Elliptic Regularity

Let Ω be an open subset of \mathbb{R}^{d}. A measurable, locally square integrable function φ is said to be a weak solution of Laplace's equation in Ω if

$$
\iint_{\Omega} \varphi(\overrightarrow{\mathbf{r}}) \Delta \eta(\overrightarrow{\mathbf{r}}) d^{d} \overrightarrow{\mathbf{r}}=0
$$

for all C_{0}^{∞} functions η that are supported in Ω. The theorem that any weak solution of an elliptic partial differential equation in Ω is C^{∞} (technically, equal almost everywhere in Ω to a C^{∞} function) is called elliptic regularity. In this course, we are interested in harmonic functions in $d=2$, so we now prove elliptic regularity for Laplace's equation in $d=2$.

Theorem. Let Ω be an open subset of \mathbb{R}^{2}. Let φ be a measurable, locally square integrable function that is a weak solution of Laplace's equation in Ω. Then φ is equal almost everywhere in Ω to a C^{∞} function.

Motivation for proof: By way of motivation for the strategy that we'll use to prove this Theorem, I'll first outline a simple proof that any C^{2} function φ that obeys $\Delta \varphi=0$ is in fact C^{∞}. Recall that, by the Cauchy integral formula, any analytic function, $f(z)$, obeys

$$
f\left(z^{\prime}\right)=\frac{1}{2 \pi i} \int_{\left|z-z^{\prime}\right|=r} \frac{f(z)}{z-z^{\prime}} d z
$$

Parametrizing the circle $\left|z-z^{\prime}\right|=r$ by $z=z^{\prime}+r e^{i \theta}$,

$$
f\left(z^{\prime}\right)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z^{\prime}+r e^{i \theta}\right)}{r e^{i \theta}} i r e^{i \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z^{\prime}+r e^{i \theta}\right) d \theta
$$

This is called the "Mean-value Property". It also holds for harmonic functions. That is, if $\Delta \varphi=0$, then

$$
\varphi\left(x^{\prime}, y^{\prime}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi\left(\left(x^{\prime}, y^{\prime}\right)+r(\cos \theta, \sin \theta)\right) d \theta
$$

This is proven using Green's Theorem, which is the same way that the Cauchy Integral Theorem is proven. Now let $g \in C_{0}^{\infty}([0, \infty))$ obey $\int_{0}^{\infty} g(r) r d r=\frac{1}{2 \pi}$. Then

$$
\begin{aligned}
\varphi\left(x^{\prime}, y^{\prime}\right) & =\int_{0}^{\infty} d r r g(r) 2 \pi \varphi\left(x^{\prime}, y^{\prime}\right) \\
& =\int_{0}^{\infty} d r r \int_{0}^{2 \pi} d \theta g(r) \varphi\left(\left(x^{\prime}, y^{\prime}\right)+r(\cos \theta, \sin \theta)\right) \\
& =\iint d x d y g(\|(x, y)\|) \varphi\left(\left(x^{\prime}, y^{\prime}\right)+(x, y)\right) \\
& =\iint d x d y g\left(\left\|\left(x^{\prime}-x, y^{\prime}-y\right)\right\|\right) \varphi((x, y))
\end{aligned}
$$

The right hand side is trivially C^{∞} because all derivatives with respect to x^{\prime} or y^{\prime} act on $g\left(\left\|\left(x^{\prime}-x, y^{\prime}-y\right)\right\|\right)$, which is C^{∞} because the length $\left\|\left(x^{\prime}-x, y^{\prime}-y\right)\right\|$ is C^{∞} in $\left(x^{\prime}, y^{\prime}\right)$ except at $x^{\prime}-x=y^{\prime}-y=0$ and $g(r)$ is C^{∞} and vanishes for r in a neighbourhood of 0 .

Proof: Every open set is a union of open disks. That φ is locally square integrable in Ω means that φ is square integrable on some neighbourhood of each point of Ω. So we may choose the disks so that φ is L^{2} on each disk. Thus it suffices to consider Ω 's that are open disks. By translating and scaling, it suffices to consider the unit disk centred on the origin, which we denote D, and we may assume that φ is L^{2} on D.

We first construct the function that is going to play the role of g in the motivation above. Let $\overrightarrow{\mathbf{r}}=(x, y)$. We shall exploit two properties of the function $\ln \|\overrightarrow{\mathbf{r}}\|$. The first is that $\ln \|\overrightarrow{\mathbf{r}}\|$ is defined and harmonic for all $\overrightarrow{\mathbf{r}} \neq \mathbf{0}$. This is shown by the computation

$$
\begin{align*}
d \ln \|\overrightarrow{\mathbf{r}}\| & =\frac{1}{2} d \ln \left(x^{2}+y^{2}\right)=\frac{x d x+y d y}{x^{2}+y^{2}} \\
\Delta \ln \|\overrightarrow{\mathbf{r}}\| & =d * d \ln \|\overrightarrow{\mathbf{r}}\|=d \frac{-y d x+x d y}{x^{2}+y^{2}}=\frac{2\left(x^{2}+y^{2}\right) d x \wedge d y-(2 x d x+2 y d y) \wedge(-y d x+x d y)}{\left(x^{2}+y^{2}\right)^{2}}=0 \tag{P1}
\end{align*}
$$

The second property of $\ln \|\overrightarrow{\mathbf{r}}\|$ that we shall use is the following. Let C_{δ} be the circle of radius δ centered on $\mathbf{0}$, oriented, as usual, in the counterclockwise direction. Then, for any continuous function $\psi(\overrightarrow{\mathbf{r}})$,

$$
\begin{equation*}
\lim _{\delta \rightarrow 0+} \oint_{C_{\delta}} \psi(\overrightarrow{\mathbf{r}}) * d \ln \|\overrightarrow{\mathbf{r}}\|=2 \pi \psi(\mathbf{0}) \tag{P2}
\end{equation*}
$$

To see this, parametrize C_{δ} by $\overrightarrow{\mathbf{r}}(t)=(x(t), y(t))=\delta(\cos t, \sin t)$ with $0 \leq t \leq 2 \pi$. When we evaluate the integral $\oint_{C_{\delta}} \psi(\overrightarrow{\mathbf{r}}) * d \ln \|\overrightarrow{\mathbf{r}}\|$ using this parametrization, $* d \ln \|\overrightarrow{\mathbf{r}}\|=\frac{-y d x+x d y}{x^{2}+y^{2}}$ is replaced by

$$
\frac{-y(t) x^{\prime}(t) d t+x(t) y^{\prime}(t) d t}{x(t)^{2}+y(t)^{2}}=d t
$$

so that, using the continuity of ψ,

$$
\begin{aligned}
\lim _{\delta \rightarrow 0+} \oint_{C_{\delta}} \psi(\overrightarrow{\mathbf{r}}) * d \ln \|\overrightarrow{\mathbf{r}}\| & =\lim _{\delta \rightarrow 0+} \int_{0}^{2 \pi} \psi(\delta \cos t, \delta \sin t) d t \\
& =\int_{0}^{2 \pi} \lim _{\delta \rightarrow 0+} \psi(\delta \cos t, \delta \sin t) d t=2 \pi \psi(\mathbf{0})
\end{aligned}
$$

Now we use $\frac{1}{2 \pi} \ln \|\overrightarrow{\mathbf{r}}\|$ to build the function that plays the role of g. Let $0<\varepsilon \ll 1$ and let ρ be a C^{∞} function on $[0, \infty)$ that obeys

$$
\begin{array}{ll}
\rho(r)=1 & \text { for } 0 \leq r \leq \frac{\varepsilon}{2} \\
0 \leq \rho(r) \leq 1 & \text { for } \frac{\varepsilon}{2} \leq r \leq \varepsilon \\
\rho(r)=0 & \text { for } r \geq \varepsilon
\end{array}
$$

Define

$$
\begin{aligned}
\omega(\overrightarrow{\mathbf{r}}) & =\frac{1}{2 \pi} \rho(\|\overrightarrow{\mathbf{r}}\|) \ln \|\overrightarrow{\mathbf{r}}\| \\
\gamma(\overrightarrow{\mathbf{r}}) & = \begin{cases}-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \omega(\overrightarrow{\mathbf{r}}) & \text { if } \overrightarrow{\mathbf{r}} \neq \mathbf{0} \\
0 & \text { if } \overrightarrow{\mathbf{r}}=\mathbf{0}\end{cases} \\
\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) & =\iint_{D} \gamma\left(\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right) \varphi(\overrightarrow{\mathbf{r}}) d x \wedge d y
\end{aligned}
$$

Note that

- $\omega(\overrightarrow{\mathbf{r}})$ is defined and C^{∞} for all $\overrightarrow{\mathbf{r}} \neq 0$.
- $\omega(\overrightarrow{\mathbf{r}})$ is supported on $\|\overrightarrow{\mathbf{r}}\| \leq \varepsilon$.
- $\omega(\overrightarrow{\mathbf{r}})=\frac{1}{2 \pi} \ln \|\overrightarrow{\mathbf{r}}\|$ for $0<\|\overrightarrow{\mathbf{r}}\|<\frac{\varepsilon}{2}$ so that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \omega(\overrightarrow{\mathbf{r}})$ vanishes for $0<\|\overrightarrow{\mathbf{r}}\|<\frac{\varepsilon}{2}$
- $\gamma(\overrightarrow{\mathbf{r}})$ is defined and C^{∞} on all of \mathbb{R}^{2}.
- $\gamma(\overrightarrow{\mathbf{r}})$ is supported on $\|\overrightarrow{\mathbf{r}}\| \leq \varepsilon$.
- $\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ is defined and C^{∞} on all of \mathbb{R}^{2} since γ is C^{∞} and φ is L^{1} on D.

The Theorem now follows from part b of the Lemma below, which implies that $\varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ for almost all $\overrightarrow{\mathbf{r}}$ with $\|\overrightarrow{\mathbf{r}}\| \leq 1-2 \varepsilon$.

More motivation: To motivate the choice of γ above, I'll now show that if φ is harmonic, that is, if φ is C^{2} and obeys $\Delta \varphi=0$, then $\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ for all $\left|\overrightarrow{\mathbf{r}}^{\prime}\right|<1-\varepsilon$. First observe that, since $\left|\overrightarrow{\mathbf{r}}^{\prime}\right|<1-\varepsilon$ and $\gamma\left(\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right)$ vanishes for $\left\|\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right\| \geq \varepsilon, \gamma\left(\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right)$ vanishes unless $\overrightarrow{\mathbf{r}} \in D$. Thus

$$
\begin{aligned}
\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) & =\iint_{D} \gamma\left(\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right) \varphi(\overrightarrow{\mathbf{r}}) d x \wedge d y=\iint_{\mathbb{R}^{2}} \gamma\left(\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right) \varphi(\overrightarrow{\mathbf{r}}) d x \wedge d y \\
& =\iint_{\mathbb{R}^{2}} \gamma(-\overrightarrow{\mathbf{r}}) \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y=\iint_{\mathbb{R}^{2}} \gamma(\overrightarrow{\mathbf{r}}) \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y
\end{aligned}
$$

since γ is even. We are now going to substitute in (for $\overrightarrow{\mathbf{r}} \neq 0$) $\gamma(\overrightarrow{\mathbf{r}})=-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \omega(\overrightarrow{\mathbf{r}})$ and integrate by parts a couple of times. To treat the singularity in ω at $\overrightarrow{\mathbf{r}}=0$ carefully, we eliminate 0 from the domain of integration. Since γ and φ are both continuous at $\overrightarrow{\mathbf{r}}=0$ and since $\gamma(\overrightarrow{\mathbf{r}})$ vanishes unless $\|\overrightarrow{\mathbf{r}}\| \leq \varepsilon<1$,

$$
\begin{aligned}
\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) & =\lim _{\delta \rightarrow 0} \iint_{\|\overrightarrow{\mathbf{r}}\| \geq \delta} \gamma(\overrightarrow{\mathbf{r}}) \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y=\lim _{\delta \rightarrow 0} \iint_{D_{\delta}} \gamma(\overrightarrow{\mathbf{r}}) \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y \\
& =\lim _{\delta \rightarrow 0}-\iint_{D_{\delta}} \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) \Delta \omega(\overrightarrow{\mathbf{r}})
\end{aligned}
$$

where $D_{\delta}=\left\{\overrightarrow{\mathbf{r}} \in \mathbb{R}^{2} \mid \delta \leq\|\overrightarrow{\mathbf{r}}\| \leq 1\right\}$ is the unit disk with the disk of radius δ removed. By

Green's formula (number 6 on our list of integration formulae)

$$
\iint_{D_{\delta}} \omega(\overrightarrow{\mathbf{r}}) \Delta \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{D_{\delta}} \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) \Delta \omega(\overrightarrow{\mathbf{r}})=\int_{\delta D_{\delta}} \omega(\overrightarrow{\mathbf{r}}) * d \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)-\int_{\delta D_{\delta}} \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) * d \omega(\overrightarrow{\mathbf{r}})
$$

The first term on the left hand side vanishes because φ is harmonic. The boundary $\delta D_{\delta}=$ $C_{1}-C_{\delta}$. The minus sign is there because the inside part of the boundary of δD is oriented in the opposite direction to C_{δ}. The outer, C_{1}, part of the boundary integrals are zero because $\omega(\overrightarrow{\mathbf{r}})$ vanishes for all $\|\overrightarrow{\mathbf{r}}\|>\varepsilon$. Furthermore, if $\delta<\frac{\varepsilon}{2}, \omega(\overrightarrow{\mathbf{r}})=\frac{1}{2 \pi} \log \|\overrightarrow{\mathbf{r}}\|$ on the inner part, C_{δ}, of the boundary. So

$$
\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\lim _{\delta \rightarrow 0} \frac{1}{2 \pi} \oint_{C_{\delta}} \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) * d \log \|\overrightarrow{\mathbf{r}}\|-\lim _{\delta \rightarrow 0} \frac{1}{2 \pi} \oint_{C_{\delta}} \log \|\overrightarrow{\mathbf{r}}\| * d \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)
$$

The first term on the right hand side is exactly $\varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ by the delta function like property (P2). The second term on the right hand side vanishes. To see this, parametrize C_{δ} by $\overrightarrow{\mathbf{r}}(\theta)=(x(\theta), y(\theta))=\delta(\cos \theta, \sin \theta)$ and observe that, because φ is $C^{2}, * d \varphi\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)=$ $-\varphi_{y} \frac{d x}{d \theta} d \theta+\varphi_{x} \frac{d y}{d \theta} d \theta=\varphi_{y} \delta \sin \theta d \theta+\varphi_{x} \delta \cos \theta d \theta$ is some continous, and hence bounded function, times $\delta d \theta$. Consequently, the second term on the right hand side is bounded in magnitude by a constant times

$$
\lim _{\delta \rightarrow 0} \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \delta \delta d \theta=\lim _{\delta \rightarrow 0} \frac{1}{2 \pi}(\log \delta)(2 \pi \delta)=0
$$

Hence $\Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ for all $\left\|\overrightarrow{\mathbf{r}}^{\prime}\right\|<1-\varepsilon$. In particular $\varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ is C^{∞} for all $\left\|\overrightarrow{\mathbf{r}}^{\prime}\right\|<1-\varepsilon$. Since $\varepsilon>0$ is arbitrary, $\varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ is C^{∞} for all $\left\|\overrightarrow{\mathbf{r}}^{\prime}\right\|<1$. This ends "More motivation".

We now need to consider functions of both $\overrightarrow{\mathbf{r}}$ and $\overrightarrow{\mathbf{r}}^{\prime}$. We use d^{\prime} and Δ^{\prime} to denote the operators d and Δ acting on functions of $\overrightarrow{\mathbf{r}}^{\prime}$. For example

$$
\begin{aligned}
d f\left(x, y, x^{\prime}, y^{\prime}\right) & =\frac{\partial f}{\partial x}\left(x, y, x^{\prime}, y^{\prime}\right) d x+\frac{\partial f}{\partial y}\left(x, y, x^{\prime}, y^{\prime}\right) d y \\
d^{\prime} f\left(x, y, x^{\prime}, y^{\prime}\right) & =\frac{\partial f}{\partial x^{\prime}}\left(x, y, x^{\prime}, y^{\prime}\right) d x^{\prime}+\frac{\partial f}{\partial y^{\prime}}\left(x, y, x^{\prime}, y^{\prime}\right) d y^{\prime}
\end{aligned}
$$

Lemma. Let $\mu(\overrightarrow{\mathbf{r}})$ be C^{∞} and supported in $\|\overrightarrow{\mathbf{r}}\| \leq 1-2 \varepsilon$. Define

$$
\eta\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\iint_{D} \omega\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) \mu(\overrightarrow{\mathbf{r}}) d x \wedge d y
$$

then
a) $\Delta^{\prime} \eta\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\left\{\mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{D} \gamma\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) \mu(\overrightarrow{\mathbf{r}}) d x \wedge d y\right\} d x^{\prime} \wedge d y^{\prime}$
b) $\iint_{D} \mu(\overrightarrow{\mathbf{r}})[\varphi(\overrightarrow{\mathbf{r}})-\Phi(\overrightarrow{\mathbf{r}})] d x \wedge d y=0$

Remark. Let $B_{1-2 \varepsilon}=\left\{\overrightarrow{\mathbf{r}} \in \mathbb{R}^{2} \mid\|\overrightarrow{\mathbf{r}}\| \leq 1-2 \varepsilon\right\}$. Since $C_{0}^{\infty}\left(B_{1-2 \varepsilon}\right)$ is dense in $L^{2}\left(B_{1-2 \varepsilon}\right)$ and $\overline{\varphi(\overrightarrow{\mathbf{r}})-\Phi(\overrightarrow{\mathbf{r}})}$ is in $L^{2}\left(B_{1-2 \varepsilon}\right)$, part (b) has the consequence that $\iint_{B_{1-2 \varepsilon}}|\varphi(\overrightarrow{\mathbf{r}})-\Phi(\overrightarrow{\mathbf{r}})|^{2} d x d y=0$ and hence that $\varphi(\overrightarrow{\mathbf{r}})-\Phi(\overrightarrow{\mathbf{r}})=0$ almost everywhere on $B_{1-2 \varepsilon}$. Since $\varepsilon>0$ is arbitrary, this completes the proof of the Theorem.

Proof: b) We first prove part (b) assuming part (a). Since $\mu(\overrightarrow{\mathbf{r}})$ vanishes unless $|\overrightarrow{\mathbf{r}}| \leq 1-2 \varepsilon$ and $\omega\left(\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right)$ vanishes unless $\left\|\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right\| \leq \varepsilon, \eta\left(\overrightarrow{\mathbf{r}}^{\prime}\right)$ vanishes unless $\left\|\overrightarrow{\mathbf{r}}^{\prime}\right\| \leq 1-\varepsilon$. Furthermore, as ω is L^{1} and μ is C^{∞} and supported in D,

$$
\eta\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\iint_{\mathbb{R}^{2}} \omega\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) \mu(\overrightarrow{\mathbf{r}}) d x \wedge d y=\iint_{\mathbb{R}^{2}} \omega(\overrightarrow{\mathbf{r}}) \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y
$$

is also C^{∞} and hence is in $C_{0}^{\infty}(D)$. Our main assumpion is that φ is a weak solution of Laplace's equation in D. Hence

$$
\begin{aligned}
0 & =\iint_{D} \varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \Delta \eta\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \\
& =\iint_{D} \varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)\left\{\mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{D} \gamma\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) \mu(\overrightarrow{\mathbf{r}}) d x \wedge d y\right\} d x^{\prime} \wedge d y^{\prime} \\
& =\iint_{D} \mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)\left\{\varphi\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{D} \gamma\left(\overrightarrow{\mathbf{r}}^{\prime}-\overrightarrow{\mathbf{r}}\right) \varphi(\overrightarrow{\mathbf{r}}) d x \wedge d y\right\} d x^{\prime} \wedge d y^{\prime}
\end{aligned}
$$

We made the change of variables $\overrightarrow{\mathbf{r}} \leftrightarrow \overrightarrow{\mathbf{r}}^{\prime}$ in the second term. The right hand side is exactly $\iint_{D} \mu(\overrightarrow{\mathbf{r}})[\varphi(\overrightarrow{\mathbf{r}})-\Phi(\overrightarrow{\mathbf{r}})] d x \wedge d y$.
a) Since μ is supported in D,

$$
\eta\left(\overrightarrow{\mathbf{r}}^{\prime}\right)=\iint_{\mathbb{R}^{2}} \omega\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) \mu(\overrightarrow{\mathbf{r}}) d x \wedge d y=\iint_{\mathbb{R}^{2}} \omega(\overrightarrow{\mathbf{r}}) \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y
$$

In the integrand, μ is a function of $\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}$ only, so

$$
\begin{aligned}
\Delta^{\prime} \eta\left(\overrightarrow{\mathbf{r}}^{\prime}\right) & =d x^{\prime} \wedge d y^{\prime} \iint_{\mathbb{R}^{2}} \omega(\overrightarrow{\mathbf{r}})\left(\frac{\partial^{2}}{\partial x^{\prime 2}}+\frac{\partial^{2}}{\partial y^{\prime 2}}\right) \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y \\
& =d x^{\prime} \wedge d y^{\prime} \iint_{\mathbb{R}^{2}} \omega(\overrightarrow{\mathbf{r}})\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y \\
& =d x^{\prime} \wedge d y^{\prime} \iint_{\mathbb{R}^{2}} \omega(\overrightarrow{\mathbf{r}}) \Delta \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)
\end{aligned}
$$

We now integrate by parts twice (apply Green's formula) twice, being careful about the singularity of ω at the origin. Since ω is supported in D and is in $L^{1}(D)$ and μ is C^{∞},

$$
\iint_{\mathbb{R}^{2}} \omega(\overrightarrow{\mathbf{r}}) \Delta \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)=\lim _{\delta \rightarrow 0+} \iint_{D_{\delta}} \omega(\overrightarrow{\mathbf{r}}) \Delta \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)
$$

By Green's formula,

$$
\iint_{D_{\delta}} \omega(\overrightarrow{\mathbf{r}}) \Delta \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{D_{\delta}} \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) \Delta \omega(\overrightarrow{\mathbf{r}})=\int_{\delta D_{\delta}} \omega(\overrightarrow{\mathbf{r}}) * d \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)-\int_{\delta D_{\delta}} \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) * d \omega(\overrightarrow{\mathbf{r}})
$$

Again, the boundary $\delta D_{\delta}=C_{1}-C_{\delta}$ and the outer, C_{1}, part of the boundary integrals are zero because $\omega(\overrightarrow{\mathbf{r}})$ vanishes for all $\|\overrightarrow{\mathbf{r}}\|>\varepsilon$. And the C_{δ} part of the first boundary integral again tends to zero with δ because, if $\delta<\frac{\varepsilon}{2}, \omega(\overrightarrow{\mathbf{r}})=\frac{1}{2 \pi} \log \|\overrightarrow{\mathbf{r}}\|$ on C_{δ}, both first derivatives of μ are bounded, say by K, and the circumference of C_{δ} is $2 \pi \delta$ so that

$$
\left|\oint_{C_{\delta}} \omega(\overrightarrow{\mathbf{r}}) * d \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right)\right| \leq\left(\frac{1}{2 \pi} \ln \delta\right)(2 K)(2 \pi \delta)
$$

On $D_{\delta}, \Delta \omega(\overrightarrow{\mathbf{r}})=-\gamma(\overrightarrow{\mathbf{r}}) d x \wedge d y$, so that

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} \omega(\overrightarrow{\mathbf{r}}) \Delta \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) & =\lim _{\delta \rightarrow 0+} \oint_{C_{\delta}} \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) * d \omega(\overrightarrow{\mathbf{r}})-\lim _{\delta \rightarrow 0+} \iint_{D_{\delta}} \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) \gamma(\overrightarrow{\mathbf{r}}) d x \wedge d y \\
& =\mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\lim _{\delta \rightarrow 0+} \iint_{D_{\delta}} \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) \gamma(\overrightarrow{\mathbf{r}}) d x \wedge d y \quad \text { by }(\mathrm{P} 2) \\
& =\mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{D} \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) \gamma(\overrightarrow{\mathbf{r}}) d x \wedge d y \\
& =\mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{\mathbb{R}^{2}} \mu\left(\overrightarrow{\mathbf{r}}+\overrightarrow{\mathbf{r}}^{\prime}\right) \gamma(\overrightarrow{\mathbf{r}}) d x \wedge d y \\
& =\mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{\mathbb{R}^{2}} \mu(\overrightarrow{\mathbf{r}}) \gamma\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) d x \wedge d y \\
& =\mu\left(\overrightarrow{\mathbf{r}}^{\prime}\right)-\iint_{D} \gamma\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right) \mu(\overrightarrow{\mathbf{r}}) d x \wedge d y
\end{aligned}
$$

since γ and μ are supported in D.

