a) For now think of f dx + g dy just as a pice of notation which specifies the two functions (f, g)

that ω assigns to the patch {U, ζ = (x, y)}. We will later define an operator d that maps n–forms to

(n+ 1)–forms. In particular, it will map the coordinate function x, which is a zero form (but which

is only defined on part of the manifold) to the 1–form 1dx+ 0dy.
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b) The motivation for the definition of a 1–form is the ordinary change of variables rule

∫

f̃(x̃, ỹ)dx̃+ g̃(x̃, ỹ)dỹ =

∫

f̃
(
x̃(x, y), ỹ(x, y)

)[
∂x̃
∂x

(x, y)dx+ ∂x̃
∂y

(x, y)dy
]

+ g̃
(
x̃(x, y), ỹ(x, y)

)[
∂ỹ
∂x

(x, y)dx+ ∂ỹ
∂y

(x, y)dy
]

=

∫
[
f̃ ∂x̃

∂x
+ g̃ ∂ỹ

∂x
︸ ︷︷ ︸

f(x,y)

]
dx+

[
f̃ ∂x̃

∂y
+ g̃ ∂ỹ

∂y
︸ ︷︷ ︸

g(x,y)

]
dy

for an integral along a curve.

c) The integral of part (c) is a generalization of the second year calculus definition of an integral along

a parametrized line.

2–dimensional Integrals

Definition.

a) A 2–form Ω is a rule which assigns to each patch {U, ζ} a continuous function f on ζ(U) such

that Ω
∣
∣
{U,ζ}

= fdx ∧ dy is invariant under coordinate transformations. This means that

◦ if {U, ζ} and {Ũ , ζ̃} are two patchs with U ∩ Ũ 6= ∅ and

◦ if Ω assigns {U, ζ} the function f and assigns {Ũ , ζ̃} the function f̃ and

◦ if the transition function ζ̃ ◦ ζ−1 (from ζ(U ∩ Ũ) ⊂ IR2 to ζ̃(U ∩ Ũ) ⊂ IR2 ) is
(
x̃(x, y), ỹ(x, y)

)
,

then

f(x, y) = f̃
(
x̃(x, y), ỹ(x, y)

)[
∂x̃
∂x

(x, y)∂ỹ
∂y

(x, y)− ∂x̃
∂y

(x, y) ∂ỹ
∂x

(x, y)
]

b) The standard 2–simplex is

Q2 =
{
(x, y) ∈ IR2

∣
∣ x, y ≥ 0, x+ y ≤ 1

}

A surface is a C1 map D : Q2 → M .

c) Let {U, ζ = (x, y
)
} be a patch and let Ω

∣
∣
U,ζ

= f(x, y)dx ∧ dy. If D : Q2 → U ⊂ M is a

surface with range in U , then

∫

D

Ω =

∫∫

Q2

f
(
ζ(D(s, t))

)[
∂
∂s
x
(
D(s, t)

)
∂
∂t
y
(
D(s, t)

)

− ∂
∂t
x
(
D(s, t)

)
∂
∂s
y
(
D(s, t)

)]
dsdt

If D does not have range in a single patch, split it up into a finite number of pieces, each with

range in a single patch. This can always be done, since the range of D is always compact.

The answer is independent of choice of patch(s).

d) A 2–chain is an expression of the form n1D1 + · · · nkDk with D1, · · · ,Dk surfaces and

n1, · · · nk ∈ ZZ.
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e) If Ω is a 2–form and n1D1 + · · · nkDk is a 2–chain, then

∫

n1D1+···nkDk

Ω = n1

∫

D1

Ω+ · · ·+ nk

∫

Dk

Ω

The motivation for the definition of a 2–form is the ordinary change of variables rule

∫

f̃(x̃, ỹ)dx̃dỹ =

∫

f̃
(
x̃(x, y), ỹ(x, y)

)

∣
∣
∣
∣
∣
det

[
∂x̃
∂x

(x, y) ∂ỹ
∂x

(x, y)

∂x̃
∂y

(x, y) ∂ỹ
∂y

(x, y)

]∣
∣
∣
∣
∣
dxdy

=

∫

f̃
∣
∣∂x̃
∂x

∂ỹ
∂y

− ∂x̃
∂y

∂ỹ
∂x

∣
∣dxdy

for an integral on a region in IR2, except for the absolute value signs. So we are dealing with oriented

(i.e. signed) areas.

The Boundary Operator δ

Definition.

a) For any 0–chain δ
(
n1P1 + · · ·nkPk

)
= 0.

b) For a path C : [0, 1] → M , δC is the 0–chain C(1)− C(0).

For a 1–chain δ
(
n1C1 + · · · nkCk

)
= n1δ(C1) + · · · nkδ(Ck).

c) For a surface D : Q2 → M , δC is the 1–chain C1 + C2 + C3 where, for 0 ≤ t ≤ 1,

C1(t) = D(t, 0) D

C1

C2(t) = D(1− t, t) D
C2

C3(t) = D(0, 1− t) DC3

For a 2–chain δ
(
n1D1 + · · · nkDk

)
= n1δ(D1) + · · · nkδ(Dk).

The boundary operator maps n–chains to n− 1 chains and obeys

δ2 = 0

Proof: For a surface D,

δ2D = δ
(
C1 + C2 + C3

)

= [C1(1)− C1(0)] + [C2(1)− C2(0)] + [C3(1)− C3(0)]

= [D(1, 0)−D(0, 0)] + [D(0, 1)−D(1, 0)] + [D(0, 0)−D(0, 1)] = 0

The case n = 2 follows from this. The cases n = 0, 1 are trivial.
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The Wedge Product

Definition. If ω is a k–form and ω′ is a k′–form then ω∧ω′ is the (k+k′)–form that is determined by

ω∧ω′ = (−1)kk
′

ω′ ∧ω (that is ω∧ω′ = ω′ ∧ω if at least one of k and k′ is even and ω∧ω′ = −ω′ ∧ω

if both k and k′ are odd) and

a) if k = k′ = 0 and (ω ∧ ω′)(P ) = ω(P )ω′(P ).

b) if k = 0 and ω′
∣
∣
U,ζ

= f dx+ g dy then

ω ∧ ω′
∣
∣
U,ζ

= (ω ◦ ζ−1)f dx+ (ω ◦ ζ−1)g dy

c) if k = 0 and ω′
∣
∣
U,ζ

= f dx ∧ dy then

ω ∧ ω′
∣
∣
U,ζ

= (ω ◦ ζ−1)f dx ∧ dy

d) if k = k′ = 1 and ω
∣
∣
U,ζ

= f dx+ g dy then ω′
∣
∣
U,ζ

= f ′ dx+ g dy′ then

ω ∧ ω′
∣
∣
U,ζ

= [fg′ − gf ′] dx ∧ dy

In particular dx ∧ dx = dy ∧ dy = 0 and dx ∧ dy = −dy ∧ dx.

e) If k + k′ > 2, ω ∧ ω′ = 0.

The Differential Operator d

Definition. Let M be a two real dimensional manifold. If {U, ζ} is a coordinate patch on M and

a) if F : M → C is a C1 0–form, then

dF
∣
∣
{U,ζ}

= ∂
∂x

(
F ◦ ζ−1

)
(x, y) dx+ ∂

∂y

(
F ◦ ζ−1

)
(x, y) dy

b) if ω is a C1 1–form with ω
∣
∣
{U,ζ}

= f(x, y) dx+ g(x, y) dy, then

dω
∣
∣
{U,ζ}

=
[
∂g
∂x

(x, y)− ∂f
∂y

(x, y)
]
dx ∧ dy

c) if Ω is a C1 2–form, then dΩ = 0

The differential operator d maps n–forms to n+ 1 forms and obeys

d2 = 0

since, in the case n = 0, (writing f = F ◦ ζ−1)

d2F = d
(
∂f
∂x

dx+ ∂f
∂y

dy
)
=

[
∂2f
∂x∂y

− ∂2f
∂y∂x

]
dx ∧ dy = 0

The cases n = 1, 2 are trivial. There is also a product rule. If ω is a k–form and ω′ is a k′–form, then

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)kω ∧ (dω′)
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Stoke’s Theorem

If ω is a C1 k–form and D is a (k + 1)–chain, then

∫

δD

ω =

∫

D

dω

“Proof:”

For k = 0 this is the fundamental theorem of calculus.

F (C(1))− F (C(0)) =

∫

C

dF

For k = 1, this is Green’s Theorem.

∫

δD

f dx+ g dy =

∫∫

D

[
∂g
∂x

− ∂f
∂y

]
dx ∧ dy

If ω is a compactly supported 1–form,
∫∫

M
dω = 0. If ω is a closed 1–form (meaning that dω = 0)

and if C1 and C2 are two 1–chains with C1 − C2 = δD for some 2–chain D, then
∫

C1

ω =
∫

C2

ω.

D
C2

C1
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