
Elliptic Regularity

Let Ω be an open subset of IRd. A measurable, locally square integrable function ϕ

is said to be a weak solution of Laplace’s equation in Ω if
∫∫

Ω

ϕ(~r)∆η(~r) dd~r = 0

for all C∞
0 functions η that are supported in Ω. The theorem that any weak solution of an

elliptic partial differential equation in Ω is C∞ (technically, equal almost everywhere in Ω

to a C∞ function) is called elliptic regularity. In this course, we are interested in harmonic

functions in d = 2, so we now prove elliptic regularity for Laplace’s equation in d = 2.

Theorem. Let Ω be an open subset of IR2. Let ϕ be a measurable, locally square integrable

function that is a weak solution of Laplace’s equation in Ω. Then ϕ is equal almost everywhere

in Ω to a C∞ function.

Motivation for proof: By way of motivation for the strategy that we’ll use to prove this

Theorem, I’ll first outline a simple proof that any C2 function ϕ that obeys ∆ϕ = 0 is in fact

C∞. Recall that, by the Cauchy integral formula, any analytic function, f(z), obeys

f(z′) = 1
2πi

∫

|z−z′|=r

f(z)
z−z′

dz

Parametrizing the circle |z − z′| = r by z = z′ + reiθ,

f(z′) = 1
2πi

∫ 2π

0

f(z′+reiθ)
reiθ

ireiθdθ = 1
2π

∫ 2π

0

f(z′ + reiθ) dθ

This is called the “Mean–value Property”. It also holds for harmonic functions. That is, if

∆ϕ = 0, then

ϕ(x′, y′) = 1
2π

∫ 2π

0

ϕ
(

(x′, y′) + r(cos θ, sin θ)
)

dθ

This is proven using Green’s Theorem, which is the same way that the Cauchy Integral

Theorem is proven. Now let g ∈ C∞
0

(

[0,∞)
)

obey
∫∞

0
g(r)rdr = 1

2π . Then

ϕ(x′, y′) =

∫ ∞

0

dr r g(r) 2πϕ(x′, y′)

=

∫ ∞

0

dr r

∫ 2π

0

dθ g(r)ϕ
(

(x′, y′) + r(cos θ, sin θ)
)

=

∫∫

dxdy g(‖(x, y)‖)ϕ
(

(x′, y′) + (x, y)
)

=

∫∫

dxdy g(‖(x′ − x, y′ − y)‖)ϕ
(

(x, y)
)
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The right hand side is trivially C∞ because all derivatives with respect to x′ or y′ act on

g(‖(x′−x, y′−y)‖), which is C∞ because the length ‖(x′−x, y′−y)‖ is C∞ in (x′, y′) except

at x′ − x = y′ − y = 0 and g(r) is C∞ and vanishes for r in a neighbourhood of 0.

Proof: Every open set is a union of open disks. That ϕ is locally square integrable in Ω

means that ϕ is square integrable on some neighbourhood of each point of Ω. So we may

choose the disks so that ϕ is L2 on each disk. Thus it suffices to consider Ω’s that are open

disks. By translating and scaling, it suffices to consider the unit disk centred on the origin,

which we denote D, and we may assume that ϕ is L2 on D.

We first construct the function that is going to play the role of g in the motivation

above. Let ~r = (x, y). We shall exploit two properties of the function ln ‖~r‖. The first is that

ln ‖~r‖ is defined and harmonic for all ~r 6= 0. This is shown by the computation

d ln ‖~r‖ = 1
2
d ln(x2 + y2) = xdx+ydy

x2+y2

∆ ln ‖~r‖ = d ∗ d ln ‖~r‖ = d−ydx+xdy
x2+y2 = 2(x2+y2)dx∧dy−(2xdx+2ydy)∧(−ydx+xdy)

(x2+y2)2
= 0 (P1)

The second property of ln ‖~r‖ that we shall use is the following. Let Cδ be the circle of

radius δ centered on 0, oriented, as usual, in the counterclockwise direction. Then, for any

continuous function ψ(~r),

lim
δ→0+

∮

Cδ

ψ(~r) ∗ d ln ‖~r‖ = 2πψ(0) (P2)

To see this, parametrize Cδ by ~r(t) =
(

x(t), y(t)
)

= δ
(

cos t, sin t) with 0 ≤ t ≤ 2π. When we

evaluate the integral
∮

Cδ

ψ(~r) ∗ d ln ‖~r‖ using this parametrization, ∗d ln ‖~r‖ = −ydx+xdy
x2+y2 is

replaced by
−y(t)x′(t)dt+x(t)y′(t)dt

x(t)2+y(t)2 = dt

so that, using the continuity of ψ,

lim
δ→0+

∮

Cδ

ψ(~r) ∗ d ln ‖~r‖ = lim
δ→0+

∫ 2π

0

ψ(δ cos t, δ sin t) dt

=

∫ 2π

0

lim
δ→0+

ψ(δ cos t, δ sin t) dt = 2πψ(0)

Now we use 1
2π

ln ‖~r‖ to build the function that plays the role of g. Let 0 < ε ≪ 1

and let ρ be a C∞ function on [0,∞) that obeys

ρ(r) = 1 for 0 ≤ r ≤ ε
2

0 ≤ ρ(r) ≤ 1 for ε
2 ≤ r ≤ ε

r

1

ε
2

ε
ρ(r) = 0 for r ≥ ε
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Define

ω(~r) = 1
2π
ρ
(

‖~r‖
)

ln ‖~r‖

γ(~r) =

{

−
(

∂2

∂x2 + ∂2

∂y2

)

ω(~r) if ~r 6= 0

0 if ~r = 0

Φ(~r′) =

∫∫

D

γ(~r′ −~r)ϕ(~r) dx ∧ dy

Note that

◦ ω(~r) is defined and C∞ for all ~r 6= 0.

◦ ω(~r) is supported on ‖~r‖ ≤ ε.

◦ ω(~r) = 1
2π ln ‖~r‖ for 0 < ‖~r‖ < ε

2 so that
(

∂2

∂x2 + ∂2

∂y2

)

ω(~r) vanishes for 0 < ‖~r‖ < ε
2

◦ γ(~r) is defined and C∞ on all of IR2.

◦ γ(~r) is supported on ‖~r‖ ≤ ε.

◦ Φ(~r′) is defined and C∞ on all of IR2 since γ is C∞ and ϕ is L1 on D.

The Theorem now follows from part b of the Lemma below, which implies that ϕ(~r′) = Φ(~r′)

for almost all ~r with ‖~r‖ ≤ 1− 2ε.

More motivation: To motivate the choice of γ above, I’ll now show that if ϕ is harmonic,

that is, if ϕ is C2 and obeys ∆ϕ = 0, then Φ(~r′) = ϕ(~r′) for all |~r′| < 1 − ε. First observe

that, since |~r′| < 1− ε and γ(~r′−~r) vanishes for ‖~r′−~r‖ ≥ ε, γ(~r′−~r) vanishes unless ~r ∈ D.

Thus

Φ(~r′) =

∫∫

D

γ(~r′ −~r)ϕ(~r) dx ∧ dy =

∫∫

IR2

γ(~r′ −~r)ϕ(~r) dx ∧ dy

=

∫∫

IR2

γ(−~r)ϕ(~r+~r′) dx ∧ dy =

∫∫

IR2

γ(~r)ϕ(~r+~r′) dx ∧ dy

since γ is even. We are now going to substitute in (for ~r 6= 0) γ(~r) = −
(

∂2

∂x2 + ∂2

∂y2

)

ω(~r)

and integrate by parts a couple of times. To treat the singularity in ω at ~r = 0 carefully, we

eliminate 0 from the domain of integration. Since γ and ϕ are both continuous at ~r = 0 and

since γ(~r) vanishes unless ‖~r‖ ≤ ε < 1,

Φ(~r′) = lim
δ→0

∫∫

‖~r‖≥δ

γ(~r)ϕ(~r+~r′) dx ∧ dy = lim
δ→0

∫∫

Dδ

γ(~r)ϕ(~r+~r′) dx ∧ dy

= lim
δ→0

−

∫∫

Dδ

ϕ(~r+~r′)∆ω(~r)

where Dδ =
{

~r ∈ IR2
∣

∣ δ ≤ ‖~r‖ ≤ 1
}

is the unit disk with the disk of radius δ removed. By
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Dδ
0

D

Cδ

Green’s formula (number 6 on our list of integration formulae)

∫∫

Dδ

ω(~r)∆ϕ(~r+~r′)−

∫∫

Dδ

ϕ(~r+~r′)∆ω(~r) =

∫

δDδ

ω(~r) ∗ dϕ(~r+~r′)−

∫

δDδ

ϕ(~r+~r′) ∗ dω(~r)

The first term on the left hand side vanishes because ϕ is harmonic. The boundary δDδ =

C1−Cδ. The minus sign is there because the inside part of the boundary of δD is oriented in

the opposite direction to Cδ. The outer, C1, part of the boundary integrals are zero because

ω(~r) vanishes for all ‖~r‖ > ε. Furthermore, if δ < ε
2 , ω(~r) =

1
2π log ‖~r‖ on the inner part, Cδ,

of the boundary. So

Φ(~r′) = lim
δ→0

1
2π

∮

Cδ

ϕ(~r+~r′) ∗ d log ‖~r‖ − lim
δ→0

1
2π

∮

Cδ

log ‖~r‖ ∗ dϕ(~r+~r′)

The first term on the right hand side is exactly ϕ(~r′) by the delta function like property

(P2). The second term on the right hand side vanishes. To see this, parametrize Cδ

by ~r(θ) =
(

x(θ), y(θ)
)

= δ(cos θ, sin θ) and observe that, because ϕ is C2, ∗dϕ(~r + ~r′) =

−ϕy
dx
dθ
dθ + ϕx

dy
dθ
dθ = ϕy δ sin θ dθ + ϕx δ cos θ dθ is some continous, and hence bounded

function, times δ dθ. Consequently, the second term on the right hand side is bounded in

magnitude by a constant times

lim
δ→0

1
2π

∫ 2π

0

log δ δ dθ = lim
δ→0

1
2π (log δ)(2πδ) = 0

Hence Φ(~r′) = ϕ(~r′) for all ‖~r′‖ < 1− ε. In particular ϕ(~r′) is C∞ for all ‖~r′‖ < 1− ε. Since

ε > 0 is arbitrary, ϕ(~r′) is C∞ for all ‖~r′‖ < 1. This ends “More motivation”.

We now need to consider functions of both ~r and ~r′. We use d′ and ∆′ to denote

the operators d and ∆ acting on functions of ~r′. For example

d f(x, y, x′, y′) = ∂f
∂x

(x, y, x′, y′) dx+ ∂f
∂y

(x, y, x′, y′) dy

d′f(x, y, x′, y′) = ∂f
∂x′

(x, y, x′, y′) dx′ + ∂f
∂y′

(x, y, x′, y′) dy′
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Lemma. Let µ(~r) be C∞ and supported in ‖~r‖ ≤ 1− 2ε. Define

η(~r′) =

∫∫

D

ω(~r−~r′)µ(~r) dx ∧ dy

then

a) ∆′η(~r′) =
{

µ(~r′)−
∫∫

D
γ(~r−~r′)µ(~r) dx ∧ dy

}

dx′ ∧ dy′

b)
∫∫

D
µ(~r)

[

ϕ(~r)− Φ(~r)
]

dx ∧ dy = 0

Remark. Let B1−2ε =
{

~r ∈ IR2
∣

∣ ‖~r‖ ≤ 1−2ε
}

. Since C∞
0 (B1−2ε) is dense in L

2(B1−2ε) and

ϕ(~r)− Φ(~r) is in L2(B1−2ε), part (b) has the consequence that
∫∫

B1−2ε

∣

∣ϕ(~r)−Φ(~r)
∣

∣

2
dxdy = 0

and hence that ϕ(~r) − Φ(~r) = 0 almost everywhere on B1−2ε. Since ε > 0 is arbitrary, this

completes the proof of the Theorem.

Proof: b) We first prove part (b) assuming part (a). Since µ(~r) vanishes unless |~r| ≤ 1−2ε

and ω(~r′ −~r) vanishes unless ‖~r′ −~r‖ ≤ ε, η(~r′) vanishes unless ‖~r′‖ ≤ 1− ε. Furthermore,

as ω is L1 and µ is C∞ and supported in D,

η(~r′) =

∫∫

IR2

ω(~r−~r′)µ(~r) dx ∧ dy =

∫∫

IR2

ω(~r)µ(~r+~r′) dx ∧ dy

is also C∞ and hence is in C∞
0 (D). Our main assumpion is that ϕ is a weak solution of

Laplace’s equation in D. Hence

0 =

∫∫

D

ϕ(~r′)∆η(~r′)

=

∫∫

D

ϕ(~r′)
{

µ(~r′)−

∫∫

D

γ(~r−~r′)µ(~r) dx ∧ dy
}

dx′ ∧ dy′

=

∫∫

D

µ(~r′)
{

ϕ(~r′)−

∫∫

D

γ(~r′ −~r)ϕ(~r) dx ∧ dy
}

dx′ ∧ dy′

We made the change of variables ~r ↔ ~r′ in the second term. The right hand side is exactly
∫∫

D
µ(~r)

[

ϕ(~r)− Φ(~r)
]

dx ∧ dy.

a) Since µ is supported in D,

η(~r′) =

∫∫

IR2

ω(~r−~r′)µ(~r) dx ∧ dy =

∫∫

IR2

ω(~r)µ(~r+~r′) dx ∧ dy

In the integrand, µ is a function of ~r+~r′ only, so

∆′η(~r′) = dx′ ∧ dy′
∫∫

IR2

ω(~r)
(

∂2

∂x′2 + ∂2

∂y′2

)

µ(~r+~r′) dx ∧ dy

= dx′ ∧ dy′
∫∫

IR2

ω(~r)
(

∂2

∂x2 + ∂2

∂y2

)

µ(~r+~r′) dx ∧ dy

= dx′ ∧ dy′
∫∫

IR2

ω(~r)∆µ(~r+~r′)
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We now integrate by parts twice (apply Green’s formula) twice, being careful about the

singularity of ω at the origin. Since ω is supported in D and is in L1(D) and µ is C∞,

∫∫

IR2

ω(~r)∆µ(~r+~r′) = lim
δ→0+

∫∫

Dδ

ω(~r)∆µ(~r+~r′)

By Green’s formula,

∫∫

Dδ

ω(~r)∆µ(~r+~r′)−

∫∫

Dδ

µ(~r+~r′)∆ω(~r) =

∫

δDδ

ω(~r) ∗ dµ(~r+~r′)−

∫

δDδ

µ(~r+~r′) ∗ dω(~r)

Again, the boundary δDδ = C1 − Cδ and the outer, C1, part of the boundary integrals are

zero because ω(~r) vanishes for all ‖~r‖ > ε. And the Cδ part of the first boundary integral

again tends to zero with δ because, if δ < ε
2 , ω(~r) =

1
2π log ‖~r‖ on Cδ, both first derivatives

of µ are bounded, say by K, and the circumference of Cδ is 2πδ so that

∣

∣

∣

∣

∮

Cδ

ω(~r) ∗ dµ(~r+~r′)

∣

∣

∣

∣

≤
(

1
2π

ln δ
)

(2K)(2πδ)

On Dδ, ∆ω(~r) = −γ(~r)dx ∧ dy, so that

∫∫

IR2

ω(~r)∆µ(~r+~r′) = lim
δ→0+

∮

Cδ

µ(~r+~r′) ∗ dω(~r)− lim
δ→0+

∫∫

Dδ

µ(~r+~r′)γ(~r) dx ∧ dy

= µ(~r′)− lim
δ→0+

∫∫

Dδ

µ(~r+~r′)γ(~r) dx ∧ dy by (P2)

= µ(~r′)−

∫∫

D

µ(~r+~r′)γ(~r) dx ∧ dy

= µ(~r′)−

∫∫

IR2

µ(~r+~r′)γ(~r) dx ∧ dy

= µ(~r′)−

∫∫

IR2

µ(~r)γ(~r−~r′) dx ∧ dy

= µ(~r′)−

∫∫

D

γ(~r−~r′)µ(~r) dx ∧ dy

since γ and µ are supported in D.
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