Elliptic Regularity

Let Ω be an open subset of \mathbb{R}^d . A measurable, locally square integrable function φ is said to be a weak solution of Laplace's equation in Ω if

$$\iint_{\Omega} \varphi(\vec{\mathbf{r}}) \,\Delta\eta(\vec{\mathbf{r}}) \,d^d\vec{\mathbf{r}} = 0$$

for all C_0^{∞} functions η that are supported in Ω . The theorem that any weak solution of an elliptic partial differential equation in Ω is C^{∞} (technically, equal almost everywhere in Ω to a C^{∞} function) is called elliptic regularity. In this course, we are interested in harmonic functions in d = 2, so we now prove elliptic regularity for Laplace's equation in d = 2.

Theorem. Let Ω be an open subset of \mathbb{R}^2 . Let φ be a measurable, locally square integrable function that is a weak solution of Laplace's equation in Ω . Then φ is equal almost everywhere in Ω to a C^{∞} function.

Motivation for proof: By way of motivation for the strategy that we'll use to prove this Theorem, I'll first outline a simple proof that any C^2 function φ that obeys $\Delta \varphi = 0$ is in fact C^{∞} . Recall that, by the Cauchy integral formula, any analytic function, f(z), obeys

$$f(z') = \frac{1}{2\pi i} \int_{|z-z'|=r} \frac{f(z)}{z-z'} dz$$

Parametrizing the circle |z - z'| = r by $z = z' + re^{i\theta}$,

$$f(z') = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z' + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} f(z' + re^{i\theta}) d\theta$$

This is called the "Mean–value Property". It also holds for harmonic functions. That is, if $\Delta \varphi = 0$, then

$$\varphi(x',y') = \frac{1}{2\pi} \int_0^{2\pi} \varphi\big((x',y') + r(\cos\theta,\sin\theta)\big) \ d\theta$$

This is proven using Green's Theorem, which is the same way that the Cauchy Integral Theorem is proven. Now let $g \in C_0^{\infty}([0,\infty))$ obey $\int_0^{\infty} g(r)rdr = \frac{1}{2\pi}$. Then

$$\begin{split} \varphi(x',y') &= \int_0^\infty dr \ r \ g(r) \ 2\pi\varphi(x',y') \\ &= \int_0^\infty dr \ r \int_0^{2\pi} d\theta \ g(r)\varphi\big((x',y') + r(\cos\theta,\sin\theta)\big) \\ &= \iint dxdy \ g(\|(x,y)\|)\varphi\big((x',y') + (x,y)\big) \\ &= \iint dxdy \ g(\|(x'-x,y'-y)\|)\varphi\big((x,y)\big) \end{split}$$

The right hand side is trivially C^{∞} because all derivatives with respect to x' or y' act on g(||(x'-x,y'-y)||), which is C^{∞} because the length ||(x'-x,y'-y)|| is C^{∞} in (x',y') except at x'-x=y'-y=0 and g(r) is C^{∞} and vanishes for r in a neighbourhood of 0.

Proof: Every open set is a union of open disks. That φ is locally square integrable in Ω means that φ is square integrable on some neighbourhood of each point of Ω . So we may choose the disks so that φ is L^2 on each disk. Thus it suffices to consider Ω 's that are open disks. By translating and scaling, it suffices to consider the unit disk centred on the origin, which we denote D, and we may assume that φ is L^2 on D.

We first construct the function that is going to play the role of g in the motivation above. Let $\vec{\mathbf{r}} = (x, y)$. We shall exploit two properties of the function $\ln ||\vec{\mathbf{r}}||$. The first is that $\ln ||\vec{\mathbf{r}}||$ is defined and harmonic for all $\vec{\mathbf{r}} \neq \mathbf{0}$. This is shown by the computation

$$d\ln\|\vec{\mathbf{r}}\| = \frac{1}{2}d\ln(x^2 + y^2) = \frac{xdx + ydy}{x^2 + y^2}$$
$$\Delta\ln\|\vec{\mathbf{r}}\| = d * d\ln\|\vec{\mathbf{r}}\| = d\frac{-ydx + xdy}{x^2 + y^2} = \frac{2(x^2 + y^2)dx \wedge dy - (2xdx + 2ydy) \wedge (-ydx + xdy)}{(x^2 + y^2)^2} = 0 \quad (P1)$$

The second property of $\ln \|\vec{\mathbf{r}}\|$ that we shall use is the following. Let C_{δ} be the circle of radius δ centered on **0**, oriented, as usual, in the counterclockwise direction. Then, for any continuous function $\psi(\vec{\mathbf{r}})$,

$$\lim_{\delta \to 0+} \oint_{C_{\delta}} \psi(\vec{\mathbf{r}}) * d \ln \|\vec{\mathbf{r}}\| = 2\pi \psi(\mathbf{0})$$
(P2)

To see this, parametrize C_{δ} by $\vec{\mathbf{r}}(t) = (x(t), y(t)) = \delta(\cos t, \sin t)$ with $0 \le t \le 2\pi$. When we evaluate the integral $\oint_{C_{\delta}} \psi(\vec{\mathbf{r}}) * d \ln \|\vec{\mathbf{r}}\|$ using this parametrization, $*d \ln \|\vec{\mathbf{r}}\| = \frac{-ydx + xdy}{x^2 + y^2}$ is replaced by

$$\frac{-y(t)x'(t)dt + x(t)y'(t)dt}{x(t)^2 + y(t)^2} = dt$$

so that, using the continuity of ψ ,

$$\lim_{\delta \to 0+} \oint_{C_{\delta}} \psi(\vec{\mathbf{r}}) * d \ln \|\vec{\mathbf{r}}\| = \lim_{\delta \to 0+} \int_{0}^{2\pi} \psi(\delta \cos t, \delta \sin t) dt$$
$$= \int_{0}^{2\pi} \lim_{\delta \to 0+} \psi(\delta \cos t, \delta \sin t) dt = 2\pi \psi(\mathbf{0})$$

Now we use $\frac{1}{2\pi} \ln \|\vec{\mathbf{r}}\|$ to build the function that plays the role of g. Let $0 < \varepsilon \ll 1$ and let ρ be a C^{∞} function on $[0, \infty)$ that obeys

Define

$$\omega(\vec{\mathbf{r}}) = \frac{1}{2\pi} \rho(\|\vec{\mathbf{r}}\|) \ln \|\vec{\mathbf{r}}\|$$
$$\gamma(\vec{\mathbf{r}}) = \begin{cases} -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \omega(\vec{\mathbf{r}}) & \text{if } \vec{\mathbf{r}} \neq \mathbf{0} \\ 0 & \text{if } \vec{\mathbf{r}} = \mathbf{0} \end{cases}$$
$$\Phi(\vec{\mathbf{r}}') = \iint_D \gamma(\vec{\mathbf{r}}' - \vec{\mathbf{r}}) \varphi(\vec{\mathbf{r}}) \, dx \wedge dy$$

Note that

- $\omega(\vec{\mathbf{r}})$ is defined and C^{∞} for all $\vec{\mathbf{r}} \neq 0$.
- $\omega(\vec{\mathbf{r}})$ is supported on $\|\vec{\mathbf{r}}\| \leq \varepsilon$.
- $\omega(\vec{\mathbf{r}}) = \frac{1}{2\pi} \ln \|\vec{\mathbf{r}}\|$ for $0 < \|\vec{\mathbf{r}}\| < \frac{\varepsilon}{2}$ so that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \omega(\vec{\mathbf{r}})$ vanishes for $0 < \|\vec{\mathbf{r}}\| < \frac{\varepsilon}{2}$ • $\gamma(\vec{\mathbf{r}})$ is defined and C^{∞} on all of \mathbb{R}^2 .
- $\gamma(\vec{\mathbf{r}})$ is supported on $\|\vec{\mathbf{r}}\| \leq \varepsilon$.
- $\Phi(\vec{\mathbf{r}}')$ is defined and C^{∞} on all of \mathbb{R}^2 since γ is C^{∞} and φ is L^1 on D.

The Theorem now follows from part b of the Lemma below, which implies that $\varphi(\vec{\mathbf{r}}') = \Phi(\vec{\mathbf{r}}')$ for almost all $\vec{\mathbf{r}}$ with $\|\vec{\mathbf{r}}\| \leq 1 - 2\varepsilon$.

More motivation: To motivate the choice of γ above, I'll now show that if φ is harmonic, that is, if φ is C^2 and obeys $\Delta \varphi = 0$, then $\Phi(\vec{\mathbf{r}}') = \varphi(\vec{\mathbf{r}}')$ for all $|\vec{\mathbf{r}}'| < 1 - \varepsilon$. First observe that, since $|\vec{\mathbf{r}}'| < 1 - \varepsilon$ and $\gamma(\vec{\mathbf{r}}' - \vec{\mathbf{r}})$ vanishes for $||\vec{\mathbf{r}}' - \vec{\mathbf{r}}|| \ge \varepsilon$, $\gamma(\vec{\mathbf{r}}' - \vec{\mathbf{r}})$ vanishes unless $\vec{\mathbf{r}} \in D$. Thus

$$\Phi(\vec{\mathbf{r}}') = \iint_D \gamma(\vec{\mathbf{r}}' - \vec{\mathbf{r}}) \,\varphi(\vec{\mathbf{r}}) \,dx \wedge dy = \iint_{\mathbb{R}^2} \gamma(\vec{\mathbf{r}}' - \vec{\mathbf{r}}) \,\varphi(\vec{\mathbf{r}}) \,dx \wedge dy$$
$$= \iint_{\mathbb{R}^2} \gamma(-\vec{\mathbf{r}}) \,\varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \,dx \wedge dy = \iint_{\mathbb{R}^2} \gamma(\vec{\mathbf{r}}) \,\varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \,dx \wedge dy$$

since γ is even. We are now going to substitute in (for $\vec{\mathbf{r}} \neq 0$) $\gamma(\vec{\mathbf{r}}) = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\omega(\vec{\mathbf{r}})$ and integrate by parts a couple of times. To treat the singularity in ω at $\vec{\mathbf{r}} = 0$ carefully, we eliminate 0 from the domain of integration. Since γ and φ are both continuous at $\vec{\mathbf{r}} = 0$ and since $\gamma(\vec{\mathbf{r}})$ vanishes unless $\|\vec{\mathbf{r}}\| \leq \varepsilon < 1$,

$$\begin{split} \Phi(\vec{\mathbf{r}}') &= \lim_{\delta \to 0} \iint_{\|\vec{\mathbf{r}}\| \ge \delta} \gamma(\vec{\mathbf{r}}) \, \varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \, dx \wedge dy = \lim_{\delta \to 0} \iint_{D_{\delta}} \gamma(\vec{\mathbf{r}}) \, \varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \, dx \wedge dy \\ &= \lim_{\delta \to 0} - \iint_{D_{\delta}} \varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \Delta \omega(\vec{\mathbf{r}}) \end{split}$$

where $D_{\delta} = \{ \vec{\mathbf{r}} \in \mathbb{R}^2 \mid \delta \leq ||\vec{\mathbf{r}}|| \leq 1 \}$ is the unit disk with the disk of radius δ removed. By

Green's formula (number 6 on our list of integration formulae)

$$\iint_{D_{\delta}} \omega(\vec{\mathbf{r}}) \Delta \varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') - \iint_{D_{\delta}} \varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \Delta \omega(\vec{\mathbf{r}}) = \int_{\delta D_{\delta}} \omega(\vec{\mathbf{r}}) * d\varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') - \int_{\delta D_{\delta}} \varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') * d\omega(\vec{\mathbf{r}})$$

The first term on the left hand side vanishes because φ is harmonic. The boundary $\delta D_{\delta} = C_1 - C_{\delta}$. The minus sign is there because the inside part of the boundary of δD is oriented in the opposite direction to C_{δ} . The outer, C_1 , part of the boundary integrals are zero because $\omega(\vec{\mathbf{r}})$ vanishes for all $\|\vec{\mathbf{r}}\| > \varepsilon$. Furthermore, if $\delta < \frac{\varepsilon}{2}$, $\omega(\vec{\mathbf{r}}) = \frac{1}{2\pi} \log \|\vec{\mathbf{r}}\|$ on the inner part, C_{δ} , of the boundary. So

$$\Phi(\vec{\mathbf{r}}') = \lim_{\delta \to 0} \frac{1}{2\pi} \oint_{C_{\delta}} \varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') * d \log \|\vec{\mathbf{r}}\| - \lim_{\delta \to 0} \frac{1}{2\pi} \oint_{C_{\delta}} \log \|\vec{\mathbf{r}}\| * d\varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}')$$

The first term on the right hand side is exactly $\varphi(\vec{\mathbf{r}}')$ by the delta function like property (P2). The second term on the right hand side vanishes. To see this, parametrize C_{δ} by $\vec{\mathbf{r}}(\theta) = (x(\theta), y(\theta)) = \delta(\cos \theta, \sin \theta)$ and observe that, because φ is C^2 , $*d\varphi(\vec{\mathbf{r}} + \vec{\mathbf{r}}') = -\varphi_y \frac{dx}{d\theta} d\theta + \varphi_x \frac{dy}{d\theta} d\theta = \varphi_y \delta \sin \theta \, d\theta + \varphi_x \delta \cos \theta \, d\theta$ is some continuous, and hence bounded function, times $\delta \, d\theta$. Consequently, the second term on the right hand side is bounded in magnitude by a constant times

$$\lim_{\delta \to 0} \frac{1}{2\pi} \int_0^{2\pi} \log \delta \,\,\delta \,d\theta = \lim_{\delta \to 0} \frac{1}{2\pi} (\log \delta) (2\pi\delta) = 0$$

Hence $\Phi(\vec{\mathbf{r}}') = \varphi(\vec{\mathbf{r}}')$ for all $\|\vec{\mathbf{r}}'\| < 1 - \varepsilon$. In particular $\varphi(\vec{\mathbf{r}}')$ is C^{∞} for all $\|\vec{\mathbf{r}}'\| < 1 - \varepsilon$. Since $\varepsilon > 0$ is arbitrary, $\varphi(\vec{\mathbf{r}}')$ is C^{∞} for all $\|\vec{\mathbf{r}}'\| < 1$. This ends "More motivation".

We now need to consider functions of both $\mathbf{\vec{r}}$ and $\mathbf{\vec{r}'}$. We use d' and Δ' to denote the operators d and Δ acting on functions of $\mathbf{\vec{r}'}$. For example

$$d f(x, y, x', y') = \frac{\partial f}{\partial x}(x, y, x', y') dx + \frac{\partial f}{\partial y}(x, y, x', y') dy$$

$$d' f(x, y, x', y') = \frac{\partial f}{\partial x'}(x, y, x', y') dx' + \frac{\partial f}{\partial y'}(x, y, x', y') dy'$$

Lemma. Let $\mu(\vec{\mathbf{r}})$ be C^{∞} and supported in $\|\vec{\mathbf{r}}\| \leq 1 - 2\varepsilon$. Define

$$\eta(\mathbf{\vec{r}}') = \iint_D \omega(\mathbf{\vec{r}} - \mathbf{\vec{r}}') \,\mu(\mathbf{\vec{r}}) \,\,dx \wedge dy$$

then

a)
$$\Delta' \eta(\vec{\mathbf{r}}') = \left\{ \mu(\vec{\mathbf{r}}') - \int_D \gamma(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \, \mu(\vec{\mathbf{r}}) \, dx \wedge dy \right\} dx' \wedge dy'$$

b) $\int_D \mu(\vec{\mathbf{r}}) \left[\varphi(\vec{\mathbf{r}}) - \Phi(\vec{\mathbf{r}}) \right] dx \wedge dy = 0$

Remark. Let $B_{1-2\varepsilon} = \{ \vec{\mathbf{r}} \in \mathbb{R}^2 \mid ||\vec{\mathbf{r}}|| \le 1-2\varepsilon \}$. Since $C_0^{\infty}(B_{1-2\varepsilon})$ is dense in $L^2(B_{1-2\varepsilon})$ and $\overline{\varphi(\vec{\mathbf{r}}) - \Phi(\vec{\mathbf{r}})}$ is in $L^2(B_{1-2\varepsilon})$, part (b) has the consequence that $\iint_{B_{1-2\varepsilon}} |\varphi(\vec{\mathbf{r}}) - \Phi(\vec{\mathbf{r}})|^2 dxdy = 0$ and hence that $\varphi(\vec{\mathbf{r}}) - \Phi(\vec{\mathbf{r}}) = 0$ almost everywhere on $B_{1-2\varepsilon}$. Since $\varepsilon > 0$ is arbitrary, this completes the proof of the Theorem.

Proof: b) We first prove part (b) assuming part (a). Since $\mu(\vec{\mathbf{r}})$ vanishes unless $||\vec{\mathbf{r}}| \leq 1 - 2\varepsilon$ and $\omega(\vec{\mathbf{r}}' - \vec{\mathbf{r}})$ vanishes unless $||\vec{\mathbf{r}}' - \vec{\mathbf{r}}|| \leq \varepsilon$, $\eta(\vec{\mathbf{r}}')$ vanishes unless $||\vec{\mathbf{r}}'|| \leq 1 - \varepsilon$. Furthermore, as ω is L^1 and μ is C^{∞} and supported in D,

$$\eta(\vec{\mathbf{r}}') = \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \,\mu(\vec{\mathbf{r}}) \,\,dx \wedge dy = \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}}) \,\mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \,\,dx \wedge dy$$

is also C^{∞} and hence is in $C_0^{\infty}(D)$. Our main assumption is that φ is a weak solution of Laplace's equation in D. Hence

$$0 = \iint_{D} \varphi(\vec{\mathbf{r}}') \Delta \eta(\vec{\mathbf{r}}')$$

=
$$\iint_{D} \varphi(\vec{\mathbf{r}}') \Big\{ \mu(\vec{\mathbf{r}}') - \iint_{D} \gamma(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \mu(\vec{\mathbf{r}}) \, dx \wedge dy \Big\} dx' \wedge dy'$$

=
$$\iint_{D} \mu(\vec{\mathbf{r}}') \Big\{ \varphi(\vec{\mathbf{r}}') - \iint_{D} \gamma(\vec{\mathbf{r}}' - \vec{\mathbf{r}}) \varphi(\vec{\mathbf{r}}) \, dx \wedge dy \Big\} dx' \wedge dy'$$

We made the change of variables $\vec{\mathbf{r}} \leftrightarrow \vec{\mathbf{r}}'$ in the second term. The right hand side is exactly $\iint_D \mu(\vec{\mathbf{r}}) \left[\varphi(\vec{\mathbf{r}}) - \Phi(\vec{\mathbf{r}})\right] dx \wedge dy.$

a) Since μ is supported in D,

$$\eta(\vec{\mathbf{r}}') = \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \,\mu(\vec{\mathbf{r}}) \,\,dx \wedge dy = \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}}) \,\mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \,\,dx \wedge dy$$

In the integrand, μ is a function of $\vec{\mathbf{r}} + \vec{\mathbf{r}}'$ only, so

$$\begin{aligned} \Delta' \eta(\vec{\mathbf{r}}') &= dx' \wedge dy' \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}}) \left(\frac{\partial^2}{\partial x'^2} + \frac{\partial^2}{\partial y'^2} \right) \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \, dx \wedge dy \\ &= dx' \wedge dy' \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}}) \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \, dx \wedge dy \\ &= dx' \wedge dy' \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}}) \, \Delta \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \end{aligned}$$

We now integrate by parts twice (apply Green's formula) twice, being careful about the singularity of ω at the origin. Since ω is supported in D and is in $L^1(D)$ and μ is C^{∞} ,

$$\iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}}) \,\Delta\mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') = \lim_{\delta \to 0+} \iint_{D_{\delta}} \omega(\vec{\mathbf{r}}) \,\Delta\mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}')$$

By Green's formula,

$$\iint_{D_{\delta}} \omega(\vec{\mathbf{r}}) \Delta \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') - \iint_{D_{\delta}} \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \Delta \omega(\vec{\mathbf{r}}) = \int_{\delta D_{\delta}} \omega(\vec{\mathbf{r}}) * d\mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') - \int_{\delta D_{\delta}} \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') * d\omega(\vec{\mathbf{r}})$$

Again, the boundary $\delta D_{\delta} = C_1 - C_{\delta}$ and the outer, C_1 , part of the boundary integrals are zero because $\omega(\vec{\mathbf{r}})$ vanishes for all $\|\vec{\mathbf{r}}\| > \varepsilon$. And the C_{δ} part of the first boundary integral again tends to zero with δ because, if $\delta < \frac{\varepsilon}{2}$, $\omega(\vec{\mathbf{r}}) = \frac{1}{2\pi} \log \|\vec{\mathbf{r}}\|$ on C_{δ} , both first derivatives of μ are bounded, say by K, and the circumference of C_{δ} is $2\pi\delta$ so that

$$\left|\oint_{C_{\delta}} \omega(\vec{\mathbf{r}}) * d\mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}')\right| \le \left(\frac{1}{2\pi} \ln \delta\right) (2K) (2\pi\delta)$$

On D_{δ} , $\Delta \omega(\vec{\mathbf{r}}) = -\gamma(\vec{\mathbf{r}})dx \wedge dy$, so that

$$\begin{split} \iint_{\mathbb{R}^2} \omega(\vec{\mathbf{r}}) \,\Delta\mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') &= \lim_{\delta \to 0+} \oint_{C_{\delta}} \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') * d\omega(\vec{\mathbf{r}}) - \lim_{\delta \to 0+} \iint_{D_{\delta}} \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \gamma(\vec{\mathbf{r}}) \,dx \wedge dy \\ &= \mu(\vec{\mathbf{r}}') - \lim_{\delta \to 0+} \iint_{D_{\delta}} \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \gamma(\vec{\mathbf{r}}) \,dx \wedge dy \quad \text{by (P2)} \\ &= \mu(\vec{\mathbf{r}}') - \iint_{D} \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \gamma(\vec{\mathbf{r}}) \,dx \wedge dy \\ &= \mu(\vec{\mathbf{r}}') - \iint_{\mathbb{R}^2} \mu(\vec{\mathbf{r}} + \vec{\mathbf{r}}') \gamma(\vec{\mathbf{r}}) \,dx \wedge dy \\ &= \mu(\vec{\mathbf{r}}') - \iint_{\mathbb{R}^2} \mu(\vec{\mathbf{r}}) \gamma(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \,dx \wedge dy \\ &= \mu(\vec{\mathbf{r}}') - \iint_{D} \gamma(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \mu(\vec{\mathbf{r}}) \,dx \wedge dy \end{split}$$

since γ and μ are supported in D.